Research Article
BibTex RIS Cite

Farklı Rehidrasyon Sıcaklıklarında Etüv ve Vakumlu Etüvde Kurutulmuş Karideslerin Rehidrasyon Davranışının Modellenmesi ve Kalite Parametrelerinin Belirlenmesi

Year 2025, Volume: 22 Issue: 1, 108 - 121
https://doi.org/10.33462/jotaf.1425152

Abstract

Bu çalışmada, önceki çalışmada etüv (EK) ve vakumlu etüvde (VEK) kurutulan karidesler 30, 40 ve 50°C sıcaklıklarda rehidrate edilmiş ve bu süre zarfındaki rehidrasyonun kinetiği incelenerek eğriler modellenmiştir. Rehidrasyon kinetiği çalışmalarında rehidrasyon içerikleri, rehidrasyon oranları, nem oranı ve etkili nem difüzyonları hesaplanmıştır. Elde edilen rehidrasyon verilerinden Peleg ve İki parametreli matematiksel modelleri baz alınarak modelleme yapılmış ve sonuçlar indirgenmiş ki-kare (χ2), belirleme katsayısı (R2) ve ortalama kare hatası (RMSE) kullanılarak istatistiksel olarak değerlendirilmiştir. Kalite parametre analizi olarak renk ölçümleri seçilmiş ve toplam renk değişimlerine göre yorumlar yapılmıştır. Sonuçlar incelendiğinde tüm numunelerin etüvde kurutmada ve vakumlu etüvde kurutmada sırasıyla 180 ve 150 dakikada dengeye ulaştığı ve vakum etüvünde kurutulup rehidrate edilen numunelerin daha fazla rehidrasyon değerine ulaştıkları görülmüştür. En yüksek rehidrasyon değerine sahip numunenin ise 80°C'de vakum etüvünde kurutulan ve 50 °C'de rehidrate edilen numunede olduğu ortaya çıkmıştır. Vakumlu etüvde kurutulan numunelerin kuruma süresi daha kısa olduğundan gözenekleri daha az daraldığı için rehidrasyon değerlerinde beklendiği üzere artış meydana gelmiştir. Rehidrasyon sıcaklığı arttıkça numunelerin daha fazla rehidrate edildiği gözlenmiştir. Rehidrasyon oranı, nem içeriği ve efektif nem yayılım değerleri rehidrasyon içerikleri ile paralel olduğundan bu parametrelerde de benzer miktarlarda artış meydana gelmiştir. Matematiksel modelleme sonuçlarına bakıldığında Peleg modelinin 30 ve 40°C'de rehidrate edilen numunelerde, iki parametreli modelinin ise 50°C'de rehidrate edilen numunelerde daha iyi sonuçlar verdiği ortaya çıkmıştır. Renk analizlerinde toplam renk değişimlerinden vakumla kurutulan karideslerde beklendiği gibi toplam renk değişimi fırında kurutulan karideslere göre daha az olarak ortaya çıkmış ve rehidrasyon sıcaklığı arttıkça açıklık değerlerinin artmasına bağlı olarak renk değişimleri de artmıştır.

Ethical Statement

Bu çalışma için etik kuruldan izin alınmasına gerek yoktur.

Supporting Institution

Yildiz Technical University Scientific Research Projects Coordination Department, Project Number: FDK-2019-3528

Thanks

-

References

  • Abedini, E., Hajebzadeh, H., Mirzai, M. A., Alahdadi, A. A., Ahmadi, H. M., Salehi, M. A. and Zakeri, M. (2022). Evaluation of operational parameters for drying shrimps in a cabinet hybrid dryer. Solar Energy, 233: 221-229.
  • Achaglinkame, M. A., Owusu Mensah, E., Boakye, A. A. and Oduro, I. (2020). Effect of size and drying time on the rehydration and sensory properties of freeze-dried snails (achatina achatina). International Journal of Food Science, 2020: 5714140: 1-5.
  • Aktas, T., Orak, H., Hasturk S. F. and Ekinci, N. (2013). Effects of different drying methods on drying kinetics and color parameters of strawberry tree (arbutus unedo l.) fruit. Journal of Tekirdag Agricultural Faculty, 10(2): 1-12.
  • Akonor, P. T., Ofori, H., Dziedzoave, N. T. and Kortei, N. K. (2016). Drying characteristics and physical and nutritional properties of shrimp meat as affected by different traditional drying techniques. International Journal of Food Science., 2016:7879097: 1-5.
  • Alfiya, P. V., Rajesh, G. K., Murali, S., Delfiya, A. D. S., Samuel, M. P. and Prince, M. V. (2022). Quality evaluation of solar and microwave dried shrimps – A comparative study on renewable and dielectric heating methods. Solar Energy, 246: 234-244.
  • Arslan, A., Soysal, Y. and Keskin, M. (2021). Infrared drying kinetics and color qualities of organic and conventional sweet red peppers. Journal of Tekirdag Agricultural Faculty, 18(2): 260-272.
  • Azizpour, M., Mohebbi, M. and Khodaparas, M. H. H. (2016). Effects of foam-mat drying temperature on physico-chemical and microstructural properties of shrimp powder. Innovative Food Science & Emerging Technologies, 34: 122-126.
  • Benseddik, A., Azzi, A., Zidoune, M. N., Khanniche, R. and Besombes, C. (2019). Empirical and diffusion models of rehydration process of differently dried pumpkin slices. Journal of the Saudi Society of Agricultural Sciences, 18(4): 401–410.
  • Demirhan, E. and Ozbek, B. (2011). Thin-layer drying characteristics and modeling of celery leaves undergoing microwave treatment. Chemical Engineering Communications, 198(7): 957-975.
  • Ersan, A. C. and Tugrul, N. (2021). The drying kinetics and characteristics of shrimp dried by conventional methods. Chemical Industry & Chemical Engineering Quarterly, 27(4): 319−328.
  • Gao, Y., Qiao, S., Lin, Y., Xie, Y., Ai, Z., Mowafy, S., Li, J. and Li, X. (2023). Effects of high-humidity hot air impingement cooking on physicochemical properties and microstructure of Pacific white shrimp (Penaeus vannamei). LWT-Food Science and Technology, 182: 114836.
  • Gautam, R. K., Kakatkar, A. S., Mishra, P. K., Kumar, V. and Chatterjee, S. (2021). Development of shelf-stable, ready to cook (RTC) intermediate moisture (IM) shrimp and its shelf life extension using hurdle technology. Journal of Agriculture and Food Research, 6: 100199.
  • GSA (2023). Global Seafood Alliance Annual Farmed Shrimp Production Survey. https://www.globalseafood.org/advocate/annual-farmed-shrimp-production-survey-a-slight-decrease-in-production-reduction-in-2023-with-hopes-for-renewed-growth-in-2024/ (Accessed Date: 9.10.2023).
  • Jiang, P., Jin, W., Liu, Y., Sun, N., Zhu, K., Bao, Z. and Dong, X. (2022). Hot-air drying characteristics of sea cucumber (Apostichopus japonicus) and its rehydration properties. Journal of Food Quality, 2022: 5147373.
  • Kipcak, A. S., Ismail, O., Doymaz, I. and Piskin, S. (2014). Modeling and investigation of the rehydration kinetics of acrylamide-sodium acrylate hydrogel. Journal of Chemistry, 2014: 281063: 1–8.
  • Kipcak, A. S. (2017). Microwave drying kinetics of mussels (Mytilus edulis). Research on Chemical Intermediates, 43: 1429-1445.
  • Kipcak, A. S. and İsmail, O. (2018). Comparison of the microwave drying kinetics of culture and natural asparagus. Acta Scientiarum. Technology, 40(1): e39922.
  • Kipcak, A. S., Doymaz, İ. and Derun, E.M. (2019). Infrared drying kinetics of blue mussels and physical properties. Chemical Industry & Chemical Engineering Quarterly, 25(1): 1-10.
  • Kipcak, A. S. and Doymaz, İ. (2020). Microwave and infrared drying kinetics and energy consumption of cherry tomatoes. Chemical Industry & Chemical Engineering Quarterly, 26(2): 203-212.
  • Kipcak, A. S., Derun, E. M., Tugrul, N. and Doymaz, İ. (2021). Drying characteristics of blue mussels by traditional methods, Chemical Industry & Chemical Engineering Quarterly, 27(3): 279-288.
  • Kipcak, A. S. and İsmail, O. (2021). Microwave drying of fish, chicken and beef samples. Journal of Food Science and Technology, 58(1): 281-291.
  • Kumar, N., Kachhadiya, S. and Nayi, P. (2020). Storage stability and characterization of biochemical, rehydration and color characteristics of dehydrated sweet corn kernels. Journal of Stored Products Research, 87: 101619.
  • Li, D., Xie, H., Liu, Z., Li, A., Li, J., Liu, B., Liu, X. and Zhou, D. (2019). Shelf life prediction and changes in lipid profiles of dried shrimp (Penaeus vannamei) during accelerated storage. Food Chemistry, 297: 124951.
  • Lin, Y., Gao, Y., Li, A., Wang, L., Ai, Z., Xiao, H., Li, J. and Li, X. (2022). Improvement of pacific white shrimp (Litopenaeus vannamei) drying characteristics and quality attributes by a combination of salting pretreatment and microwave. Foods, 11(14): 2066.
  • Murali, S., Delfiya, A. D. S., Kumar, S. K., Kumar, L. R. G., Nilavan, E. S., Amulya, P. R., Krishnan, S. V., Alfiya, P. V. and Samuel, M. P. (2021). Mathematical modeling of drying kinetics and quality characteristics of shrimps dried under a solar–lpg hybrid dryer. Journal of Aquatic Food Product Technology, 30(5): 561–578.
  • Nanan, K., Eiamsaard, S., Chokphoemphun, S., Kumar, M., Pimsarn, M. and Chuwattanakul, V. (2023). Influence of bed height and drying temperature on shrimp drying characteristics using a fluidized-bed dryer. Case Studies in Thermal Engineering, 48: 103144.
  • Nayi, P., Kumar, N., Kachchadiya, S., Chen, H. H., Singh, P., Shrestha, P. and Pandiselvam, R. (2023). Rehydration modeling and characterization of dehydrated sweet corn. Food Science & Nutrition, 11: 3224–3234.
  • Ozyalcin, Z. O. and Kipcak, A. S. (2023). Rehydration characteristics and kinetics of traditionally dried mussels at different temperatures. Sigma Journal of Engineering and Natural Sciences, 41(4): 858−867.
  • Ozyalcin, Z. O., Kipcak, A. S. and Tugrul, N. (2023). The effect of various methods on the drying kinetics and mathematical modelling of seabass (dicentrarchus labrax). Journal of Aquatic Food Product Technology, 32(4): 384–395.
  • Riyanto, B., Ramadhan, W. and Moesriffah, R. (2023). Effect of ultrasound assisted rehydration on the quality of dried sea cucumber. Fisheries and Aquatic Sciences, 26(9): 535-547.
  • Sevim, S., Derun, E. M., Tugrul, N., Doymaz, I. and Kipcak, A. S. (2019). Temperature controlled infrared drying kinetics of mussels. Journal of the Indian Chemical Society, 96: 1233-1238.
  • Wang, Y., Yue, J., Liu, Z., Zheng, Y., Deng, Y., Zhao, Y., Liu, Z. and Huang, H. (2016). Impact of far-infrared radiation assisted heat pump drying on moisture distribution and rehydration kinetics of squid fillets during rehydration. Journal of Aquatic Food Product Technology, 25(2): 147–155.
  • Wang, L., Zang, M., Zhao, X., Cheng, X., Li, X. and Bai, J. (2023). Lipid oxidation and free radical formation of shrimp (Penaeus vannamei) during hot air drying. Journal of Food Measurement and Characterization,s 17: 3493–3504.
  • Wang, L., Zang, M., Cheng, X., Wang, S., Zhao, X., Zhao, B. and Li, D. (2024). Evaluation of changes in the lipid profiles of dried shrimps (Penaeus vannamei) during accelerated storage based on chemical and lipidomic analysis. LWT-Food Science and Technology, 191: 115564.
  • Zhang, D., Ji, H., Liu, S. and Gao, J. (2020). Similarity of aroma attributes in hot-air-dried shrimp (Penaeus vannamei) and its different parts using sensory analysis and GC–MS. Food Research International, 137: 109517.

Modeling the Rehydration Behavior of Oven and Vacuum Oven Dried Shrimp at Different Rehydration Temperatures and Determination of Quality Parameters

Year 2025, Volume: 22 Issue: 1, 108 - 121
https://doi.org/10.33462/jotaf.1425152

Abstract

In this study, shrimps dried by oven (OD) and vacuum oven (VOD) in the previous study, were rehydrated at temperatures of 30, 40 and 50°C and the kinetics of rehydration during this time were examined and curves are modeled. In rehydration kinetic studies, rehydration contents, rehydration rates, moisture ratio and effective moisture diffusions were calculated. Modeling was done based on Peleg and Two-Term mathematical models from the obtained rehydration curve data, and the results were evaluated statistically using the reduced chi-square (χ2), coefficient of determination (R2) and root mean square error (RMSE) definitions. Color measurements were chosen as quality parameter analysis and interpretations were made based on the total color changes. When the results were examined, it was observed that all samples reached equilibrium in the 180 and 150 minute in oven drying and vacuum-oven drying, respectively and the sample with the highest rehydration value was observed in the one dried at 80°C in a vacuum-oven drying and rehydrated at 50°C. Since the drying time of the samples dried in the vacuum oven was shorter, their pores were less narrowed and thus they experienced more rehydration. It was observed that the samples were rehydrated more as the rehydration temperature increased. Since the rehydration rate, moisture content and effective moisture diffusivity values are in parallel with the rehydration contents the same increase occurred at these parameters. Looking at the mathematical modeling results, the Peleg model gave better results in samples rehydrated at 30 and 40°C, and the Two-Term model gave better results in samples rehydrated at 50°C. From the total color changes as expected vacuum-dried shrimps total color changes were less than the oven-dried shrimps and the color changes increased as the rehydration temperature increases due to the increase in the lightness values.

Ethical Statement

There is no need to obtain permission from the ethics committee for this study.

Supporting Institution

Yildiz Technical University Scientific Research Projects Coordination Department, Project Number: FDK-2019-3528

Thanks

-

References

  • Abedini, E., Hajebzadeh, H., Mirzai, M. A., Alahdadi, A. A., Ahmadi, H. M., Salehi, M. A. and Zakeri, M. (2022). Evaluation of operational parameters for drying shrimps in a cabinet hybrid dryer. Solar Energy, 233: 221-229.
  • Achaglinkame, M. A., Owusu Mensah, E., Boakye, A. A. and Oduro, I. (2020). Effect of size and drying time on the rehydration and sensory properties of freeze-dried snails (achatina achatina). International Journal of Food Science, 2020: 5714140: 1-5.
  • Aktas, T., Orak, H., Hasturk S. F. and Ekinci, N. (2013). Effects of different drying methods on drying kinetics and color parameters of strawberry tree (arbutus unedo l.) fruit. Journal of Tekirdag Agricultural Faculty, 10(2): 1-12.
  • Akonor, P. T., Ofori, H., Dziedzoave, N. T. and Kortei, N. K. (2016). Drying characteristics and physical and nutritional properties of shrimp meat as affected by different traditional drying techniques. International Journal of Food Science., 2016:7879097: 1-5.
  • Alfiya, P. V., Rajesh, G. K., Murali, S., Delfiya, A. D. S., Samuel, M. P. and Prince, M. V. (2022). Quality evaluation of solar and microwave dried shrimps – A comparative study on renewable and dielectric heating methods. Solar Energy, 246: 234-244.
  • Arslan, A., Soysal, Y. and Keskin, M. (2021). Infrared drying kinetics and color qualities of organic and conventional sweet red peppers. Journal of Tekirdag Agricultural Faculty, 18(2): 260-272.
  • Azizpour, M., Mohebbi, M. and Khodaparas, M. H. H. (2016). Effects of foam-mat drying temperature on physico-chemical and microstructural properties of shrimp powder. Innovative Food Science & Emerging Technologies, 34: 122-126.
  • Benseddik, A., Azzi, A., Zidoune, M. N., Khanniche, R. and Besombes, C. (2019). Empirical and diffusion models of rehydration process of differently dried pumpkin slices. Journal of the Saudi Society of Agricultural Sciences, 18(4): 401–410.
  • Demirhan, E. and Ozbek, B. (2011). Thin-layer drying characteristics and modeling of celery leaves undergoing microwave treatment. Chemical Engineering Communications, 198(7): 957-975.
  • Ersan, A. C. and Tugrul, N. (2021). The drying kinetics and characteristics of shrimp dried by conventional methods. Chemical Industry & Chemical Engineering Quarterly, 27(4): 319−328.
  • Gao, Y., Qiao, S., Lin, Y., Xie, Y., Ai, Z., Mowafy, S., Li, J. and Li, X. (2023). Effects of high-humidity hot air impingement cooking on physicochemical properties and microstructure of Pacific white shrimp (Penaeus vannamei). LWT-Food Science and Technology, 182: 114836.
  • Gautam, R. K., Kakatkar, A. S., Mishra, P. K., Kumar, V. and Chatterjee, S. (2021). Development of shelf-stable, ready to cook (RTC) intermediate moisture (IM) shrimp and its shelf life extension using hurdle technology. Journal of Agriculture and Food Research, 6: 100199.
  • GSA (2023). Global Seafood Alliance Annual Farmed Shrimp Production Survey. https://www.globalseafood.org/advocate/annual-farmed-shrimp-production-survey-a-slight-decrease-in-production-reduction-in-2023-with-hopes-for-renewed-growth-in-2024/ (Accessed Date: 9.10.2023).
  • Jiang, P., Jin, W., Liu, Y., Sun, N., Zhu, K., Bao, Z. and Dong, X. (2022). Hot-air drying characteristics of sea cucumber (Apostichopus japonicus) and its rehydration properties. Journal of Food Quality, 2022: 5147373.
  • Kipcak, A. S., Ismail, O., Doymaz, I. and Piskin, S. (2014). Modeling and investigation of the rehydration kinetics of acrylamide-sodium acrylate hydrogel. Journal of Chemistry, 2014: 281063: 1–8.
  • Kipcak, A. S. (2017). Microwave drying kinetics of mussels (Mytilus edulis). Research on Chemical Intermediates, 43: 1429-1445.
  • Kipcak, A. S. and İsmail, O. (2018). Comparison of the microwave drying kinetics of culture and natural asparagus. Acta Scientiarum. Technology, 40(1): e39922.
  • Kipcak, A. S., Doymaz, İ. and Derun, E.M. (2019). Infrared drying kinetics of blue mussels and physical properties. Chemical Industry & Chemical Engineering Quarterly, 25(1): 1-10.
  • Kipcak, A. S. and Doymaz, İ. (2020). Microwave and infrared drying kinetics and energy consumption of cherry tomatoes. Chemical Industry & Chemical Engineering Quarterly, 26(2): 203-212.
  • Kipcak, A. S., Derun, E. M., Tugrul, N. and Doymaz, İ. (2021). Drying characteristics of blue mussels by traditional methods, Chemical Industry & Chemical Engineering Quarterly, 27(3): 279-288.
  • Kipcak, A. S. and İsmail, O. (2021). Microwave drying of fish, chicken and beef samples. Journal of Food Science and Technology, 58(1): 281-291.
  • Kumar, N., Kachhadiya, S. and Nayi, P. (2020). Storage stability and characterization of biochemical, rehydration and color characteristics of dehydrated sweet corn kernels. Journal of Stored Products Research, 87: 101619.
  • Li, D., Xie, H., Liu, Z., Li, A., Li, J., Liu, B., Liu, X. and Zhou, D. (2019). Shelf life prediction and changes in lipid profiles of dried shrimp (Penaeus vannamei) during accelerated storage. Food Chemistry, 297: 124951.
  • Lin, Y., Gao, Y., Li, A., Wang, L., Ai, Z., Xiao, H., Li, J. and Li, X. (2022). Improvement of pacific white shrimp (Litopenaeus vannamei) drying characteristics and quality attributes by a combination of salting pretreatment and microwave. Foods, 11(14): 2066.
  • Murali, S., Delfiya, A. D. S., Kumar, S. K., Kumar, L. R. G., Nilavan, E. S., Amulya, P. R., Krishnan, S. V., Alfiya, P. V. and Samuel, M. P. (2021). Mathematical modeling of drying kinetics and quality characteristics of shrimps dried under a solar–lpg hybrid dryer. Journal of Aquatic Food Product Technology, 30(5): 561–578.
  • Nanan, K., Eiamsaard, S., Chokphoemphun, S., Kumar, M., Pimsarn, M. and Chuwattanakul, V. (2023). Influence of bed height and drying temperature on shrimp drying characteristics using a fluidized-bed dryer. Case Studies in Thermal Engineering, 48: 103144.
  • Nayi, P., Kumar, N., Kachchadiya, S., Chen, H. H., Singh, P., Shrestha, P. and Pandiselvam, R. (2023). Rehydration modeling and characterization of dehydrated sweet corn. Food Science & Nutrition, 11: 3224–3234.
  • Ozyalcin, Z. O. and Kipcak, A. S. (2023). Rehydration characteristics and kinetics of traditionally dried mussels at different temperatures. Sigma Journal of Engineering and Natural Sciences, 41(4): 858−867.
  • Ozyalcin, Z. O., Kipcak, A. S. and Tugrul, N. (2023). The effect of various methods on the drying kinetics and mathematical modelling of seabass (dicentrarchus labrax). Journal of Aquatic Food Product Technology, 32(4): 384–395.
  • Riyanto, B., Ramadhan, W. and Moesriffah, R. (2023). Effect of ultrasound assisted rehydration on the quality of dried sea cucumber. Fisheries and Aquatic Sciences, 26(9): 535-547.
  • Sevim, S., Derun, E. M., Tugrul, N., Doymaz, I. and Kipcak, A. S. (2019). Temperature controlled infrared drying kinetics of mussels. Journal of the Indian Chemical Society, 96: 1233-1238.
  • Wang, Y., Yue, J., Liu, Z., Zheng, Y., Deng, Y., Zhao, Y., Liu, Z. and Huang, H. (2016). Impact of far-infrared radiation assisted heat pump drying on moisture distribution and rehydration kinetics of squid fillets during rehydration. Journal of Aquatic Food Product Technology, 25(2): 147–155.
  • Wang, L., Zang, M., Zhao, X., Cheng, X., Li, X. and Bai, J. (2023). Lipid oxidation and free radical formation of shrimp (Penaeus vannamei) during hot air drying. Journal of Food Measurement and Characterization,s 17: 3493–3504.
  • Wang, L., Zang, M., Cheng, X., Wang, S., Zhao, X., Zhao, B. and Li, D. (2024). Evaluation of changes in the lipid profiles of dried shrimps (Penaeus vannamei) during accelerated storage based on chemical and lipidomic analysis. LWT-Food Science and Technology, 191: 115564.
  • Zhang, D., Ji, H., Liu, S. and Gao, J. (2020). Similarity of aroma attributes in hot-air-dried shrimp (Penaeus vannamei) and its different parts using sensory analysis and GC–MS. Food Research International, 137: 109517.
There are 35 citations in total.

Details

Primary Language English
Subjects Food Engineering, Chemical Engineering (Other)
Journal Section Articles
Authors

Ali Can Erşan 0000-0002-0932-5165

Azmi Seyhun Kıpçak 0000-0003-2068-6065

Nurcan Tuğrul 0000-0002-1242-704X

Early Pub Date January 14, 2025
Publication Date
Submission Date January 25, 2024
Acceptance Date January 6, 2025
Published in Issue Year 2025 Volume: 22 Issue: 1

Cite

APA Erşan, A. C., Kıpçak, A. S., & Tuğrul, N. (2025). Modeling the Rehydration Behavior of Oven and Vacuum Oven Dried Shrimp at Different Rehydration Temperatures and Determination of Quality Parameters. Tekirdağ Ziraat Fakültesi Dergisi, 22(1), 108-121. https://doi.org/10.33462/jotaf.1425152
AMA Erşan AC, Kıpçak AS, Tuğrul N. Modeling the Rehydration Behavior of Oven and Vacuum Oven Dried Shrimp at Different Rehydration Temperatures and Determination of Quality Parameters. JOTAF. January 2025;22(1):108-121. doi:10.33462/jotaf.1425152
Chicago Erşan, Ali Can, Azmi Seyhun Kıpçak, and Nurcan Tuğrul. “Modeling the Rehydration Behavior of Oven and Vacuum Oven Dried Shrimp at Different Rehydration Temperatures and Determination of Quality Parameters”. Tekirdağ Ziraat Fakültesi Dergisi 22, no. 1 (January 2025): 108-21. https://doi.org/10.33462/jotaf.1425152.
EndNote Erşan AC, Kıpçak AS, Tuğrul N (January 1, 2025) Modeling the Rehydration Behavior of Oven and Vacuum Oven Dried Shrimp at Different Rehydration Temperatures and Determination of Quality Parameters. Tekirdağ Ziraat Fakültesi Dergisi 22 1 108–121.
IEEE A. C. Erşan, A. S. Kıpçak, and N. Tuğrul, “Modeling the Rehydration Behavior of Oven and Vacuum Oven Dried Shrimp at Different Rehydration Temperatures and Determination of Quality Parameters”, JOTAF, vol. 22, no. 1, pp. 108–121, 2025, doi: 10.33462/jotaf.1425152.
ISNAD Erşan, Ali Can et al. “Modeling the Rehydration Behavior of Oven and Vacuum Oven Dried Shrimp at Different Rehydration Temperatures and Determination of Quality Parameters”. Tekirdağ Ziraat Fakültesi Dergisi 22/1 (January 2025), 108-121. https://doi.org/10.33462/jotaf.1425152.
JAMA Erşan AC, Kıpçak AS, Tuğrul N. Modeling the Rehydration Behavior of Oven and Vacuum Oven Dried Shrimp at Different Rehydration Temperatures and Determination of Quality Parameters. JOTAF. 2025;22:108–121.
MLA Erşan, Ali Can et al. “Modeling the Rehydration Behavior of Oven and Vacuum Oven Dried Shrimp at Different Rehydration Temperatures and Determination of Quality Parameters”. Tekirdağ Ziraat Fakültesi Dergisi, vol. 22, no. 1, 2025, pp. 108-21, doi:10.33462/jotaf.1425152.
Vancouver Erşan AC, Kıpçak AS, Tuğrul N. Modeling the Rehydration Behavior of Oven and Vacuum Oven Dried Shrimp at Different Rehydration Temperatures and Determination of Quality Parameters. JOTAF. 2025;22(1):108-21.