Research Article
BibTex RIS Cite

Antarktik Mikroalg Ekstrelerinin Antioksidan Potansiyeli, Fenolik İçeriği ve Antimikrobiyal Etkileri

Year 2025, Volume: 1 Issue: 1, 9 - 20, 29.05.2025

Abstract

Amaç: Son yıllarda, kontrolsüz ilaç tüketimi nedeniyle artan patojen mikroorganizmaların antimikrobiyal ajanlara karşı direnç göstermesi önemli bir sorun haline gelmiştir. Bu bağlamda yapılan çalışmalarda, mikroalglerin bu sorunun çözümü için büyük bir potansiyele sahip bir seçenek olduğu görülmüştür. Özellikle ekstrem koşullarda büyüyebilen mikroalglerin, içerdiği farklı biyoaktif bileşenler sayesinde antimikrobiyal özelliklerinin yanı sıra antikanser, antioksidan ve anti-inflamatuar özellikler gösterebildiği belirlenmiştir. Bu çalışmada, Antarktika’nın Horseshoe Adası, Skua Gölü’nden izole edilen Chlorella variabilis YTU.ANTARCTIC.001 türü üzerine odaklanılmış ve bu türün antimikrobiyal potansiyeli ilk kez kapsamlı olarak değerlendirilmiştir. Gereç ve Yöntem: Çalışmada, farklı çözücüler (etanol, metanol, DMSO ve su) kullanılarak hazırlanan ekstrelerin hem antibakteriyel hem de antifungal etkileri sistematik olarak analiz edilmiştir. Bulgular: Bu çalışmanın sonuçları, Antarktik mikroalg ekstrelerinin Bacillus cereus ve Botrytis cinerea’ya karşı en yüksek antibakteriyel ve antifungal aktiviteyi gösterdiğini ortaya koymuştur. Sonuç: Çalışmanın sonucunda, elde edilen ekstrelerin kozmetik ve farmasötik gibi endüstrilerde antimikrobiyal ajanlar olarak kullanılabileceği sonucuna ulaşılmıştır.

References

  • [1] Amaro, H. M., Guedes, A. C., & Malcata, F. X. (2011). Antimicrobial activities of microalgae: An invited review. Science against microbial pathogens: communicating current research and technological advances, 2, 1272-1284.
  • [2] Koçer, A. T., Mutlu, B., & Özçimen, D. (2020). Investigation of biochar production potential and pyrolysis kinetics characteristics of microalgal biomass. Biomass Convers Biorefinery 10, 85–94.
  • [3] Sathasivam, R., Radhakrishnan, R., Hashem, A., & Abd_Allah, E. F. (2019). Microalgae metabolites: A rich source for food and medicine. Saudi journal of biological sciences, 26(4), 709-722.
  • [4] Babich, O., Sukhikh, S., Larina, V., Kalashnikova, O., Kashirskikh, E., Prosekov, A., & Dolganyuk, V. (2022). Algae: Study of edible and biologically active fractions, their properties and applications. Plants, 11(6), 780.
  • [5] Bidigare, R. R., Ondrusek, M. E., Kennicutt, M. C., Iturriaga, R., Harvey, H. R., Hoham, R. W., & Macko, S. A. (1993). Evidence a photoprotective for secondary carotenoids of snow algae 1. Journal of Phycology, 29(4), 427-434.
  • [6] Suh, S. S., Kim, S. M., Kim, J. E., Hong, J. M., Lee, S. G., Youn, U. J., & Kim, S. (2017). Anticancer activities of ethanol extract from the Antarctic freshwater microalga, Botryidiopsidaceae sp. BMC complementary and alternative medicine, 17, 1-9.
  • [7] da Silva Vaz, B., Moreira, J. B., de Morais, M. G., & Costa, J. A. V. (2016). Microalgae as a new source of bioactive compounds in food supplements. Current opinion in food science, 7, 73-77.
  • [8] Pratt, R., Daniels, T. C., Eiler, J. J., Gunnison, J. B., Kumler, W. D., Oneto, J. F., & Strain, H. H. (1944). Chlorellin, an antibacterial substance from Chlorella. Science, 99(2574), 351-352.
  • [9] Navarro, F., Forján, E., Vázquez, M., Toimil, A., Montero, Z., Ruiz‐ Domínguez, M. D. C., & Vega, J. M. (2017). Antimicrobial activity of the acidophilic eukaryotic microalga Coccomyxa onubensis. Phycological Research, 65(1), 38-43.
  • [10] Vehapi, M., Yilmaz, A., & Özçimen, D. (2018). Antifungal activities of Chlorella vulgaris and Chlorella minutissima microalgae cultivated in Bold Basal medium, wastewater and tree extract water against Aspergillus niger and Fusarium oxysporum. Rom. Biotechnol. Lett, 1, 1-8.
  • [11] Fabregas, J., Garcıa, D., Fernandez-Alonso, M., Rocha, A. I., Gómez-Puertas, P., Escribano, J. M., & Coll, J. M. (1999). In vitro inhibition of the replication of haemorrhagic septicaemia virus (VHSV) and African swine fever virus (ASFV) by extracts from marine microalgae. Antiviral research, 44(1), 67-73.
  • [12] Ghasemi, Y., Moradian, A., Mohagheghzadeh, A., Shokravi, S., & Morowvat, M. H. (2007). Antifungal and antibacterial activity of the microalgae collected from paddy fields of Iran: characterization of antimicrobial activity of Chroococcus dispersus. Journal of Biological Sciences, 7(6), 904-910.
  • [13] Santoyo, S., Rodríguez-Meizoso, I., Cifuentes, A., Jaime, L., Reina, G. G. B., Señorans, F. J., & Ibáñez, E. (2009). Green processes based on the extraction with pressurized fluids to obtain potent antimicrobials from Haematococcus pluvialis microalgae. LWT-Food Science and Technology, 42(7), 1213-1218.
  • [14] Schuelter, A. R., Kroumov, A. D., Hinterholz, C. L., Fiorini, A., Trigueros, D. E. G., Vendruscolo, E. G., & Módenes, A. N. (2019). Isolation and identification of new microalgae strains with antibacterial activity on food-borne pathogens. Engineering approach to optimize synthesis of desired metabolites. Biochemical Engineering Journal, 144, 28-39.
  • [15] Bhagavathy, S., Sumathi, P., & Bell, I. J. S. (2011). Green algae Chlorococcum humicola-a new source of bioactive compounds with antimicrobial activity. Asian Pacific Journal of Tropical Biomedicine, 1(1), 1-7.
  • [16] Teoh, M. L., Chu, W. L., Marchant, H., & Phang, S. M. (2004). Influence of culture temperature on the growth, biochemical composition and fatty acid profiles of six Antarctic microalgae. Journal of Applied Phycology, 16, 421-430.
  • [17] Cebi, N., Arici, M., & Sagdic, O. (2021). The famous Turkish rose essential oil: Characterization and authenticity monitoring by FTIR, Raman and GC–MS techniques combined with chemometrics. Food chemistry, 354, 129495.
  • [18] Brands-Williams, W., Cuvelier, M. E., & Berset, C. L. W. T. (1995). Use of a free radical method to evaluate antioxidant activity. LWT-Food science and Technology, 28(1), 25-30.
  • [19] Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American journal of Enology and Viticulture, 16(3), 144-158.
  • [20] Li, H. B., Cheng, K. W., Wong, C. C., Fan, K. W., Chen, F., & Jiang, Y. (2007). Evaluation of antioxidant capacity and total phenolic content of different fractions of selected microalgae. Food chemistry, 102(3), 771-776.
  • [21] Vehapi, M., Koçer, A. T., Yılmaz, A., & Özçimen, D. (2020). Investigation of the antifungal effects of algal extracts on apple-infecting fungi. Archives of microbiology, 202, 455-471.
  • [22] Suh, S. S., Hong, J. M., Kim, E. J., Jung, S. W., Kim, S. M., Kim, J. E., & Kim, S. (2018). Anti-inflammation and anti-cancer activity of ethanol extract of antarctic freshwater microalga, Micractinium sp. International journal of medical sciences, 15(9), 929-936.
  • [23] Goiris, K., Muylaert, K., Fraeye, I., Foubert, I., De Brabanter, J., & De Cooman, L. (2012). Antioxidant potential of microalgae in relation to their phenolic and carotenoid content. Journal of applied phycology, 24, 1477-1486.
  • [24] Vijayavel, K., Anbuselvam, C., & Balasubramanian, M. P. (2007). Antioxidant effect of the marine algae Chlorella vulgaris against naphthalene- induced oxidative stress in the albino rats. Molecular and cellular biochemistry, 303, 39-44.
  • [25] Gürlek, C., Yarkent, Ç., Köse, A., Tuğcu, B., Gebeloğlu, I. K., Öncel, S. Ş., & Elibol, M. (2020). Screening of antioxidant and cytotoxic activities of several microalgal extracts with pharmaceutical potential. Health and Technology, 10, 111-117.
  • [26] Azaman, S. N. A., Nagao, N., Yusoff, F. M., Tan, S. W., & Yeap, S. K. (2017). A comparison of the morphological and biochemical characteristics of Chlorella sorokiniana and Chlorella zofingiensis cultured under photoautotrophic and mixotrophic conditions. PeerJ, 5, e3473.
  • [27] Ali, H. E. A., Shanab, S. M. M., Abo-State, M. A. M., Shalaby, E. A. A., Eldmerdash, U., & Abdullah, M. A. (2014). Screening of microalgae for antioxidant activities, carotenoids and phenolic contents. Applied mechanics and materials, 625, 156-159.
  • [28] Gilbert, R. J., Stringer, M. F., & Peace, T. C. (1974). The survival and growth of Bacillus cereus in boiled and fried rice in relation to outbreaks of food poisoning. Epidemiology & Infection, 73(3), 433-444.
  • [29] Kausalya, M., & Rao, G. N. (2015). Antimicrobial activity of marine algae. Journal of Algal Biomass Utilization, 6(1), 78-87.
  • [30] Tüney, İ., Cadirci, B. H., Ünal, D., & Sukatar, A. (2006). Antimicrobial activities of the extracts of marine algae from the coast of Urla (Izmir, Turkey). Turkish Journal of Biology, 30(3), 171-175.
  • [31] Plaza, M., Santoyo, S., Jaime, L., Avalo, B., Cifuentes, A., Reglero, G., & Ibáñez, E. (2012). Comprehensive characterization of the functional activities of pressurized liquid and ultrasound-assisted extracts from Chlorella vulgaris. LWT-Food Science and Technology, 46(1), 245- 253.
  • [32] Suresh, A., Praveenkumar, R., Thangaraj, R., Oscar, F. L., Baldev, E., Dhanasekaran, D., & Thajuddin, N. (2014). Microalgal fatty acid methyl ester a new source of bioactive compounds with antimicrobial activity. Asian Pacific Journal of Tropical Disease, 4, 979-984.
  • [33] Stirk, W. A., & van Staden, J. (2022). Bioprospecting for bioactive compounds in microalgae: Antimicrobial compounds. Biotechnology advances, 59, 107977.
  • [34] Karthika, N., & Muruganandam, A. (2019). Bioactive compounds and antimicrobial activity of cyanobacteria from south east coast of India. International Journal of Current Research in Life Sciences, 8(1), 3027-3030.
  • [35] Saad, M. G., Abdu, M., Shafik, H. M., Marwa, C., & Saad, G. (2019). Phytochemical screening and antimicrobial activities of some green algae from Egypt. J. Med. Plants Stud, 7, 12-16.
  • [36] Alghanmi, H. A., & Omran, A. S. (2020). Antibacterial activity of ethanol extracts of two algae species against some pathogenic bacteria 14(1), 383.
  • [37] Uma, R., Sivasubramanian, V., & Niranjali Devaraj, S. (2011). Preliminary phycochemical analysis and in vitro antibacterial screening of green micro algae, Desmococcus olivaceous, Chlorococcum humicola and Chlorella vulgaris. J Algal Biomass Utln, 2(3), 74-81.
  • [38] Bai, V. D. M., & Krishnakumar, S. (2013). Evaluation of antimicrobial metabolites from marine microalgae Tetraselmis suecica using gas chromatography–mass spectrometry (GC–MS) analysis. Int J Pharm Pharm Sci, 5(3), 17-23.
  • [39] Asthana, R. K., Deepali, Tripathi, M. K., Srivastava, A., Singh, A. P., Singh, S. P., & Srivastava, B. S. (2009). Isolation and identification of a new antibacterial entity from the Antarctic cyanobacterium Nostoc CCC 537. Journal of applied phycology, 21, 81-88.
  • [40] Biondi, N., Tredici, M. R., Taton, A., Wilmotte, A., Hodgson, D. A., Losi, D., & Marinelli, F. (2008). Cyanobacteria from benthic mats of Antarctic lakes as a source of new bioactivities. Journal of applied microbiology, 105(1), 105-115.
  • [41] Elvedal, I. (2018). Bioactivity Potential of an Arctic Marine Diatom Species Cultivated at Different Conditions (Master’s thesis, UiT The Arctic University of Norway).
  • [42] Özçimen, D. (2018). Investigation of antifungal effect of Chlorella protothecoides microalgae oil against Botrytis cinerea and Aspergillus niger fungi. Journal of Tekirdag Agricultural Faculty, 15(2), 45-52.
  • [43] de Morais, M. G., Vaz, B. D. S., de Morais, E. G., & Costa, J. A. V. (2015). Biologically active metabolites synthesized by microalgae. BioMed research international, 2015(1), 835761.
  • [44] Oh, B. T., Jeong, S. Y., Velmurugan, P., Park, J. H., & Jeong, D. Y. (2017). Probiotic-mediated blueberry (Vaccinium corymbosum L.) fruit fermentation to yield functionalized products for augmented antibacterial and antioxidant activity. Journal of bioscience and bioengineering, 124(5), 542-550.
  • [45] Martins, R. M., Nedel, F., Guimarães, V. B., Da Silva, A. F., Colepicolo, P., De Pereira, C. M., & Lund, R. G. (2018). Macroalgae extracts from Antarctica have antimicrobial and anticancer potential. Frontiers in microbiology, 9, 412.
Year 2025, Volume: 1 Issue: 1, 9 - 20, 29.05.2025

Abstract

References

  • [1] Amaro, H. M., Guedes, A. C., & Malcata, F. X. (2011). Antimicrobial activities of microalgae: An invited review. Science against microbial pathogens: communicating current research and technological advances, 2, 1272-1284.
  • [2] Koçer, A. T., Mutlu, B., & Özçimen, D. (2020). Investigation of biochar production potential and pyrolysis kinetics characteristics of microalgal biomass. Biomass Convers Biorefinery 10, 85–94.
  • [3] Sathasivam, R., Radhakrishnan, R., Hashem, A., & Abd_Allah, E. F. (2019). Microalgae metabolites: A rich source for food and medicine. Saudi journal of biological sciences, 26(4), 709-722.
  • [4] Babich, O., Sukhikh, S., Larina, V., Kalashnikova, O., Kashirskikh, E., Prosekov, A., & Dolganyuk, V. (2022). Algae: Study of edible and biologically active fractions, their properties and applications. Plants, 11(6), 780.
  • [5] Bidigare, R. R., Ondrusek, M. E., Kennicutt, M. C., Iturriaga, R., Harvey, H. R., Hoham, R. W., & Macko, S. A. (1993). Evidence a photoprotective for secondary carotenoids of snow algae 1. Journal of Phycology, 29(4), 427-434.
  • [6] Suh, S. S., Kim, S. M., Kim, J. E., Hong, J. M., Lee, S. G., Youn, U. J., & Kim, S. (2017). Anticancer activities of ethanol extract from the Antarctic freshwater microalga, Botryidiopsidaceae sp. BMC complementary and alternative medicine, 17, 1-9.
  • [7] da Silva Vaz, B., Moreira, J. B., de Morais, M. G., & Costa, J. A. V. (2016). Microalgae as a new source of bioactive compounds in food supplements. Current opinion in food science, 7, 73-77.
  • [8] Pratt, R., Daniels, T. C., Eiler, J. J., Gunnison, J. B., Kumler, W. D., Oneto, J. F., & Strain, H. H. (1944). Chlorellin, an antibacterial substance from Chlorella. Science, 99(2574), 351-352.
  • [9] Navarro, F., Forján, E., Vázquez, M., Toimil, A., Montero, Z., Ruiz‐ Domínguez, M. D. C., & Vega, J. M. (2017). Antimicrobial activity of the acidophilic eukaryotic microalga Coccomyxa onubensis. Phycological Research, 65(1), 38-43.
  • [10] Vehapi, M., Yilmaz, A., & Özçimen, D. (2018). Antifungal activities of Chlorella vulgaris and Chlorella minutissima microalgae cultivated in Bold Basal medium, wastewater and tree extract water against Aspergillus niger and Fusarium oxysporum. Rom. Biotechnol. Lett, 1, 1-8.
  • [11] Fabregas, J., Garcıa, D., Fernandez-Alonso, M., Rocha, A. I., Gómez-Puertas, P., Escribano, J. M., & Coll, J. M. (1999). In vitro inhibition of the replication of haemorrhagic septicaemia virus (VHSV) and African swine fever virus (ASFV) by extracts from marine microalgae. Antiviral research, 44(1), 67-73.
  • [12] Ghasemi, Y., Moradian, A., Mohagheghzadeh, A., Shokravi, S., & Morowvat, M. H. (2007). Antifungal and antibacterial activity of the microalgae collected from paddy fields of Iran: characterization of antimicrobial activity of Chroococcus dispersus. Journal of Biological Sciences, 7(6), 904-910.
  • [13] Santoyo, S., Rodríguez-Meizoso, I., Cifuentes, A., Jaime, L., Reina, G. G. B., Señorans, F. J., & Ibáñez, E. (2009). Green processes based on the extraction with pressurized fluids to obtain potent antimicrobials from Haematococcus pluvialis microalgae. LWT-Food Science and Technology, 42(7), 1213-1218.
  • [14] Schuelter, A. R., Kroumov, A. D., Hinterholz, C. L., Fiorini, A., Trigueros, D. E. G., Vendruscolo, E. G., & Módenes, A. N. (2019). Isolation and identification of new microalgae strains with antibacterial activity on food-borne pathogens. Engineering approach to optimize synthesis of desired metabolites. Biochemical Engineering Journal, 144, 28-39.
  • [15] Bhagavathy, S., Sumathi, P., & Bell, I. J. S. (2011). Green algae Chlorococcum humicola-a new source of bioactive compounds with antimicrobial activity. Asian Pacific Journal of Tropical Biomedicine, 1(1), 1-7.
  • [16] Teoh, M. L., Chu, W. L., Marchant, H., & Phang, S. M. (2004). Influence of culture temperature on the growth, biochemical composition and fatty acid profiles of six Antarctic microalgae. Journal of Applied Phycology, 16, 421-430.
  • [17] Cebi, N., Arici, M., & Sagdic, O. (2021). The famous Turkish rose essential oil: Characterization and authenticity monitoring by FTIR, Raman and GC–MS techniques combined with chemometrics. Food chemistry, 354, 129495.
  • [18] Brands-Williams, W., Cuvelier, M. E., & Berset, C. L. W. T. (1995). Use of a free radical method to evaluate antioxidant activity. LWT-Food science and Technology, 28(1), 25-30.
  • [19] Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American journal of Enology and Viticulture, 16(3), 144-158.
  • [20] Li, H. B., Cheng, K. W., Wong, C. C., Fan, K. W., Chen, F., & Jiang, Y. (2007). Evaluation of antioxidant capacity and total phenolic content of different fractions of selected microalgae. Food chemistry, 102(3), 771-776.
  • [21] Vehapi, M., Koçer, A. T., Yılmaz, A., & Özçimen, D. (2020). Investigation of the antifungal effects of algal extracts on apple-infecting fungi. Archives of microbiology, 202, 455-471.
  • [22] Suh, S. S., Hong, J. M., Kim, E. J., Jung, S. W., Kim, S. M., Kim, J. E., & Kim, S. (2018). Anti-inflammation and anti-cancer activity of ethanol extract of antarctic freshwater microalga, Micractinium sp. International journal of medical sciences, 15(9), 929-936.
  • [23] Goiris, K., Muylaert, K., Fraeye, I., Foubert, I., De Brabanter, J., & De Cooman, L. (2012). Antioxidant potential of microalgae in relation to their phenolic and carotenoid content. Journal of applied phycology, 24, 1477-1486.
  • [24] Vijayavel, K., Anbuselvam, C., & Balasubramanian, M. P. (2007). Antioxidant effect of the marine algae Chlorella vulgaris against naphthalene- induced oxidative stress in the albino rats. Molecular and cellular biochemistry, 303, 39-44.
  • [25] Gürlek, C., Yarkent, Ç., Köse, A., Tuğcu, B., Gebeloğlu, I. K., Öncel, S. Ş., & Elibol, M. (2020). Screening of antioxidant and cytotoxic activities of several microalgal extracts with pharmaceutical potential. Health and Technology, 10, 111-117.
  • [26] Azaman, S. N. A., Nagao, N., Yusoff, F. M., Tan, S. W., & Yeap, S. K. (2017). A comparison of the morphological and biochemical characteristics of Chlorella sorokiniana and Chlorella zofingiensis cultured under photoautotrophic and mixotrophic conditions. PeerJ, 5, e3473.
  • [27] Ali, H. E. A., Shanab, S. M. M., Abo-State, M. A. M., Shalaby, E. A. A., Eldmerdash, U., & Abdullah, M. A. (2014). Screening of microalgae for antioxidant activities, carotenoids and phenolic contents. Applied mechanics and materials, 625, 156-159.
  • [28] Gilbert, R. J., Stringer, M. F., & Peace, T. C. (1974). The survival and growth of Bacillus cereus in boiled and fried rice in relation to outbreaks of food poisoning. Epidemiology & Infection, 73(3), 433-444.
  • [29] Kausalya, M., & Rao, G. N. (2015). Antimicrobial activity of marine algae. Journal of Algal Biomass Utilization, 6(1), 78-87.
  • [30] Tüney, İ., Cadirci, B. H., Ünal, D., & Sukatar, A. (2006). Antimicrobial activities of the extracts of marine algae from the coast of Urla (Izmir, Turkey). Turkish Journal of Biology, 30(3), 171-175.
  • [31] Plaza, M., Santoyo, S., Jaime, L., Avalo, B., Cifuentes, A., Reglero, G., & Ibáñez, E. (2012). Comprehensive characterization of the functional activities of pressurized liquid and ultrasound-assisted extracts from Chlorella vulgaris. LWT-Food Science and Technology, 46(1), 245- 253.
  • [32] Suresh, A., Praveenkumar, R., Thangaraj, R., Oscar, F. L., Baldev, E., Dhanasekaran, D., & Thajuddin, N. (2014). Microalgal fatty acid methyl ester a new source of bioactive compounds with antimicrobial activity. Asian Pacific Journal of Tropical Disease, 4, 979-984.
  • [33] Stirk, W. A., & van Staden, J. (2022). Bioprospecting for bioactive compounds in microalgae: Antimicrobial compounds. Biotechnology advances, 59, 107977.
  • [34] Karthika, N., & Muruganandam, A. (2019). Bioactive compounds and antimicrobial activity of cyanobacteria from south east coast of India. International Journal of Current Research in Life Sciences, 8(1), 3027-3030.
  • [35] Saad, M. G., Abdu, M., Shafik, H. M., Marwa, C., & Saad, G. (2019). Phytochemical screening and antimicrobial activities of some green algae from Egypt. J. Med. Plants Stud, 7, 12-16.
  • [36] Alghanmi, H. A., & Omran, A. S. (2020). Antibacterial activity of ethanol extracts of two algae species against some pathogenic bacteria 14(1), 383.
  • [37] Uma, R., Sivasubramanian, V., & Niranjali Devaraj, S. (2011). Preliminary phycochemical analysis and in vitro antibacterial screening of green micro algae, Desmococcus olivaceous, Chlorococcum humicola and Chlorella vulgaris. J Algal Biomass Utln, 2(3), 74-81.
  • [38] Bai, V. D. M., & Krishnakumar, S. (2013). Evaluation of antimicrobial metabolites from marine microalgae Tetraselmis suecica using gas chromatography–mass spectrometry (GC–MS) analysis. Int J Pharm Pharm Sci, 5(3), 17-23.
  • [39] Asthana, R. K., Deepali, Tripathi, M. K., Srivastava, A., Singh, A. P., Singh, S. P., & Srivastava, B. S. (2009). Isolation and identification of a new antibacterial entity from the Antarctic cyanobacterium Nostoc CCC 537. Journal of applied phycology, 21, 81-88.
  • [40] Biondi, N., Tredici, M. R., Taton, A., Wilmotte, A., Hodgson, D. A., Losi, D., & Marinelli, F. (2008). Cyanobacteria from benthic mats of Antarctic lakes as a source of new bioactivities. Journal of applied microbiology, 105(1), 105-115.
  • [41] Elvedal, I. (2018). Bioactivity Potential of an Arctic Marine Diatom Species Cultivated at Different Conditions (Master’s thesis, UiT The Arctic University of Norway).
  • [42] Özçimen, D. (2018). Investigation of antifungal effect of Chlorella protothecoides microalgae oil against Botrytis cinerea and Aspergillus niger fungi. Journal of Tekirdag Agricultural Faculty, 15(2), 45-52.
  • [43] de Morais, M. G., Vaz, B. D. S., de Morais, E. G., & Costa, J. A. V. (2015). Biologically active metabolites synthesized by microalgae. BioMed research international, 2015(1), 835761.
  • [44] Oh, B. T., Jeong, S. Y., Velmurugan, P., Park, J. H., & Jeong, D. Y. (2017). Probiotic-mediated blueberry (Vaccinium corymbosum L.) fruit fermentation to yield functionalized products for augmented antibacterial and antioxidant activity. Journal of bioscience and bioengineering, 124(5), 542-550.
  • [45] Martins, R. M., Nedel, F., Guimarães, V. B., Da Silva, A. F., Colepicolo, P., De Pereira, C. M., & Lund, R. G. (2018). Macroalgae extracts from Antarctica have antimicrobial and anticancer potential. Frontiers in microbiology, 9, 412.
There are 45 citations in total.

Details

Primary Language Turkish
Subjects Pharmacology and Pharmaceutical Sciences (Other)
Journal Section 1
Authors

Anıl Tevfik Koçer 0000-0003-1519-1711

Benan İnan 0000-0002-2315-3099

Meyrem Vehapi 0000-0001-8235-3552

Gülcan Ayşin Karaca This is me 0000-0003-3905-851X

Beyza Karacaoğlu 0000-0001-7666-1911

Didem Balkanlı 0000-0003-2483-7617

Publication Date May 29, 2025
Submission Date March 5, 2025
Acceptance Date April 16, 2025
Published in Issue Year 2025 Volume: 1 Issue: 1

Cite

APA Koçer, A. T., İnan, B., Vehapi, M., Karaca, G. A., et al. (2025). Antarktik Mikroalg Ekstrelerinin Antioksidan Potansiyeli, Fenolik İçeriği ve Antimikrobiyal Etkileri. IYYU Journal of PhytoPharmacy, 1(1), 9-20.