Research Article
BibTex RIS Cite

Characteristics and Biological Activities of Bioactive Peptides Derived from Bulgur Waste

Year 2025, Volume: 22 Issue: 1, 88 - 97
https://doi.org/10.33462/jotaf.1404907

Abstract

Bulgur is one of the ready or semi-ready to eat cereals produced from wheat specifically Triticum durum variety. Residues of bulgur processing are known as bulgur waste that rich in some food components. Protein is one of the main components of bulgur that may remain in the wastes. This study was carried out to obtain and investigate the properties of bioactive peptides of bulgur waste proteins. Protein isolated from bulgur waste was hydrolyzed enzymatically to bioactive peptides and their potential activity against oxidation stress, microbial inhibition and hypertension control was determined. The bulgur waste proteins extracted from samples were hydrolyzed at different time intervals using pepsin, trypsin, chymotrypsin and protease under the optimum conditions of enzymes and o-phthalaldehyde (OPA) method was used to determine the degree of hydrolyses. The highest rate of hydrolysis efficiency was observed by protease as 10.08% at 240 min treatment while, the highest antioxidant capacity was measured with chymotrypsin (526.35% at 240 min) by 2,2′-azino-bis(3- ethylbenzothiazoline-6-sulphonic acid) (ABTS) and with trypsin (151.93 % at 240 min) by 2,2-diphenyl-1-picrylhydrazyl (DPPH) methods. Trypsin hydrolysates showed the highest antibacterial activity against Escherichia coli whereas pepsin hydrolysates exhibited the highest activity against Staphylococcus aureus. It has been observed that trypsin, chymotrypsin and protease hydrolysates have higher antihypertensive effects than protease hydrolyzates. The highest antihypertensive effect was obtained with protein hydrolyzate obtained by hydrolysis with chymotrypsin for 180 minutes. As a result, the novel peptides indicated to offer the selected biological effects, suitable to use as a food additive for different purposes in industrial applications.

Ethical Statement

There is no need to obtain permission from the ethics committee for this study.

References

  • Aleman, A., Gimenez, B., Montero, P. and Gomez-Guillen, M. (2011). Antioxidant Activity of Several Marine Skin Gelatins, LWT Food Science Technology, 44: 407–413.
  • Amado, R. and Arrigoni, E. (1992). Nutritive and Functional Properties of Wheat Germ. International Food Ingredients, 4: 30–34.
  • AOAC (1990). Official Methods of Analysis, 15th Edition. Association of Official Analysis Chemists, Washington DC., U.S.A.
  • Baldyga, J. and Bourne J. R. (1999). Turbulent Mixing and Chemical Reactions. Wiley, New York, U.S.A. Bueno-Gavila, E., Abellan, A., Giron-Rodriguez, F., Cayuela, J. M., Salazar, E., Gomez, R. and Tejada, L. (2019). Bioactivity of hydrolysates obtained from bovine casein using artichoke (Cynara scolymus L.) proteases. Journal of Dairy Science, 102: 10711–10723.
  • Cushman, D. W. and Cheung, H. S. (1971). Spectrophotometric assay and properties of the angiotensin-converting enzyme of rabbit lung. Biochemical Pharmacology, 20: 1637–1648.
  • Demirci, A. Ş., Sözeri Atik, D., Palabıyık, İ. and Gülcü, M. (2021) Bioactive properties of commercial reishi mushroom products in powder form. Journal of Tekirdag Agricultural Faculty, 18(2): 273-281.
  • Douglas, S. E, Gallant, J. W, Gong, Z. and Hew, C. (2001). Cloning and developmental expression of a family of pleurocidin-like antimicrobial peptides from winter flounder, Pleuronectes americanus (Walbaum). Developmental and Comparative Immunology, 25: 137–147.
  • Erdmann, K., Cheung, B. W. Y. and Schroeder, H. (2008). The possible roles of food-derived bioactive peptides in reducing the risk of cardiovascular disease. Journal of Nutritional Biochemistry, 19: 643–654.
  • Fluegel, S. M., Shultz, T. D., Powers, J. R., Clark, S., Barbosa-Leiker, C., Wright, B. R., Freson, T. S., Fluegel, H. A., Minch, J. D. and Schwarzkopf, L. K. (2010). Whey beverages decrease blood pressure in prehypertensive and hypertensive young men and women. International Dairy Journal, 20: 753–760.
  • Georgetti, S. R., Casagrande, R., Vicentini, F. T. M. C., Verri Jr, W. A. and Fonseca, M. J. V. (2006). Evaluation of the antioxidant activity of soybean extract by different in vitro methods and investigation of this activity after its incorporation in topical formulations. European Journal of Pharmaceutics and Biopharmaceutics, 64(1): 99–106.
  • Haque, E. and Chand, R. (2008). Antihypertensive and Antimicrobial Bioactive Peptides from Milk Proteins, European Food Research and Technology, 227(1): 7-15.
  • Hancock, R. E. W. and Sahl, H. G. (2006). Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. National Biotechnolgy, 24(12): 1551–1557.
  • Hartmann, R. and Meisel, H. (2007). Food-derived peptides with biological activity: from research to food applications. Current Opinion in Biotechnology, 18(2): 163–169.
  • Kitts, D. D. and Weiler, K. (2003). Bioactive proteins and peptides from food sources. applications of bioprocesses used in isolation and recovery. Current Pharmaceutical Design, 9: 1309–1323.
  • Kristinsson, H. G. and Rasco, B. A. (2000). Fish protein hydrolysates: Production, biochemical and functional properties. Critical Reviews in Food Science and Nutrition, 40: 43–81.
  • Kussmann, M., Panchaud, A. and Affolter, M. (2010). Proteomics in nutrition: Status quo and outlook for biomarkers and bioactives. Journal of Proteome Research, 9: 4876–4887.
  • Li, G. H., Le, G. W., Liu, H. and Shi, Y. H. (2005). Mung-bean protein hydrolysates obtained with alcalase exhibit angiotensin I-converting enzyme inhibitory activity. Food Science and Technology International, 11(4): 281-287.
  • Lin, S., Tian, W., Li, H., Cao, J. and Jiang, W. (2012). Improving antioxidant activities of whey protein hydrolysates obtained by thermal preheat treatment of pepsin, trypsin, alcalase and flavourzyme. International Journal of Food Science and Technology, 47: 2045–2051.
  • Moller, N. P., Scholz-Ahrens, K. E., Roos, N. and Schrezenmeir, J. (2008). Bioactive peptides and proteins from foods: Indication for health effects. European Journal of Nutrition, 47: 171–182.
  • Nagy, A., Marciniak-Darmochwał, K., Krawczuk, S., Mierzejewska, D., Kostyra, H. and Gelencser, E. (2009). Influence of glycation and pepsin hydrolysis on immunoreactivity of albumin/globulin fraction of herbicide resistant wheat line. Czech Journal of Food Sciences, 27: 320–329.
  • Nuutila, A. M., Puupponen-Pimiä, R., Aarni, M. and Oksman-Caldentey, K. M. (2003). Comparison of antioxidant activities of onion and garlic extracts by inhibition of lipid peroxidation and radical scavenging activity. Food Chemistry, 81(4): 485–493.
  • Özboy, Ö. and Köksel, H. (1998). The effects of bulgur production on various chemical properties of wheats. The Journal of Food, 23(6): 449–457.
  • Phanturat, P., Benjakul, S., Visessanguan, W. and Roytrakul, S. (2010). Use of pyloric caeca extract from bigeye snapper (Priacanthus macracanthus) for the production of gelatin hydrolysate with antioxidative activity, LWT-Food Science and Technology, 43: 86–97.
  • Pins, J. J. and Keenan, J. M. (2006). Effects of whey peptides on cardiovascular disease risk factors. Journal of Clinical Hypertension, 8:775–782.
  • Preuckler, M., Siebenhandl-Ehn, S., Apprich, S., Höltinger, S. and Haas, S. (2014). Wheat-bran based biorefinery: Composition of wheat bran and strategies of functionalization. LWT- Food Science and Technology, 56(2): 211–221.
  • Raghavan, S. and Kristinsson, H. G. (2009). ACE-inhibitory activity of tilapia protein hydrolysates, Food Chemistry, 117(4): 582-588.
  • Rao, M. B., Tanksale, A. M., Ghatge, M. S. and Deshpande V. V. (1998). Molecular and biotechnological aspects of microbial proteases. Microbiology and Molecular Biology Reviews, 62(3): 597–635.
  • Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M. and Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26: 1231–1237.
  • Saadi, S., Saari, N., Anwar, F., Abdul Hamid, A. and Ghazali, H. M. (2015). Recent advances in food biopeptides: production, biological functionalities and therapeutic applications. Biotechnology Advances, 33: 80–116.
  • Salami, M., Yousefi, R. and Ehsani, M.R. (2008). Kinetic characterization of hydrolysis of camel and bovine milk proteins by pancreatic enzymes. International Dairy Journal, 18: 1097–1102.
  • Sarmadi, B. H. and Ismail, A. (2010). Antioxidative peptides from food proteins: A review. Peptides, 31: 1949–1956.
  • Spellman, D., McEvoy, E., O’Cuinn, G. and FitzGerald, R. J. (2003). Proteinase and exopeptidase hydrolysis of whey protein: Comparison of the TNBS, OPA and pH stat methods for quantification of degree of hydrolysis. International Dairy Journal, 13: 447–453.
  • Sivakumar, G. M. and Dhanalakshmi, B. (2016). Betel leaf extract as shelf life extender of raw milk. International Journal of Science, Environment, 5: 2832-2836.
  • Tahmaz, H., Yüksel Küskü D., Soylemezoglu G. and Çelik H. (2022) Phenolic compound and antioxidant capacity contents of Vitis labrusca L. genotypes. Journal of Tekirdag Agricultural Faculty, 19(2): 318-331.
  • Tacer Caba, Z., Boyacioglu, M. H. and Boyacioglu, D. (2011). Bioactive healthy components of bulgur. International Journal of Food Sciences and Nutrition, 63(2): 250–256.
  • Udenigwe, C. C. and Aluko, R. E. (2012). Food protein-derived bioactive peptides: Production, processing, and potential health benefits. Journal of Food Science, 77(1): R11–R24.
  • Wang, L., Mao, X., Cheng, X., Xiong, X. and Ren, F. (2010). Effect of enzyme type and hydrolysis conditions on the in vitro angiotensin i-converting enzyme inhibitory activity and ash content of hydrolysed whey protein isolate. International Journal of Food Science and Technology, 45: 807–812.
  • Winata, A. and Lorenz, K. (1996). Antioxidant potential of 5‐n‐pentadecylresorcinol. Journal of Food Processing and Preservation, 20(5): 417-429.
  • Yang, B., Zhao, M. M., Shi, J., Yang, N. and Jiang, Y. M. (2008). Effect of ultrasonic treatment on the recovery and DPPH radical scavenging activity of polysaccharides from longan fruit pericarp. Food Chemistry, 106: 685–690.
  • You, L., Zhao, M., Cui, C., Zhao, H. and Yang, B. (2009). Effect of degree of hydrolysis on the antioxidant activity of loach (Misgurnus anguillicaudatus) protein hydrolysates. Innovative Food Science and Emerging Technologies, 10(2): 235–240.
  • Yust, M. M., Pedroche, J., Girón-Calle, J., Alaiz, M., Millán, F. and Vioque J. (2003). Production of ACE inhibitory peptides by digestion of chickpea legumin with alca-lase. Food Chemistry, 81: 363–369.

Bulgur Atıklarından Elde Edilen Biyoaktif Peptitlerin Özellikleri ve Biyolojik Aktiviteleri

Year 2025, Volume: 22 Issue: 1, 88 - 97
https://doi.org/10.33462/jotaf.1404907

Abstract

Bulgur, buğdayın özellikle Triticum durum çeşidinden üretilen, yemeye hazır veya yemeye yarı hazır tahıllardan biridir. Bulgur işleme sırasında oluşan kalıntılar, bazı gıda bileşenleri açısından zengin bir içeriği sahip olup bulgur atığı olarak bilinmektedir. Protein, bulgur işlemi sonrası atıklarda yer alan ana bileşenlerden biridir. Bu çalışma bulgur üretimi sonrası oluşan bulgur atığı proteinlerinden biyoaktif peptitlerin elde edilmesi ve özelliklerinin araştırılması amacıyla yapılmıştır. Bulgur atıklarından izole edilen protein, enzimatik olarak biyoaktif peptitlere hidroliz edildi. Aynı zamanda bulgur atıklarından izole edilmiş ve hidroliz edilen proteinin oksidasyon stresine, mikrobiyal inhibisyona ve hipertansiyon kontrolüne karşı potansiyel aktiviteleri belirlendi. İlk olarak bulgur atığı proteinleri ekstrakte edilmiş ve ardından enzimlerin kendilerine özgü optimum koşulları altında pepsin, trypsin, kimotripsin ve proteaz kullanılarak farklı zaman aralıklarında hidrolize edilmiştir. Bulgur atığı proteinlerinin enzimatik hidroliz derecesinin belirlenmesinde o-ftalaldehit (OPA) yöntemi kullanılmıştır. En yüksek hidroliz etkinliği 240 dk muamelesinde %10,08 ile proteaz ile gözlenirken, en yüksek antioksidan kapasite 2,2'-azino-bis(3-etilbenzotiazolin-6-sülfonik asit) (ABTS) yöntemi ile kimotripsin (240 dk'da %526,35) ve 2,2-difenil-1-pikrilhidrazil (DPPH) yöntemi ile de trypsin (240 dakikada %151.93) olarak ölçülmüştür. Enzimatik hidrolizle elde edilen protein hidrolizatlarının antimikrobiyal etkisine bakıldığında, Tripsin hidrolizatları Escherichia coli'ye karşı en yüksek antibakteriyel aktiviteyi gösterirken, pepsin hidrolizatları Staphylococcus aureus'a karşı en yüksek aktiviteyi gösterdi. Tripsin, kimotripsin ve proteaz hidrolizatlarının antihipertansif etkilerinin proteaz hidrolizatlarına göre daha yüksek olduğu görülmüştür. En yüksek antihipertansif etki, kimotripsin ile 180 dakika boyunca hidroliz yoluyla elde edilen protein hidrolizatı ile elde edildi. Sonuç olarak, yeni peptitlerin, endüstriyel uygulamalarda farklı amaçlarla gıda katkı maddesi olarak kullanılmaya uygun, farklı biyoaktif özelliklere sahip, amaca yönelik seçilmiş biyolojik etkiler sunduğu belirlendi.

References

  • Aleman, A., Gimenez, B., Montero, P. and Gomez-Guillen, M. (2011). Antioxidant Activity of Several Marine Skin Gelatins, LWT Food Science Technology, 44: 407–413.
  • Amado, R. and Arrigoni, E. (1992). Nutritive and Functional Properties of Wheat Germ. International Food Ingredients, 4: 30–34.
  • AOAC (1990). Official Methods of Analysis, 15th Edition. Association of Official Analysis Chemists, Washington DC., U.S.A.
  • Baldyga, J. and Bourne J. R. (1999). Turbulent Mixing and Chemical Reactions. Wiley, New York, U.S.A. Bueno-Gavila, E., Abellan, A., Giron-Rodriguez, F., Cayuela, J. M., Salazar, E., Gomez, R. and Tejada, L. (2019). Bioactivity of hydrolysates obtained from bovine casein using artichoke (Cynara scolymus L.) proteases. Journal of Dairy Science, 102: 10711–10723.
  • Cushman, D. W. and Cheung, H. S. (1971). Spectrophotometric assay and properties of the angiotensin-converting enzyme of rabbit lung. Biochemical Pharmacology, 20: 1637–1648.
  • Demirci, A. Ş., Sözeri Atik, D., Palabıyık, İ. and Gülcü, M. (2021) Bioactive properties of commercial reishi mushroom products in powder form. Journal of Tekirdag Agricultural Faculty, 18(2): 273-281.
  • Douglas, S. E, Gallant, J. W, Gong, Z. and Hew, C. (2001). Cloning and developmental expression of a family of pleurocidin-like antimicrobial peptides from winter flounder, Pleuronectes americanus (Walbaum). Developmental and Comparative Immunology, 25: 137–147.
  • Erdmann, K., Cheung, B. W. Y. and Schroeder, H. (2008). The possible roles of food-derived bioactive peptides in reducing the risk of cardiovascular disease. Journal of Nutritional Biochemistry, 19: 643–654.
  • Fluegel, S. M., Shultz, T. D., Powers, J. R., Clark, S., Barbosa-Leiker, C., Wright, B. R., Freson, T. S., Fluegel, H. A., Minch, J. D. and Schwarzkopf, L. K. (2010). Whey beverages decrease blood pressure in prehypertensive and hypertensive young men and women. International Dairy Journal, 20: 753–760.
  • Georgetti, S. R., Casagrande, R., Vicentini, F. T. M. C., Verri Jr, W. A. and Fonseca, M. J. V. (2006). Evaluation of the antioxidant activity of soybean extract by different in vitro methods and investigation of this activity after its incorporation in topical formulations. European Journal of Pharmaceutics and Biopharmaceutics, 64(1): 99–106.
  • Haque, E. and Chand, R. (2008). Antihypertensive and Antimicrobial Bioactive Peptides from Milk Proteins, European Food Research and Technology, 227(1): 7-15.
  • Hancock, R. E. W. and Sahl, H. G. (2006). Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. National Biotechnolgy, 24(12): 1551–1557.
  • Hartmann, R. and Meisel, H. (2007). Food-derived peptides with biological activity: from research to food applications. Current Opinion in Biotechnology, 18(2): 163–169.
  • Kitts, D. D. and Weiler, K. (2003). Bioactive proteins and peptides from food sources. applications of bioprocesses used in isolation and recovery. Current Pharmaceutical Design, 9: 1309–1323.
  • Kristinsson, H. G. and Rasco, B. A. (2000). Fish protein hydrolysates: Production, biochemical and functional properties. Critical Reviews in Food Science and Nutrition, 40: 43–81.
  • Kussmann, M., Panchaud, A. and Affolter, M. (2010). Proteomics in nutrition: Status quo and outlook for biomarkers and bioactives. Journal of Proteome Research, 9: 4876–4887.
  • Li, G. H., Le, G. W., Liu, H. and Shi, Y. H. (2005). Mung-bean protein hydrolysates obtained with alcalase exhibit angiotensin I-converting enzyme inhibitory activity. Food Science and Technology International, 11(4): 281-287.
  • Lin, S., Tian, W., Li, H., Cao, J. and Jiang, W. (2012). Improving antioxidant activities of whey protein hydrolysates obtained by thermal preheat treatment of pepsin, trypsin, alcalase and flavourzyme. International Journal of Food Science and Technology, 47: 2045–2051.
  • Moller, N. P., Scholz-Ahrens, K. E., Roos, N. and Schrezenmeir, J. (2008). Bioactive peptides and proteins from foods: Indication for health effects. European Journal of Nutrition, 47: 171–182.
  • Nagy, A., Marciniak-Darmochwał, K., Krawczuk, S., Mierzejewska, D., Kostyra, H. and Gelencser, E. (2009). Influence of glycation and pepsin hydrolysis on immunoreactivity of albumin/globulin fraction of herbicide resistant wheat line. Czech Journal of Food Sciences, 27: 320–329.
  • Nuutila, A. M., Puupponen-Pimiä, R., Aarni, M. and Oksman-Caldentey, K. M. (2003). Comparison of antioxidant activities of onion and garlic extracts by inhibition of lipid peroxidation and radical scavenging activity. Food Chemistry, 81(4): 485–493.
  • Özboy, Ö. and Köksel, H. (1998). The effects of bulgur production on various chemical properties of wheats. The Journal of Food, 23(6): 449–457.
  • Phanturat, P., Benjakul, S., Visessanguan, W. and Roytrakul, S. (2010). Use of pyloric caeca extract from bigeye snapper (Priacanthus macracanthus) for the production of gelatin hydrolysate with antioxidative activity, LWT-Food Science and Technology, 43: 86–97.
  • Pins, J. J. and Keenan, J. M. (2006). Effects of whey peptides on cardiovascular disease risk factors. Journal of Clinical Hypertension, 8:775–782.
  • Preuckler, M., Siebenhandl-Ehn, S., Apprich, S., Höltinger, S. and Haas, S. (2014). Wheat-bran based biorefinery: Composition of wheat bran and strategies of functionalization. LWT- Food Science and Technology, 56(2): 211–221.
  • Raghavan, S. and Kristinsson, H. G. (2009). ACE-inhibitory activity of tilapia protein hydrolysates, Food Chemistry, 117(4): 582-588.
  • Rao, M. B., Tanksale, A. M., Ghatge, M. S. and Deshpande V. V. (1998). Molecular and biotechnological aspects of microbial proteases. Microbiology and Molecular Biology Reviews, 62(3): 597–635.
  • Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M. and Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26: 1231–1237.
  • Saadi, S., Saari, N., Anwar, F., Abdul Hamid, A. and Ghazali, H. M. (2015). Recent advances in food biopeptides: production, biological functionalities and therapeutic applications. Biotechnology Advances, 33: 80–116.
  • Salami, M., Yousefi, R. and Ehsani, M.R. (2008). Kinetic characterization of hydrolysis of camel and bovine milk proteins by pancreatic enzymes. International Dairy Journal, 18: 1097–1102.
  • Sarmadi, B. H. and Ismail, A. (2010). Antioxidative peptides from food proteins: A review. Peptides, 31: 1949–1956.
  • Spellman, D., McEvoy, E., O’Cuinn, G. and FitzGerald, R. J. (2003). Proteinase and exopeptidase hydrolysis of whey protein: Comparison of the TNBS, OPA and pH stat methods for quantification of degree of hydrolysis. International Dairy Journal, 13: 447–453.
  • Sivakumar, G. M. and Dhanalakshmi, B. (2016). Betel leaf extract as shelf life extender of raw milk. International Journal of Science, Environment, 5: 2832-2836.
  • Tahmaz, H., Yüksel Küskü D., Soylemezoglu G. and Çelik H. (2022) Phenolic compound and antioxidant capacity contents of Vitis labrusca L. genotypes. Journal of Tekirdag Agricultural Faculty, 19(2): 318-331.
  • Tacer Caba, Z., Boyacioglu, M. H. and Boyacioglu, D. (2011). Bioactive healthy components of bulgur. International Journal of Food Sciences and Nutrition, 63(2): 250–256.
  • Udenigwe, C. C. and Aluko, R. E. (2012). Food protein-derived bioactive peptides: Production, processing, and potential health benefits. Journal of Food Science, 77(1): R11–R24.
  • Wang, L., Mao, X., Cheng, X., Xiong, X. and Ren, F. (2010). Effect of enzyme type and hydrolysis conditions on the in vitro angiotensin i-converting enzyme inhibitory activity and ash content of hydrolysed whey protein isolate. International Journal of Food Science and Technology, 45: 807–812.
  • Winata, A. and Lorenz, K. (1996). Antioxidant potential of 5‐n‐pentadecylresorcinol. Journal of Food Processing and Preservation, 20(5): 417-429.
  • Yang, B., Zhao, M. M., Shi, J., Yang, N. and Jiang, Y. M. (2008). Effect of ultrasonic treatment on the recovery and DPPH radical scavenging activity of polysaccharides from longan fruit pericarp. Food Chemistry, 106: 685–690.
  • You, L., Zhao, M., Cui, C., Zhao, H. and Yang, B. (2009). Effect of degree of hydrolysis on the antioxidant activity of loach (Misgurnus anguillicaudatus) protein hydrolysates. Innovative Food Science and Emerging Technologies, 10(2): 235–240.
  • Yust, M. M., Pedroche, J., Girón-Calle, J., Alaiz, M., Millán, F. and Vioque J. (2003). Production of ACE inhibitory peptides by digestion of chickpea legumin with alca-lase. Food Chemistry, 81: 363–369.
There are 41 citations in total.

Details

Primary Language English
Subjects Food Engineering, Grain Technology
Journal Section Articles
Authors

Hema Aso Rashıd 0000-0003-3193-5485

Hüseyin Bozkurt 0000-0003-4676-6354

Çiğdem Aykaç 0000-0001-7042-9716

Early Pub Date January 14, 2025
Publication Date
Submission Date December 14, 2023
Acceptance Date December 5, 2024
Published in Issue Year 2025 Volume: 22 Issue: 1

Cite

APA Rashıd, H. A., Bozkurt, H., & Aykaç, Ç. (2025). Characteristics and Biological Activities of Bioactive Peptides Derived from Bulgur Waste. Tekirdağ Ziraat Fakültesi Dergisi, 22(1), 88-97. https://doi.org/10.33462/jotaf.1404907
AMA Rashıd HA, Bozkurt H, Aykaç Ç. Characteristics and Biological Activities of Bioactive Peptides Derived from Bulgur Waste. JOTAF. January 2025;22(1):88-97. doi:10.33462/jotaf.1404907
Chicago Rashıd, Hema Aso, Hüseyin Bozkurt, and Çiğdem Aykaç. “Characteristics and Biological Activities of Bioactive Peptides Derived from Bulgur Waste”. Tekirdağ Ziraat Fakültesi Dergisi 22, no. 1 (January 2025): 88-97. https://doi.org/10.33462/jotaf.1404907.
EndNote Rashıd HA, Bozkurt H, Aykaç Ç (January 1, 2025) Characteristics and Biological Activities of Bioactive Peptides Derived from Bulgur Waste. Tekirdağ Ziraat Fakültesi Dergisi 22 1 88–97.
IEEE H. A. Rashıd, H. Bozkurt, and Ç. Aykaç, “Characteristics and Biological Activities of Bioactive Peptides Derived from Bulgur Waste”, JOTAF, vol. 22, no. 1, pp. 88–97, 2025, doi: 10.33462/jotaf.1404907.
ISNAD Rashıd, Hema Aso et al. “Characteristics and Biological Activities of Bioactive Peptides Derived from Bulgur Waste”. Tekirdağ Ziraat Fakültesi Dergisi 22/1 (January 2025), 88-97. https://doi.org/10.33462/jotaf.1404907.
JAMA Rashıd HA, Bozkurt H, Aykaç Ç. Characteristics and Biological Activities of Bioactive Peptides Derived from Bulgur Waste. JOTAF. 2025;22:88–97.
MLA Rashıd, Hema Aso et al. “Characteristics and Biological Activities of Bioactive Peptides Derived from Bulgur Waste”. Tekirdağ Ziraat Fakültesi Dergisi, vol. 22, no. 1, 2025, pp. 88-97, doi:10.33462/jotaf.1404907.
Vancouver Rashıd HA, Bozkurt H, Aykaç Ç. Characteristics and Biological Activities of Bioactive Peptides Derived from Bulgur Waste. JOTAF. 2025;22(1):88-97.