Research Article
BibTex RIS Cite

Changes of Vine Water Status and Growth Parameters Under Different Canopy Managements on cv. Merlot (Vitis vinifera L.)

Year 2022, , 1 - 15, 26.01.2022
https://doi.org/10.33462/jotaf.795232

Abstract

İklim, asma fizyolojisi, asma büyümesi, taç mikrokliması, meyve kalitesi ve son olarak şarap bileşenlerini güçlü bir şekilde kontrol ettiği için bir bağcılık bölgesindeki yetiştiricilik yöntemini belirleyen baskın düzenleyicidir. Diğer yandan iklim değişikliğinin etkileri, üreticileri bu değişikliklere uyum sağlamak konusunda yeni çözümler üretmeye zorlamaktadır. Bağlarda su yönetiminin önemi, sürdürülebilir bağcılık ve şarapçılık için her geçen gün daha da artmaktadır. Suyun verimli kullanılması, verimin kontrol altına alınması ve hedeflenen tane kalitesinin istenilen düzeyde sağlanması için önemli bir konudur. Bu deneme, yeşil budama uygulamalarının 12-14 yaşındaki, Kober 5BB anacı üzerine aşılanmış Merlot (Vitis vinifera L.) çeşidi asmalarda yaprak su potansiyellerine etkilerinin belirlenmesi amacıyla 2013-2014 ve 2015 yıllarında Tekirdağ Bağcılık Araştırma Enstitüsü, Türkiye’ de yürütülmüştür. Tesadüf blokları deneme deseninde yürütülen araştırmada LRMS1, LRMS2, LRMS3 uygulamaları ana sürgünler üzerinde uygulanmış üç farklı yaprak alımı seviyesini, LRLS1, LRLS2, LRLS3 uygulamaları koltuk sürgünleri üzerinde uygulanmış üç farklı yaprak alımı seviyesini ifade etmektedir. Bağ şartlarındaki nispeten yüksek toprak nemi nedeniyle deneme yıllarında aşırı ve yüksek su stresi seviyeleri gözlenmemiştir. Merlot asmalarında su durumu kontrolünün büyük ölçüde yetiştirme dönemindeki mezoklimatik koşullar ve toprak su potansiyeline bağlı olduğu belirlenmiştir. Bununla birlikte ana sürgün boyundaki artışın su stresini artırdığı gözlenmiştir. Koltuk sürgünlerinde yapılan yaprak alma uygulamalarının özellikle 2014 yılında sürgün ağırlığı, budama ağırlığı ve Ravaz indeksinde (RI) değişikliklere neden olduğu, 2015 yılında ise ana sürgünlerde yapılan yaprak alma uygulamalarının aynı parametrelerdeki değişikliklerde etkili olduğu belirlenmiştir. Taç yönetimi uygulamaları planlamasının yıllar ölçeğinde uzun ve orta vadeli meteorolojik değerlendirmeler dikkate alınarak, kısa vadeli planlamanın ise vejetasyon dönemi içinde haftalık ve aylık meteorolojik veriler dikkate alınarak yapılması gerektiği değerlendirilmektedir.

Project Number

TAGEM/BBAD/2013/A08/P04-08.

References

  • Baeza, P., Junquera, P., Peiro, E., Ramón Lissarrague, J., Uriarte, D., Vilanova, M. (2019). Effects of Vine Water Status on Yield Components. Vegetative Response and Must and Wine Composition. Morata, A., Loira, I. (ed.) In Advances in Grape and Wine Biotechnology. IntechOpen. https://doi.org/10.5772/intechopen.87042.
  • Balint, G., Reynolds, A.G. (2017). Irrigation level and time of imposition impact vine physiology. yield components. fruit composition and wine quality of Ontario Chardonnay. Scientia Horticulturae. 214: 252–272. https://doi.org/10.1016/j.scienta.2016.11.052.
  • Bahar, E., Carbonneau, A., Korkutal, İ. (2017a). Vine and berry responses to severe water stress in different stages in cv. Syrah (Vitis vinifera L.). Journal of Tekirdag Agricultural Faculty. The Special Issue of 2nd International Balkan Agriculture Congress. May 16-18. p. 62-70.
  • Bahar, E., Korkutal, İ., Kabataş, İ.E. (2017b). Effects of different leaf water potentials (Ψleaf) and cluster thinning applications on cluster and berry characteristics in cv. Sangiovese (in Turkish with English abstract). Journal of Tekirdag Agricultural Faculty 14(2): 138-149.
  • Bahar, E., Korkutal, İ., Öner H., (2018). Effects of different cultural practices on leaf water potentials in cv. cabernet–sauvignon (in Turkish with English abstract). Bahçe 47(1): 201-208.
  • Blake, G.R., Hartge, K.H. (1986). Methods of Soil Analysis: Part I Physical and Mineralogical Properties. American Society of Agronomy, Madison, Wisconsin, USA. doi:10.2136/sssabookser5.1.2ed.frontmatter.
  • Candar, S., Alco, T., Yasasin, A.S., Korkutal, I., Bahar, E. (2019). Türkiye Trakyası bagcılık iklim göstergelerindeki uzun süreli degişimlerin degerlendirilmesi [Evaluation of long term changes for viticultural climate indices in Turkey Thrace]. COMU Journal of Agriculture Faculty. 7(2): 259-268 (in Turkish with an abstract in English) doi:10.33202/comuagri.524811.
  • Carbonneau, A., Moueix, A., Leclair, N., Renoux, J. (1991). Proposition d’une mèthode de prélèvement de raisin à partir de l’analyse de l’hétérogénité de maturation sur un cep. Bull. OIV 727/728. 679–690.
  • Chaves, M.M., Zarrouk, O., Francisco, R., Costa, J.M., Santos, T., Regalado, A.P., Rodrgigues, M.L., Lopes, C.M. (2010). Grapevine under deficit irrigation: Hints from physiological and molecular data. Annals of Botany. 105(5): 661-676. https://doi.org/10.1093/aob/mcq030.
  • Cook, M.G., Zhang, Y., Nelson, C.J., Gambetta, G., Kennedy, J.A., Kurtural, S.K. (2015) Anthocyanin composition of Merlot is ameliorated by light microclimate and irrigation in Central California. American Journal of Enology and Viticulture. 66: 266–278. https://doi.org/10.5344/ajev.2015.15006.
  • Deloire, A., Carbonneau, A., Wang, Z., Ojeda, H. (2004). Vine and water: a short review. OENO-One 38(1): 1-13. doi:10.20870/oeno-one.2004.38.1.932.
  • Deveci, H, Konukcu, F., Altürk, B. (2019). Effect of climate change on wheat grown soil moisture profile in Thrace district (in Turkish with English abstract). Journal of Tekirdag Agricultural Faculty, 16(2): 202-218. https://doi.org/10.33462/jotaf.543103.
  • Donat, M.G., Alexander, L.V., Yang, H., Durre, I., Vose, R, (2013). Global land-based datasets for monitoring climatic extremes. Bulletin of the American Meteorological Society 94(7): 997-1006. doi:10.1175/BAMS-D-12-00109.1
  • Fayolle, E., Follain, S., Marchal, P., Chéry, P., Colin, F. (2019). Identification of environmental factors controlling wine quality: A case study in Saint-Emilion Grand Cru appellation, France. Science of The Total Environment. 694:133718. https://doi.org/10.1016/j.scitotenv.2019.133718.
  • Flexas, J., Medrano, H., Escalona, J.M., Bota, J., Gulias, J. (2002). Regulation of photosynthesis of C3 plants in response to progressive drought: stomatal conductance as a reference parameter. Annals of Botany 89(7): 895-905. doi: 10.1093/aob/mcf079
  • Flexas, J., Medrano, H. (2002). Drought-inhibition of photosynthesis in C3 plants: stomatal and non-stomatal limitations revisited. Annals of Botany 89(2): 183-189. doi: 10.1093/aob/mcf027
  • Fraga, H., Malheiro, A.C., Moutinho-Pereira, J., Santos, J.A. (2012). An overview of climate change impacts on European viticulture. Food and Energy Security 1(2): 94-110. doi: 10.1002/fes3.14
  • Gambetta, G.A., Herrera, J.C., Dayer, S., Feng, Q., Hochberg, U., Castellarin, S.D. (2020). The physiology of drought stress in grapevine: Towards an integrative definition of drought tolerance. Journal of Experimental Botany 71(16). https://doi.org/10.1093/jxb/eraa245
  • Garcia, L., Celette, F., Gary, C., Ripoche, A., Valdés-Gómez, H., Metay, A. (2018). Management of service crops for the provision of ecosystem services in vineyards: A review. Agriculture, Ecosystems & Environment. 251: 158–170. https://doi.org/10.1016/j.agee.2017.09.030.
  • Guilpart, N., Metay, A., Gary, C. (2014) Grapevine bud fertility and number of berries per bunch are determined by water and nitrogen stress around flowering in the previous year. European Journal of Agronomy. 54: 9–20. https://doi.org/10.1016/j.eja.2013.11.002.
  • Intrigliolo, D.S., Castel, J.R. (2010) Response of grapevine cv. ‘Tempranillo’ to timing and amount of irrigation: Water relations, vine growth, yield and berry and wine composition. Irrigation Science. 28(2):113-125. https://doi.org/10.1007/s00271-009-0164-1.
  • Jones, G.V., Davis, R. E. (2000) Climate influences on grapevine phenology, grape composition, and wine production and quality for Bordeaux, France’. American Journal of Enology and Viticulture. 51: 249–261.
  • Jones, G.V. (2018). The climate component of Terroir. Elements. 14(3): 167–172. https://doi.org/10.2138/gselements.14.3.167.
  • Junquera, P. Lissarrague, J.R., Jiménez, L. Linares, R., Baeza, P. (2012). Long-term effects of different irrigation strategies on yield components. vine vigour and grape composition in cv. Cabernet-sauvignon (Vitis vinifera L.). Irrigation Science. 30:351-361. https://doi.org 10.1007/ s00271-012-0348-y.
  • Intergovernmental Panel on Climate Change (2018). Global Warming of 1.5°C [IPCC]. An IPCC Special Report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways. in the context of strengthening the global response to the threat of climate change. sustainable development. and efforts to eradicate poverty. Masson-Delmotte, V., Zhai, H.O., Pörtner, D., Roberts, J., Skea, P.R. Geneva. https://www.ipcc.ch/sr15/. Access: 12.01.2020
  • Kadıoğlu, M. (2012). Türkiye’de iklim değişikliği risk yönetimi. Turkiye’nin iklim değişikliği II. Ulusal bildiriminin hazırlanması projesi [Climate change risk management in Turkey. Prepration of II. National statement of Turkey project]. p. 1-172. https://www.undp.org/content/dam/turkey/docs/projectdocuments/EnvSust/UNDP-TR-Iklim_Degisikligi_Risk_Yonetimi.pdf. Accessed: 13.01.2020
  • Keller, M., Romero, P., Gohil, H., Smithyman, R.P., Riley, W.R., Casassa, L.F. (2016). Deficit irrigation alters grapevine growth. physiology. and fruit microclimate. American Journal of Enology and Viticulture 67:426–435. https://doi.org/10.5344/ajev.2016.16032.
  • Korkutal, I., Bahar, E., Carbonneau, A. (2019). Effects of early water stress on grapevine (Vitis vinifera L.) growing in cv. Syrah. Applied Ecology and Environmental Research 17(1): 463-472. doi:10.15666/aeer/1701_463472
  • Korkutal, I., Bahar, E., Bayram, S. (2018). Farklı toprak işleme ve yaprak alma uygulamalarının Syrah üzüm çeşidinde, sürgün ve yaprak özellikleri ile su stresi üzerine etkileri [Effects of different soil tillages and leaf removal applications on shoot and leaf characteristics and water stress of cv. Syrah]. Journal of Tekirdağ Agriculture Faculty 15(1): 1-13 (in Turkish with an abstract in English).
  • Kurtural, S., Watrelot, A., Yu, R., Cook, M., Yacco, R. (2016). Effects of leaf removal and applied water on flavonoid accumulation in grapevine (Vitis vinifera L. cv. Merlot ) berry in a hot climate. Journal of Agricultural and Food Chemistry 64(43): 8118-8127. doi:10.1021/acs.jafc.6b03748.
  • Leolini, L., Moriondo, M., Romboli, Y., Gardiman, M., Costafreda-Aumedes, S., de Cortazar-Atauri, I.G., Bindi, M., Granchi, L., Brilli, L. (2019). Modelling sugar and acid content in Sangiovese grapes under future climates: An Italian case study. Climate Research. 78(3) 211–224. https://doi.org/10.3354/cr01571.
  • Lorenz, D., Eichhorn, K., Bleiholder, H., Klose, R., Meier, U. (1995). Phenological growth stages of the grapevine (Vitis vinifera L. ssp. vinifera)-codes and descriptions according to the extended BBCH scale. Australian Journal of Grape and Wine Research 1(2):100-110. doi:10.1111/j.1755 0238.1995.tb00085.x.
  • Martínez, E.M., Rey, B.J., Fandiño, M., Cancela, J.J. (2013). Comparison of two techniques for measuring leaf water potential in Vitis vinifera var. Albariño. Ciência e Técnica Vitivinícola. 28(1): 29-41.
  • Martínez, E.M., Rey, B.J., Fandiño, M., Cancela, J.J. (2016). Impact of water stress and nutrition on Vitis vinifera cv. ‘Albariño’: Soil-plant water relationships. cumulative effects and productivity. Spanish Journal of Agricultural Research. 14(1): http://dx.doi.org/10.5424/sjar/2016141-7534.
  • Mata, M., Girona, J., Goldhamer, D., Fereres, E., Cohen, M. (1999). Water relations of lysimeter-grown peach trees are sensitive to deficit irrigation. California Agriculture 53(4): 17-21.
  • Medrano, H., Escalona, J.M., Cifre, J., Bota, J., Flexas, J. (2003). A ten-year study on the physiology of two Spanish grapevine cultivars under field conditions: effects of water availability from leaf photosynthesis to grape yield and quality. Functional Plant Biology 30(6): 607-619.
  • MGM. (2019). General climate data of Tekirdağ province. Turkish State Meteorological Service. https://mgm.gov.tr/veridegerlendirme/il-ve-ilceler-istatistik.aspx?k=A&m=TEKIRDAG. Access: 07.02.2019
  • Mirás-Avalos, J.M., Fandiño, M., Rey, B.J., Dafonte, J., Cancela, J.J. (2020). Zoning of a newly-planted vineyard: Spatial variability of physico-chemcial soil properties. Soil Systems. 4(4): 62. https://doi.org/10.3390/soilsystems4040062.
  • Mirás-Avalos, J.M., Araujo, E.S. (2021). Optimization of vineyard water management: Challenges, strategies and perspectives. Water. 13(6): 746. https://doi.org/10.3390/w13060746.
  • Molitor, D., Bans, O., Hoffmann, L., Beyer, M. (2016). Meteorological conditions determine the thermal-temporal position of the annual Botrytis bunch rot epidemic on Vitis vinifera L. cv. Riesling grapes. OENO One. 50(4): 231–244. https://doi.org/10.20870/oeno-one.2016.50.4.36
  • Ojeda, H., Andary, C., Kraeva, E., Carbonneau, A., Deloire, A. (2002). Influence of pre- and post-veraison water deficit on synthesis and concentration of skin phenolic compounds during berry growth of Vitis vinifera cv. Shiraz. American Journal of Enology and Viticulture 53(4): 261-267.
  • Olsen, J.L., Olesen, A., Breuning-Madsen, H., Balstrom, T. (2011). A method to identify potential cold-climate vine growing sites - a case study from Rosnaes in Denmark. Danish Journal of Geography 111(1): 73–84.
  • Petrie, P.R., Sadras, V.O. (2008). Advancement of grapevine maturity in Australia between 1993 and 2006: Putative causes. magnitude of trends and viticultural consequences. Australian Journal of Grape and Wine Research. 14(1). 33–45. https://doi.org/10.1111/j.1755-0238.2008.00005.x.
  • Priori, S., Pellegrini, S., Perria, R., Puccioni, S., Storchi, P., Valboa, G., Constantini, E.A.C. (2019). Scale effect of terroir under three contrasting vintages in the Chianti Classico area (Tuscany. Italy). Geoderma. 334: 99–112. https://doi.org/10.1016/j.geoderma.2018.07.048.
  • Ravaz, L. (1903). Sur la brunissure de la vigne. Les Comptes Rendus de l’Académie des Sciences .136:1276-1278.
  • Ramos, M.C., Jones, G.V., Martinez-Casasnovas, J.A. (2008). Structure and trends in climate parameters affecting winegrape production in northeast Spain. Climate Research. 38(1): 1–15. https://doi.org/10.3354/cr00759.
  • Roby, G., Harbertson, J.F., Adams, D.A, Matthews, M.A. (2004). Berry size and vine water deficits as factors in winegrape composition: anthocyanins and tannins. Australian Journal of Grape and Wine Research 10:100–107. doi: 10.1111/j.1755-0238.2004.tb00012.x
  • Rogiers, S., Deloire, A., Smith, J., Tyreman, S. (2015). Monitoring vine water status, Part:1 Some physiological principles. Grapevine management guide 2014-15. NSW Government Department of Primary Industries 16-19. https://www.dpi.nsw. gov.au/__data/assets/pdf_file/0006/815451/grapevine-management-guide-2014-15.pdf. Accessed: 17.01.2020
  • Rossouw, G.C., Smith, J.P., Barril, C., Deloire, A., Holzapfel, B.P. (2017). Implications of the presence of maturing fruit on carbohydrate and nitrogen distribution in grapevines under postveraison water constraints. Journal of the American Society for Horticultural Science. 142(2): 71-84. https://doi.org/10.21273/JASHS03982-16.
  • Santos, J.A., Fraga, H., Malheiro, A.C., Moutinho-Pereira, J., Dinis, L.T., Correia, C., Moriondo, M., Leolini, L., Dibari, C., Costafreda-Aumedes, S. (2020). A review of the potential climate change impacts and adaptation options for European viticulture. Applied Sciences. 10(9): 3092. https://doi.org/10.3390/app10093092.
  • Savoi, S., Wong, D.C., Arapitsas, P., Miculan, M., Bucchetti, B., Peterlunger, E., Fait, A., Mattivi, F., Castellarin, S.D. (2016). Transcriptome and metabolite profiling reveals that prolonged drought modulates the phenylpropanoid and terpenoid pathway in white grapes (Vitis vinifera L.). BMC Plant Biology. 16(67). https://doi.org/10.1186/s12870-016-0760-1.
  • Shackel, K.A. (2007). Water relations of woody perennial plant species. Journal International des Sciences de la Vigne et du Vin 41:121-129.
  • Scholander, P.F., Yamel, H.T., Bradstreet, E.D., Hemmingsen, E.A. (1965). Sap pressure in vascular plants. Science 148: 339-346.
  • Schultz, H.R.; Jones, G.V. (2010). Climate induced historic and future changes in viticulture. Journal of Wine Research. 21(2): 137–145. https://doi.org/10.1080/09571264.2010.530098.
  • Uriarte, D., Intrigliolo, D.S., Mancha, L.A., Picón-Toro, J., Valdés. E., Prieto, M.H. (2015). Interactive effects of irrigation and crop level on tempranillo vines in a semiarid climate. American Journal of Enology and Viticulture. 266(2):101-111. https://doi.org/10.5344/ajev.2014.14036
  • van Leeuwen, C., Tregoat, O., Choné, X., Bois, B., Pernet, D. (2009). Vine water status is a key factor in grape ripening and vintage quality for red Bordeaux wine. How can it be assessed for vineyard management purposes? Journal International des Sciences de la Vigne et du Vin 43(3): 121-134. https://doi.org/10.20870/oeno-one.2009.43.3.798.
  • van Leeuwen, C., Destrac-Irvine, A., Dubernet, M., Duchêne, E., Gowdy, M., Marguerit, E., Pieri, P., Parker, A., de Rességuier, L., Ollat, N. (2019). An update on the impact of climate change in viticulture and potential adaptations. Agronomy. 9(9): 514. https://doi.org/10.3390/agronomy9090514.
  • Vilanova, M., Fandino, M., Frutos-Puerto, S., Cancela, J.J. (2019). Assessment fertigation effects on chemical composition of Vitis vinifera L. cv. Albarino. Food Chemistry. 278: 636–643. https://doi.org/10.1016/j.foodchem.2018.11.105.
  • Vrsic, S., Vodovnik, T. (2012). Reactions of grape varieties to climate changes in north east Slovenia. Plant Soil and Environment 58(1): 34-41. https://doi.org/10.17221/352/2011-PSE
  • Walker, R.R., Blackmore, D.H., Clingeleffer, P.R., Emanuelli, D. (2014). Rootstock type determines tolerance of Chardonnay and Shiraz to long-term saline irrigation. Australian Journal of Grape and Wine Research. 20(3): 496–506. https://doi.org/10.1111/ajgw.12094.
  • Webb, L.B., Whetton, P.H., Barlown, E.W.R. (2008). Climate change and winegrape quality in Australia. Climate Research 36: 99-111. https://doi.org/10.3354/cr00740.
  • Williams, L.E., Baeza. P. (2007). Relationships among ambient temperature and vapor pressure deficit and leaf and stem water potentials of fully irrigated. field-grown grapevines. American Journal of Enology and Viticulture. 58(2): 173-181.
  • Williams, L.E., Baeza, P., Vaughn. P. (2012). Midday measurements of leaf water potential and stomatal conductance are highly correlated with daily water use of Thompson Seedless grapevines. Irrigation Science. 30: 201-212. https://doi.org/10.1007/s00271-011-0276-2.
  • Yasasin, A.S., Bahar, E., Coskun. Z., Kiraci, M.A., Boz, Y. (2017). Different soil tillage and shoot length effects on vegetative growth. water stress and yield in cv. Cabernet Sauvignon (Vitis vinifera L.). 8th International Conference Biosystems Engineering. 16-18 May 2017. Tartu. Estonia.

Changes of Vine Water Status and Growth Parameters Under Different Canopy Managements on cv. Merlot (Vitis vinifera L.)

Year 2022, , 1 - 15, 26.01.2022
https://doi.org/10.33462/jotaf.795232

Abstract

The climate is the dominant regulator that determines the cultivation in a viticulture region as it strongly controls vine physiology, vine growth, canopy microclimate, berry quality and finally wine components. However, the effects of climate change force vine producers to find solutions that will facilitate their adaptation processes. The importance of water management in vineyards is becoming more important every day for sustainable viticulture and winemaking. Efficient use of water in vineyards is an important issue to control the yield and to provide the targeted berry quality at the desired level. This experiment was carried out during the 2013-2014 and 2015 growing seasons to evaluate the effects of green pruning practices on water leaf potentials of 12-14 years old grapevines of cv. Merlot (Vitis vinifera L.) grafted onto Kober 5BB in the experimental vineyard of Tekirdag Viticulture Research Institute in Turkey. A completely randomized block design was used: LRMS1, LRMS2, LRMS3 represent three levels of leaf removal treatments on main shoots and LRLS1, LRLS2, LRLS3 represent three levels of leaf removal treatments on lateral shoots. Due to the relatively high soil moisture in vineyard conditions, no extreme and high-water stress levels was observed in experiment years. The main factor controlling the water status in cv. Merlot vines was largely dependent on the meso-climatic conditions and soil water availability during the growing season. However it was observed that increasing of main shoot length give rise to tendency to water stress. It was determined that leaf removal treatments on lateral shoots caused changes in shoot weight, pruning weight and Ravaz index (RI), especially in 2014 whereas the leaf removal treatments on main shoots caused changes in mentioned parameters in 2015. In conclusion, the results show that plant water condition can be managed with summer pruning taking into account of different climatic conditions and different phenological stages. Planning of canopy management practices should be done by considering long- and medium-term meteorological evaluations while short-term planning within vegetation period should be done in relation to weekly and monthly meteorological data.

Supporting Institution

The study was supported by Republic of Turkey Ministry of Agriculture and Forestry General Directorate of Agricultural Research and Policies

Project Number

TAGEM/BBAD/2013/A08/P04-08.

Thanks

Authors thank to the technical staff and management of the Tekirdag Viticulture Research Institute. This study is based on a part of the doctoral thesis of the corresponding author.

References

  • Baeza, P., Junquera, P., Peiro, E., Ramón Lissarrague, J., Uriarte, D., Vilanova, M. (2019). Effects of Vine Water Status on Yield Components. Vegetative Response and Must and Wine Composition. Morata, A., Loira, I. (ed.) In Advances in Grape and Wine Biotechnology. IntechOpen. https://doi.org/10.5772/intechopen.87042.
  • Balint, G., Reynolds, A.G. (2017). Irrigation level and time of imposition impact vine physiology. yield components. fruit composition and wine quality of Ontario Chardonnay. Scientia Horticulturae. 214: 252–272. https://doi.org/10.1016/j.scienta.2016.11.052.
  • Bahar, E., Carbonneau, A., Korkutal, İ. (2017a). Vine and berry responses to severe water stress in different stages in cv. Syrah (Vitis vinifera L.). Journal of Tekirdag Agricultural Faculty. The Special Issue of 2nd International Balkan Agriculture Congress. May 16-18. p. 62-70.
  • Bahar, E., Korkutal, İ., Kabataş, İ.E. (2017b). Effects of different leaf water potentials (Ψleaf) and cluster thinning applications on cluster and berry characteristics in cv. Sangiovese (in Turkish with English abstract). Journal of Tekirdag Agricultural Faculty 14(2): 138-149.
  • Bahar, E., Korkutal, İ., Öner H., (2018). Effects of different cultural practices on leaf water potentials in cv. cabernet–sauvignon (in Turkish with English abstract). Bahçe 47(1): 201-208.
  • Blake, G.R., Hartge, K.H. (1986). Methods of Soil Analysis: Part I Physical and Mineralogical Properties. American Society of Agronomy, Madison, Wisconsin, USA. doi:10.2136/sssabookser5.1.2ed.frontmatter.
  • Candar, S., Alco, T., Yasasin, A.S., Korkutal, I., Bahar, E. (2019). Türkiye Trakyası bagcılık iklim göstergelerindeki uzun süreli degişimlerin degerlendirilmesi [Evaluation of long term changes for viticultural climate indices in Turkey Thrace]. COMU Journal of Agriculture Faculty. 7(2): 259-268 (in Turkish with an abstract in English) doi:10.33202/comuagri.524811.
  • Carbonneau, A., Moueix, A., Leclair, N., Renoux, J. (1991). Proposition d’une mèthode de prélèvement de raisin à partir de l’analyse de l’hétérogénité de maturation sur un cep. Bull. OIV 727/728. 679–690.
  • Chaves, M.M., Zarrouk, O., Francisco, R., Costa, J.M., Santos, T., Regalado, A.P., Rodrgigues, M.L., Lopes, C.M. (2010). Grapevine under deficit irrigation: Hints from physiological and molecular data. Annals of Botany. 105(5): 661-676. https://doi.org/10.1093/aob/mcq030.
  • Cook, M.G., Zhang, Y., Nelson, C.J., Gambetta, G., Kennedy, J.A., Kurtural, S.K. (2015) Anthocyanin composition of Merlot is ameliorated by light microclimate and irrigation in Central California. American Journal of Enology and Viticulture. 66: 266–278. https://doi.org/10.5344/ajev.2015.15006.
  • Deloire, A., Carbonneau, A., Wang, Z., Ojeda, H. (2004). Vine and water: a short review. OENO-One 38(1): 1-13. doi:10.20870/oeno-one.2004.38.1.932.
  • Deveci, H, Konukcu, F., Altürk, B. (2019). Effect of climate change on wheat grown soil moisture profile in Thrace district (in Turkish with English abstract). Journal of Tekirdag Agricultural Faculty, 16(2): 202-218. https://doi.org/10.33462/jotaf.543103.
  • Donat, M.G., Alexander, L.V., Yang, H., Durre, I., Vose, R, (2013). Global land-based datasets for monitoring climatic extremes. Bulletin of the American Meteorological Society 94(7): 997-1006. doi:10.1175/BAMS-D-12-00109.1
  • Fayolle, E., Follain, S., Marchal, P., Chéry, P., Colin, F. (2019). Identification of environmental factors controlling wine quality: A case study in Saint-Emilion Grand Cru appellation, France. Science of The Total Environment. 694:133718. https://doi.org/10.1016/j.scitotenv.2019.133718.
  • Flexas, J., Medrano, H., Escalona, J.M., Bota, J., Gulias, J. (2002). Regulation of photosynthesis of C3 plants in response to progressive drought: stomatal conductance as a reference parameter. Annals of Botany 89(7): 895-905. doi: 10.1093/aob/mcf079
  • Flexas, J., Medrano, H. (2002). Drought-inhibition of photosynthesis in C3 plants: stomatal and non-stomatal limitations revisited. Annals of Botany 89(2): 183-189. doi: 10.1093/aob/mcf027
  • Fraga, H., Malheiro, A.C., Moutinho-Pereira, J., Santos, J.A. (2012). An overview of climate change impacts on European viticulture. Food and Energy Security 1(2): 94-110. doi: 10.1002/fes3.14
  • Gambetta, G.A., Herrera, J.C., Dayer, S., Feng, Q., Hochberg, U., Castellarin, S.D. (2020). The physiology of drought stress in grapevine: Towards an integrative definition of drought tolerance. Journal of Experimental Botany 71(16). https://doi.org/10.1093/jxb/eraa245
  • Garcia, L., Celette, F., Gary, C., Ripoche, A., Valdés-Gómez, H., Metay, A. (2018). Management of service crops for the provision of ecosystem services in vineyards: A review. Agriculture, Ecosystems & Environment. 251: 158–170. https://doi.org/10.1016/j.agee.2017.09.030.
  • Guilpart, N., Metay, A., Gary, C. (2014) Grapevine bud fertility and number of berries per bunch are determined by water and nitrogen stress around flowering in the previous year. European Journal of Agronomy. 54: 9–20. https://doi.org/10.1016/j.eja.2013.11.002.
  • Intrigliolo, D.S., Castel, J.R. (2010) Response of grapevine cv. ‘Tempranillo’ to timing and amount of irrigation: Water relations, vine growth, yield and berry and wine composition. Irrigation Science. 28(2):113-125. https://doi.org/10.1007/s00271-009-0164-1.
  • Jones, G.V., Davis, R. E. (2000) Climate influences on grapevine phenology, grape composition, and wine production and quality for Bordeaux, France’. American Journal of Enology and Viticulture. 51: 249–261.
  • Jones, G.V. (2018). The climate component of Terroir. Elements. 14(3): 167–172. https://doi.org/10.2138/gselements.14.3.167.
  • Junquera, P. Lissarrague, J.R., Jiménez, L. Linares, R., Baeza, P. (2012). Long-term effects of different irrigation strategies on yield components. vine vigour and grape composition in cv. Cabernet-sauvignon (Vitis vinifera L.). Irrigation Science. 30:351-361. https://doi.org 10.1007/ s00271-012-0348-y.
  • Intergovernmental Panel on Climate Change (2018). Global Warming of 1.5°C [IPCC]. An IPCC Special Report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways. in the context of strengthening the global response to the threat of climate change. sustainable development. and efforts to eradicate poverty. Masson-Delmotte, V., Zhai, H.O., Pörtner, D., Roberts, J., Skea, P.R. Geneva. https://www.ipcc.ch/sr15/. Access: 12.01.2020
  • Kadıoğlu, M. (2012). Türkiye’de iklim değişikliği risk yönetimi. Turkiye’nin iklim değişikliği II. Ulusal bildiriminin hazırlanması projesi [Climate change risk management in Turkey. Prepration of II. National statement of Turkey project]. p. 1-172. https://www.undp.org/content/dam/turkey/docs/projectdocuments/EnvSust/UNDP-TR-Iklim_Degisikligi_Risk_Yonetimi.pdf. Accessed: 13.01.2020
  • Keller, M., Romero, P., Gohil, H., Smithyman, R.P., Riley, W.R., Casassa, L.F. (2016). Deficit irrigation alters grapevine growth. physiology. and fruit microclimate. American Journal of Enology and Viticulture 67:426–435. https://doi.org/10.5344/ajev.2016.16032.
  • Korkutal, I., Bahar, E., Carbonneau, A. (2019). Effects of early water stress on grapevine (Vitis vinifera L.) growing in cv. Syrah. Applied Ecology and Environmental Research 17(1): 463-472. doi:10.15666/aeer/1701_463472
  • Korkutal, I., Bahar, E., Bayram, S. (2018). Farklı toprak işleme ve yaprak alma uygulamalarının Syrah üzüm çeşidinde, sürgün ve yaprak özellikleri ile su stresi üzerine etkileri [Effects of different soil tillages and leaf removal applications on shoot and leaf characteristics and water stress of cv. Syrah]. Journal of Tekirdağ Agriculture Faculty 15(1): 1-13 (in Turkish with an abstract in English).
  • Kurtural, S., Watrelot, A., Yu, R., Cook, M., Yacco, R. (2016). Effects of leaf removal and applied water on flavonoid accumulation in grapevine (Vitis vinifera L. cv. Merlot ) berry in a hot climate. Journal of Agricultural and Food Chemistry 64(43): 8118-8127. doi:10.1021/acs.jafc.6b03748.
  • Leolini, L., Moriondo, M., Romboli, Y., Gardiman, M., Costafreda-Aumedes, S., de Cortazar-Atauri, I.G., Bindi, M., Granchi, L., Brilli, L. (2019). Modelling sugar and acid content in Sangiovese grapes under future climates: An Italian case study. Climate Research. 78(3) 211–224. https://doi.org/10.3354/cr01571.
  • Lorenz, D., Eichhorn, K., Bleiholder, H., Klose, R., Meier, U. (1995). Phenological growth stages of the grapevine (Vitis vinifera L. ssp. vinifera)-codes and descriptions according to the extended BBCH scale. Australian Journal of Grape and Wine Research 1(2):100-110. doi:10.1111/j.1755 0238.1995.tb00085.x.
  • Martínez, E.M., Rey, B.J., Fandiño, M., Cancela, J.J. (2013). Comparison of two techniques for measuring leaf water potential in Vitis vinifera var. Albariño. Ciência e Técnica Vitivinícola. 28(1): 29-41.
  • Martínez, E.M., Rey, B.J., Fandiño, M., Cancela, J.J. (2016). Impact of water stress and nutrition on Vitis vinifera cv. ‘Albariño’: Soil-plant water relationships. cumulative effects and productivity. Spanish Journal of Agricultural Research. 14(1): http://dx.doi.org/10.5424/sjar/2016141-7534.
  • Mata, M., Girona, J., Goldhamer, D., Fereres, E., Cohen, M. (1999). Water relations of lysimeter-grown peach trees are sensitive to deficit irrigation. California Agriculture 53(4): 17-21.
  • Medrano, H., Escalona, J.M., Cifre, J., Bota, J., Flexas, J. (2003). A ten-year study on the physiology of two Spanish grapevine cultivars under field conditions: effects of water availability from leaf photosynthesis to grape yield and quality. Functional Plant Biology 30(6): 607-619.
  • MGM. (2019). General climate data of Tekirdağ province. Turkish State Meteorological Service. https://mgm.gov.tr/veridegerlendirme/il-ve-ilceler-istatistik.aspx?k=A&m=TEKIRDAG. Access: 07.02.2019
  • Mirás-Avalos, J.M., Fandiño, M., Rey, B.J., Dafonte, J., Cancela, J.J. (2020). Zoning of a newly-planted vineyard: Spatial variability of physico-chemcial soil properties. Soil Systems. 4(4): 62. https://doi.org/10.3390/soilsystems4040062.
  • Mirás-Avalos, J.M., Araujo, E.S. (2021). Optimization of vineyard water management: Challenges, strategies and perspectives. Water. 13(6): 746. https://doi.org/10.3390/w13060746.
  • Molitor, D., Bans, O., Hoffmann, L., Beyer, M. (2016). Meteorological conditions determine the thermal-temporal position of the annual Botrytis bunch rot epidemic on Vitis vinifera L. cv. Riesling grapes. OENO One. 50(4): 231–244. https://doi.org/10.20870/oeno-one.2016.50.4.36
  • Ojeda, H., Andary, C., Kraeva, E., Carbonneau, A., Deloire, A. (2002). Influence of pre- and post-veraison water deficit on synthesis and concentration of skin phenolic compounds during berry growth of Vitis vinifera cv. Shiraz. American Journal of Enology and Viticulture 53(4): 261-267.
  • Olsen, J.L., Olesen, A., Breuning-Madsen, H., Balstrom, T. (2011). A method to identify potential cold-climate vine growing sites - a case study from Rosnaes in Denmark. Danish Journal of Geography 111(1): 73–84.
  • Petrie, P.R., Sadras, V.O. (2008). Advancement of grapevine maturity in Australia between 1993 and 2006: Putative causes. magnitude of trends and viticultural consequences. Australian Journal of Grape and Wine Research. 14(1). 33–45. https://doi.org/10.1111/j.1755-0238.2008.00005.x.
  • Priori, S., Pellegrini, S., Perria, R., Puccioni, S., Storchi, P., Valboa, G., Constantini, E.A.C. (2019). Scale effect of terroir under three contrasting vintages in the Chianti Classico area (Tuscany. Italy). Geoderma. 334: 99–112. https://doi.org/10.1016/j.geoderma.2018.07.048.
  • Ravaz, L. (1903). Sur la brunissure de la vigne. Les Comptes Rendus de l’Académie des Sciences .136:1276-1278.
  • Ramos, M.C., Jones, G.V., Martinez-Casasnovas, J.A. (2008). Structure and trends in climate parameters affecting winegrape production in northeast Spain. Climate Research. 38(1): 1–15. https://doi.org/10.3354/cr00759.
  • Roby, G., Harbertson, J.F., Adams, D.A, Matthews, M.A. (2004). Berry size and vine water deficits as factors in winegrape composition: anthocyanins and tannins. Australian Journal of Grape and Wine Research 10:100–107. doi: 10.1111/j.1755-0238.2004.tb00012.x
  • Rogiers, S., Deloire, A., Smith, J., Tyreman, S. (2015). Monitoring vine water status, Part:1 Some physiological principles. Grapevine management guide 2014-15. NSW Government Department of Primary Industries 16-19. https://www.dpi.nsw. gov.au/__data/assets/pdf_file/0006/815451/grapevine-management-guide-2014-15.pdf. Accessed: 17.01.2020
  • Rossouw, G.C., Smith, J.P., Barril, C., Deloire, A., Holzapfel, B.P. (2017). Implications of the presence of maturing fruit on carbohydrate and nitrogen distribution in grapevines under postveraison water constraints. Journal of the American Society for Horticultural Science. 142(2): 71-84. https://doi.org/10.21273/JASHS03982-16.
  • Santos, J.A., Fraga, H., Malheiro, A.C., Moutinho-Pereira, J., Dinis, L.T., Correia, C., Moriondo, M., Leolini, L., Dibari, C., Costafreda-Aumedes, S. (2020). A review of the potential climate change impacts and adaptation options for European viticulture. Applied Sciences. 10(9): 3092. https://doi.org/10.3390/app10093092.
  • Savoi, S., Wong, D.C., Arapitsas, P., Miculan, M., Bucchetti, B., Peterlunger, E., Fait, A., Mattivi, F., Castellarin, S.D. (2016). Transcriptome and metabolite profiling reveals that prolonged drought modulates the phenylpropanoid and terpenoid pathway in white grapes (Vitis vinifera L.). BMC Plant Biology. 16(67). https://doi.org/10.1186/s12870-016-0760-1.
  • Shackel, K.A. (2007). Water relations of woody perennial plant species. Journal International des Sciences de la Vigne et du Vin 41:121-129.
  • Scholander, P.F., Yamel, H.T., Bradstreet, E.D., Hemmingsen, E.A. (1965). Sap pressure in vascular plants. Science 148: 339-346.
  • Schultz, H.R.; Jones, G.V. (2010). Climate induced historic and future changes in viticulture. Journal of Wine Research. 21(2): 137–145. https://doi.org/10.1080/09571264.2010.530098.
  • Uriarte, D., Intrigliolo, D.S., Mancha, L.A., Picón-Toro, J., Valdés. E., Prieto, M.H. (2015). Interactive effects of irrigation and crop level on tempranillo vines in a semiarid climate. American Journal of Enology and Viticulture. 266(2):101-111. https://doi.org/10.5344/ajev.2014.14036
  • van Leeuwen, C., Tregoat, O., Choné, X., Bois, B., Pernet, D. (2009). Vine water status is a key factor in grape ripening and vintage quality for red Bordeaux wine. How can it be assessed for vineyard management purposes? Journal International des Sciences de la Vigne et du Vin 43(3): 121-134. https://doi.org/10.20870/oeno-one.2009.43.3.798.
  • van Leeuwen, C., Destrac-Irvine, A., Dubernet, M., Duchêne, E., Gowdy, M., Marguerit, E., Pieri, P., Parker, A., de Rességuier, L., Ollat, N. (2019). An update on the impact of climate change in viticulture and potential adaptations. Agronomy. 9(9): 514. https://doi.org/10.3390/agronomy9090514.
  • Vilanova, M., Fandino, M., Frutos-Puerto, S., Cancela, J.J. (2019). Assessment fertigation effects on chemical composition of Vitis vinifera L. cv. Albarino. Food Chemistry. 278: 636–643. https://doi.org/10.1016/j.foodchem.2018.11.105.
  • Vrsic, S., Vodovnik, T. (2012). Reactions of grape varieties to climate changes in north east Slovenia. Plant Soil and Environment 58(1): 34-41. https://doi.org/10.17221/352/2011-PSE
  • Walker, R.R., Blackmore, D.H., Clingeleffer, P.R., Emanuelli, D. (2014). Rootstock type determines tolerance of Chardonnay and Shiraz to long-term saline irrigation. Australian Journal of Grape and Wine Research. 20(3): 496–506. https://doi.org/10.1111/ajgw.12094.
  • Webb, L.B., Whetton, P.H., Barlown, E.W.R. (2008). Climate change and winegrape quality in Australia. Climate Research 36: 99-111. https://doi.org/10.3354/cr00740.
  • Williams, L.E., Baeza. P. (2007). Relationships among ambient temperature and vapor pressure deficit and leaf and stem water potentials of fully irrigated. field-grown grapevines. American Journal of Enology and Viticulture. 58(2): 173-181.
  • Williams, L.E., Baeza, P., Vaughn. P. (2012). Midday measurements of leaf water potential and stomatal conductance are highly correlated with daily water use of Thompson Seedless grapevines. Irrigation Science. 30: 201-212. https://doi.org/10.1007/s00271-011-0276-2.
  • Yasasin, A.S., Bahar, E., Coskun. Z., Kiraci, M.A., Boz, Y. (2017). Different soil tillage and shoot length effects on vegetative growth. water stress and yield in cv. Cabernet Sauvignon (Vitis vinifera L.). 8th International Conference Biosystems Engineering. 16-18 May 2017. Tartu. Estonia.
There are 64 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Serkan Candar 0000-0002-2608-8691

İlknur Korkutal 0000-0002-8016-9804

Elman Bahar 0000-0002-8842-7695

Project Number TAGEM/BBAD/2013/A08/P04-08.
Publication Date January 26, 2022
Submission Date September 15, 2020
Acceptance Date November 29, 2021
Published in Issue Year 2022

Cite

APA Candar, S., Korkutal, İ., & Bahar, E. (2022). Changes of Vine Water Status and Growth Parameters Under Different Canopy Managements on cv. Merlot (Vitis vinifera L.). Tekirdağ Ziraat Fakültesi Dergisi, 19(1), 1-15. https://doi.org/10.33462/jotaf.795232
AMA Candar S, Korkutal İ, Bahar E. Changes of Vine Water Status and Growth Parameters Under Different Canopy Managements on cv. Merlot (Vitis vinifera L.). JOTAF. January 2022;19(1):1-15. doi:10.33462/jotaf.795232
Chicago Candar, Serkan, İlknur Korkutal, and Elman Bahar. “Changes of Vine Water Status and Growth Parameters Under Different Canopy Managements on Cv. Merlot (Vitis Vinifera L.)”. Tekirdağ Ziraat Fakültesi Dergisi 19, no. 1 (January 2022): 1-15. https://doi.org/10.33462/jotaf.795232.
EndNote Candar S, Korkutal İ, Bahar E (January 1, 2022) Changes of Vine Water Status and Growth Parameters Under Different Canopy Managements on cv. Merlot (Vitis vinifera L.). Tekirdağ Ziraat Fakültesi Dergisi 19 1 1–15.
IEEE S. Candar, İ. Korkutal, and E. Bahar, “Changes of Vine Water Status and Growth Parameters Under Different Canopy Managements on cv. Merlot (Vitis vinifera L.)”, JOTAF, vol. 19, no. 1, pp. 1–15, 2022, doi: 10.33462/jotaf.795232.
ISNAD Candar, Serkan et al. “Changes of Vine Water Status and Growth Parameters Under Different Canopy Managements on Cv. Merlot (Vitis Vinifera L.)”. Tekirdağ Ziraat Fakültesi Dergisi 19/1 (January 2022), 1-15. https://doi.org/10.33462/jotaf.795232.
JAMA Candar S, Korkutal İ, Bahar E. Changes of Vine Water Status and Growth Parameters Under Different Canopy Managements on cv. Merlot (Vitis vinifera L.). JOTAF. 2022;19:1–15.
MLA Candar, Serkan et al. “Changes of Vine Water Status and Growth Parameters Under Different Canopy Managements on Cv. Merlot (Vitis Vinifera L.)”. Tekirdağ Ziraat Fakültesi Dergisi, vol. 19, no. 1, 2022, pp. 1-15, doi:10.33462/jotaf.795232.
Vancouver Candar S, Korkutal İ, Bahar E. Changes of Vine Water Status and Growth Parameters Under Different Canopy Managements on cv. Merlot (Vitis vinifera L.). JOTAF. 2022;19(1):1-15.

Cited By