Antarktik Mikroalg Ekstrelerinin Antioksidan Potansiyeli, Fenolik İçeriği ve Antimikrobiyal Etkileri
Year 2025,
Volume: 1 Issue: 1, 9 - 20, 29.05.2025
Anıl Tevfik Koçer
,
Benan İnan
,
Meyrem Vehapi
,
Gülcan Ayşin Karaca
Beyza Karacaoğlu
,
Didem Balkanlı
Abstract
Amaç: Son yıllarda, kontrolsüz ilaç tüketimi nedeniyle artan patojen mikroorganizmaların antimikrobiyal ajanlara karşı direnç göstermesi önemli bir sorun haline gelmiştir. Bu bağlamda yapılan çalışmalarda, mikroalglerin bu sorunun çözümü için büyük bir potansiyele sahip bir seçenek olduğu görülmüştür. Özellikle ekstrem koşullarda büyüyebilen mikroalglerin, içerdiği farklı biyoaktif bileşenler sayesinde antimikrobiyal özelliklerinin yanı sıra antikanser, antioksidan ve anti-inflamatuar özellikler gösterebildiği belirlenmiştir. Bu çalışmada, Antarktika’nın Horseshoe Adası, Skua Gölü’nden izole edilen Chlorella variabilis YTU.ANTARCTIC.001 türü üzerine odaklanılmış ve bu türün antimikrobiyal potansiyeli ilk kez kapsamlı olarak değerlendirilmiştir. Gereç ve Yöntem: Çalışmada, farklı çözücüler (etanol, metanol, DMSO ve su) kullanılarak hazırlanan ekstrelerin hem antibakteriyel hem de antifungal etkileri sistematik olarak analiz edilmiştir. Bulgular: Bu çalışmanın sonuçları, Antarktik mikroalg ekstrelerinin Bacillus cereus ve Botrytis cinerea’ya karşı en yüksek antibakteriyel ve antifungal aktiviteyi gösterdiğini ortaya koymuştur. Sonuç: Çalışmanın sonucunda, elde edilen ekstrelerin kozmetik ve farmasötik gibi endüstrilerde antimikrobiyal ajanlar olarak kullanılabileceği sonucuna ulaşılmıştır.
References
- [1] Amaro, H. M., Guedes, A. C., & Malcata, F. X. (2011). Antimicrobial
activities of microalgae: An invited review. Science against microbial
pathogens: communicating current research and technological
advances, 2, 1272-1284.
- [2] Koçer, A. T., Mutlu, B., & Özçimen, D. (2020). Investigation of biochar
production potential and pyrolysis kinetics characteristics of
microalgal biomass. Biomass Convers Biorefinery 10, 85–94.
- [3] Sathasivam, R., Radhakrishnan, R., Hashem, A., & Abd_Allah, E. F.
(2019). Microalgae metabolites: A rich source for food and medicine.
Saudi journal of biological sciences, 26(4), 709-722.
- [4] Babich, O., Sukhikh, S., Larina, V., Kalashnikova, O., Kashirskikh,
E., Prosekov, A., & Dolganyuk, V. (2022). Algae: Study of edible
and biologically active fractions, their properties and applications.
Plants, 11(6), 780.
- [5] Bidigare, R. R., Ondrusek, M. E., Kennicutt, M. C., Iturriaga, R., Harvey,
H. R., Hoham, R. W., & Macko, S. A. (1993). Evidence a photoprotective
for secondary carotenoids of snow algae 1. Journal of
Phycology, 29(4), 427-434.
- [6] Suh, S. S., Kim, S. M., Kim, J. E., Hong, J. M., Lee, S. G., Youn, U. J.,
& Kim, S. (2017). Anticancer activities of ethanol extract from
the Antarctic freshwater microalga, Botryidiopsidaceae sp. BMC
complementary and alternative medicine, 17, 1-9.
- [7] da Silva Vaz, B., Moreira, J. B., de Morais, M. G., & Costa, J. A. V.
(2016). Microalgae as a new source of bioactive compounds in
food supplements. Current opinion in food science, 7, 73-77.
- [8] Pratt, R., Daniels, T. C., Eiler, J. J., Gunnison, J. B., Kumler, W. D., Oneto,
J. F., & Strain, H. H. (1944). Chlorellin, an antibacterial substance
from Chlorella. Science, 99(2574), 351-352.
- [9] Navarro, F., Forján, E., Vázquez, M., Toimil, A., Montero, Z., Ruiz‐
Domínguez, M. D. C., & Vega, J. M. (2017). Antimicrobial activity of
the acidophilic eukaryotic microalga Coccomyxa onubensis. Phycological
Research, 65(1), 38-43.
- [10] Vehapi, M., Yilmaz, A., & Özçimen, D. (2018). Antifungal activities
of Chlorella vulgaris and Chlorella minutissima microalgae cultivated
in Bold Basal medium, wastewater and tree extract water
against Aspergillus niger and Fusarium oxysporum. Rom. Biotechnol.
Lett, 1, 1-8.
- [11] Fabregas, J., Garcıa, D., Fernandez-Alonso, M., Rocha, A. I., Gómez-Puertas,
P., Escribano, J. M., & Coll, J. M. (1999). In vitro inhibition of the
replication of haemorrhagic septicaemia virus (VHSV) and African
swine fever virus (ASFV) by extracts from marine microalgae. Antiviral
research, 44(1), 67-73.
- [12] Ghasemi, Y., Moradian, A., Mohagheghzadeh, A., Shokravi, S., & Morowvat,
M. H. (2007). Antifungal and antibacterial activity of the
microalgae collected from paddy fields of Iran: characterization of
antimicrobial activity of Chroococcus dispersus. Journal of Biological
Sciences, 7(6), 904-910.
- [13] Santoyo, S., Rodríguez-Meizoso, I., Cifuentes, A., Jaime, L., Reina, G.
G. B., Señorans, F. J., & Ibáñez, E. (2009). Green processes based on
the extraction with pressurized fluids to obtain potent antimicrobials
from Haematococcus pluvialis microalgae. LWT-Food Science and
Technology, 42(7), 1213-1218.
- [14] Schuelter, A. R., Kroumov, A. D., Hinterholz, C. L., Fiorini, A., Trigueros,
D. E. G., Vendruscolo, E. G., & Módenes, A. N. (2019). Isolation and
identification of new microalgae strains with antibacterial activity on
food-borne pathogens. Engineering approach to optimize synthesis
of desired metabolites. Biochemical Engineering Journal, 144, 28-39.
- [15] Bhagavathy, S., Sumathi, P., & Bell, I. J. S. (2011). Green algae Chlorococcum
humicola-a new source of bioactive compounds with antimicrobial
activity. Asian Pacific Journal of Tropical Biomedicine, 1(1), 1-7.
- [16] Teoh, M. L., Chu, W. L., Marchant, H., & Phang, S. M. (2004). Influence
of culture temperature on the growth, biochemical composition and
fatty acid profiles of six Antarctic microalgae. Journal of Applied Phycology,
16, 421-430.
- [17] Cebi, N., Arici, M., & Sagdic, O. (2021). The famous Turkish rose essential
oil: Characterization and authenticity monitoring by FTIR, Raman
and GC–MS techniques combined with chemometrics. Food chemistry,
354, 129495.
- [18] Brands-Williams, W., Cuvelier, M. E., & Berset, C. L. W. T. (1995). Use
of a free radical method to evaluate antioxidant activity. LWT-Food
science and Technology, 28(1), 25-30.
- [19] Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of total phenolics
with phosphomolybdic-phosphotungstic acid reagents. American
journal of Enology and Viticulture, 16(3), 144-158.
- [20] Li, H. B., Cheng, K. W., Wong, C. C., Fan, K. W., Chen, F., & Jiang, Y.
(2007). Evaluation of antioxidant capacity and total phenolic content
of different fractions of selected microalgae. Food chemistry, 102(3),
771-776.
- [21] Vehapi, M., Koçer, A. T., Yılmaz, A., & Özçimen, D. (2020). Investigation
of the antifungal effects of algal extracts on apple-infecting fungi. Archives
of microbiology, 202, 455-471.
- [22] Suh, S. S., Hong, J. M., Kim, E. J., Jung, S. W., Kim, S. M., Kim, J. E., & Kim,
S. (2018). Anti-inflammation and anti-cancer activity of ethanol extract
of antarctic freshwater microalga, Micractinium sp. International
journal of medical sciences, 15(9), 929-936.
- [23] Goiris, K., Muylaert, K., Fraeye, I., Foubert, I., De Brabanter, J., & De
Cooman, L. (2012). Antioxidant potential of microalgae in relation
to their phenolic and carotenoid content. Journal of applied phycology,
24, 1477-1486.
- [24] Vijayavel, K., Anbuselvam, C., & Balasubramanian, M. P. (2007). Antioxidant
effect of the marine algae Chlorella vulgaris against naphthalene-
induced oxidative stress in the albino rats. Molecular and cellular
biochemistry, 303, 39-44.
- [25] Gürlek, C., Yarkent, Ç., Köse, A., Tuğcu, B., Gebeloğlu, I. K., Öncel, S. Ş.,
& Elibol, M. (2020). Screening of antioxidant and cytotoxic activities
of several microalgal extracts with pharmaceutical potential. Health
and Technology, 10, 111-117.
- [26] Azaman, S. N. A., Nagao, N., Yusoff, F. M., Tan, S. W., & Yeap, S. K.
(2017). A comparison of the morphological and biochemical characteristics
of Chlorella sorokiniana and Chlorella zofingiensis cultured
under photoautotrophic and mixotrophic conditions. PeerJ, 5, e3473.
- [27] Ali, H. E. A., Shanab, S. M. M., Abo-State, M. A. M., Shalaby, E. A. A., Eldmerdash,
U., & Abdullah, M. A. (2014). Screening of microalgae for
antioxidant activities, carotenoids and phenolic contents. Applied
mechanics and materials, 625, 156-159.
- [28] Gilbert, R. J., Stringer, M. F., & Peace, T. C. (1974). The survival and
growth of Bacillus cereus in boiled and fried rice in relation to outbreaks
of food poisoning. Epidemiology & Infection, 73(3), 433-444.
- [29] Kausalya, M., & Rao, G. N. (2015). Antimicrobial activity of marine algae.
Journal of Algal Biomass Utilization, 6(1), 78-87.
- [30] Tüney, İ., Cadirci, B. H., Ünal, D., & Sukatar, A. (2006). Antimicrobial
activities of the extracts of marine algae from the coast of Urla (Izmir,
Turkey). Turkish Journal of Biology, 30(3), 171-175.
- [31] Plaza, M., Santoyo, S., Jaime, L., Avalo, B., Cifuentes, A., Reglero, G., &
Ibáñez, E. (2012). Comprehensive characterization of the functional
activities of pressurized liquid and ultrasound-assisted extracts from
Chlorella vulgaris. LWT-Food Science and Technology, 46(1), 245-
253.
- [32] Suresh, A., Praveenkumar, R., Thangaraj, R., Oscar, F. L., Baldev, E.,
Dhanasekaran, D., & Thajuddin, N. (2014). Microalgal fatty acid methyl
ester a new source of bioactive compounds with antimicrobial
activity. Asian Pacific Journal of Tropical Disease, 4, 979-984.
- [33] Stirk, W. A., & van Staden, J. (2022). Bioprospecting for bioactive compounds
in microalgae: Antimicrobial compounds. Biotechnology advances,
59, 107977.
- [34] Karthika, N., & Muruganandam, A. (2019). Bioactive compounds and
antimicrobial activity of cyanobacteria from south east coast of India.
International Journal of Current Research in Life Sciences, 8(1),
3027-3030.
- [35] Saad, M. G., Abdu, M., Shafik, H. M., Marwa, C., & Saad, G. (2019). Phytochemical
screening and antimicrobial activities of some green algae
from Egypt. J. Med. Plants Stud, 7, 12-16.
- [36] Alghanmi, H. A., & Omran, A. S. (2020). Antibacterial activity of ethanol
extracts of two algae species against some pathogenic bacteria
14(1), 383.
- [37] Uma, R., Sivasubramanian, V., & Niranjali Devaraj, S. (2011). Preliminary
phycochemical analysis and in vitro antibacterial screening of
green micro algae, Desmococcus olivaceous, Chlorococcum humicola
and Chlorella vulgaris. J Algal Biomass Utln, 2(3), 74-81.
- [38] Bai, V. D. M., & Krishnakumar, S. (2013). Evaluation of antimicrobial
metabolites from marine microalgae Tetraselmis suecica using gas
chromatography–mass spectrometry (GC–MS) analysis. Int J Pharm
Pharm Sci, 5(3), 17-23.
- [39] Asthana, R. K., Deepali, Tripathi, M. K., Srivastava, A., Singh, A. P.,
Singh, S. P., & Srivastava, B. S. (2009). Isolation and identification
of a new antibacterial entity from the Antarctic cyanobacterium
Nostoc CCC 537. Journal of applied phycology, 21, 81-88.
- [40] Biondi, N., Tredici, M. R., Taton, A., Wilmotte, A., Hodgson, D. A.,
Losi, D., & Marinelli, F. (2008). Cyanobacteria from benthic mats of
Antarctic lakes as a source of new bioactivities. Journal of applied
microbiology, 105(1), 105-115.
- [41] Elvedal, I. (2018). Bioactivity Potential of an Arctic Marine Diatom
Species Cultivated at Different Conditions (Master’s thesis, UiT
The Arctic University of Norway).
- [42] Özçimen, D. (2018). Investigation of antifungal effect of Chlorella
protothecoides microalgae oil against Botrytis cinerea and Aspergillus
niger fungi. Journal of Tekirdag Agricultural Faculty, 15(2),
45-52.
- [43] de Morais, M. G., Vaz, B. D. S., de Morais, E. G., & Costa, J. A. V.
(2015). Biologically active metabolites synthesized by microalgae.
BioMed research international, 2015(1), 835761.
- [44] Oh, B. T., Jeong, S. Y., Velmurugan, P., Park, J. H., & Jeong, D. Y.
(2017). Probiotic-mediated blueberry (Vaccinium corymbosum L.)
fruit fermentation to yield functionalized products for augmented
antibacterial and antioxidant activity. Journal of bioscience
and bioengineering, 124(5), 542-550.
- [45] Martins, R. M., Nedel, F., Guimarães, V. B., Da Silva, A. F., Colepicolo,
P., De Pereira, C. M., & Lund, R. G. (2018). Macroalgae extracts from
Antarctica have antimicrobial and anticancer potential. Frontiers
in microbiology, 9, 412.
Year 2025,
Volume: 1 Issue: 1, 9 - 20, 29.05.2025
Anıl Tevfik Koçer
,
Benan İnan
,
Meyrem Vehapi
,
Gülcan Ayşin Karaca
Beyza Karacaoğlu
,
Didem Balkanlı
References
- [1] Amaro, H. M., Guedes, A. C., & Malcata, F. X. (2011). Antimicrobial
activities of microalgae: An invited review. Science against microbial
pathogens: communicating current research and technological
advances, 2, 1272-1284.
- [2] Koçer, A. T., Mutlu, B., & Özçimen, D. (2020). Investigation of biochar
production potential and pyrolysis kinetics characteristics of
microalgal biomass. Biomass Convers Biorefinery 10, 85–94.
- [3] Sathasivam, R., Radhakrishnan, R., Hashem, A., & Abd_Allah, E. F.
(2019). Microalgae metabolites: A rich source for food and medicine.
Saudi journal of biological sciences, 26(4), 709-722.
- [4] Babich, O., Sukhikh, S., Larina, V., Kalashnikova, O., Kashirskikh,
E., Prosekov, A., & Dolganyuk, V. (2022). Algae: Study of edible
and biologically active fractions, their properties and applications.
Plants, 11(6), 780.
- [5] Bidigare, R. R., Ondrusek, M. E., Kennicutt, M. C., Iturriaga, R., Harvey,
H. R., Hoham, R. W., & Macko, S. A. (1993). Evidence a photoprotective
for secondary carotenoids of snow algae 1. Journal of
Phycology, 29(4), 427-434.
- [6] Suh, S. S., Kim, S. M., Kim, J. E., Hong, J. M., Lee, S. G., Youn, U. J.,
& Kim, S. (2017). Anticancer activities of ethanol extract from
the Antarctic freshwater microalga, Botryidiopsidaceae sp. BMC
complementary and alternative medicine, 17, 1-9.
- [7] da Silva Vaz, B., Moreira, J. B., de Morais, M. G., & Costa, J. A. V.
(2016). Microalgae as a new source of bioactive compounds in
food supplements. Current opinion in food science, 7, 73-77.
- [8] Pratt, R., Daniels, T. C., Eiler, J. J., Gunnison, J. B., Kumler, W. D., Oneto,
J. F., & Strain, H. H. (1944). Chlorellin, an antibacterial substance
from Chlorella. Science, 99(2574), 351-352.
- [9] Navarro, F., Forján, E., Vázquez, M., Toimil, A., Montero, Z., Ruiz‐
Domínguez, M. D. C., & Vega, J. M. (2017). Antimicrobial activity of
the acidophilic eukaryotic microalga Coccomyxa onubensis. Phycological
Research, 65(1), 38-43.
- [10] Vehapi, M., Yilmaz, A., & Özçimen, D. (2018). Antifungal activities
of Chlorella vulgaris and Chlorella minutissima microalgae cultivated
in Bold Basal medium, wastewater and tree extract water
against Aspergillus niger and Fusarium oxysporum. Rom. Biotechnol.
Lett, 1, 1-8.
- [11] Fabregas, J., Garcıa, D., Fernandez-Alonso, M., Rocha, A. I., Gómez-Puertas,
P., Escribano, J. M., & Coll, J. M. (1999). In vitro inhibition of the
replication of haemorrhagic septicaemia virus (VHSV) and African
swine fever virus (ASFV) by extracts from marine microalgae. Antiviral
research, 44(1), 67-73.
- [12] Ghasemi, Y., Moradian, A., Mohagheghzadeh, A., Shokravi, S., & Morowvat,
M. H. (2007). Antifungal and antibacterial activity of the
microalgae collected from paddy fields of Iran: characterization of
antimicrobial activity of Chroococcus dispersus. Journal of Biological
Sciences, 7(6), 904-910.
- [13] Santoyo, S., Rodríguez-Meizoso, I., Cifuentes, A., Jaime, L., Reina, G.
G. B., Señorans, F. J., & Ibáñez, E. (2009). Green processes based on
the extraction with pressurized fluids to obtain potent antimicrobials
from Haematococcus pluvialis microalgae. LWT-Food Science and
Technology, 42(7), 1213-1218.
- [14] Schuelter, A. R., Kroumov, A. D., Hinterholz, C. L., Fiorini, A., Trigueros,
D. E. G., Vendruscolo, E. G., & Módenes, A. N. (2019). Isolation and
identification of new microalgae strains with antibacterial activity on
food-borne pathogens. Engineering approach to optimize synthesis
of desired metabolites. Biochemical Engineering Journal, 144, 28-39.
- [15] Bhagavathy, S., Sumathi, P., & Bell, I. J. S. (2011). Green algae Chlorococcum
humicola-a new source of bioactive compounds with antimicrobial
activity. Asian Pacific Journal of Tropical Biomedicine, 1(1), 1-7.
- [16] Teoh, M. L., Chu, W. L., Marchant, H., & Phang, S. M. (2004). Influence
of culture temperature on the growth, biochemical composition and
fatty acid profiles of six Antarctic microalgae. Journal of Applied Phycology,
16, 421-430.
- [17] Cebi, N., Arici, M., & Sagdic, O. (2021). The famous Turkish rose essential
oil: Characterization and authenticity monitoring by FTIR, Raman
and GC–MS techniques combined with chemometrics. Food chemistry,
354, 129495.
- [18] Brands-Williams, W., Cuvelier, M. E., & Berset, C. L. W. T. (1995). Use
of a free radical method to evaluate antioxidant activity. LWT-Food
science and Technology, 28(1), 25-30.
- [19] Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of total phenolics
with phosphomolybdic-phosphotungstic acid reagents. American
journal of Enology and Viticulture, 16(3), 144-158.
- [20] Li, H. B., Cheng, K. W., Wong, C. C., Fan, K. W., Chen, F., & Jiang, Y.
(2007). Evaluation of antioxidant capacity and total phenolic content
of different fractions of selected microalgae. Food chemistry, 102(3),
771-776.
- [21] Vehapi, M., Koçer, A. T., Yılmaz, A., & Özçimen, D. (2020). Investigation
of the antifungal effects of algal extracts on apple-infecting fungi. Archives
of microbiology, 202, 455-471.
- [22] Suh, S. S., Hong, J. M., Kim, E. J., Jung, S. W., Kim, S. M., Kim, J. E., & Kim,
S. (2018). Anti-inflammation and anti-cancer activity of ethanol extract
of antarctic freshwater microalga, Micractinium sp. International
journal of medical sciences, 15(9), 929-936.
- [23] Goiris, K., Muylaert, K., Fraeye, I., Foubert, I., De Brabanter, J., & De
Cooman, L. (2012). Antioxidant potential of microalgae in relation
to their phenolic and carotenoid content. Journal of applied phycology,
24, 1477-1486.
- [24] Vijayavel, K., Anbuselvam, C., & Balasubramanian, M. P. (2007). Antioxidant
effect of the marine algae Chlorella vulgaris against naphthalene-
induced oxidative stress in the albino rats. Molecular and cellular
biochemistry, 303, 39-44.
- [25] Gürlek, C., Yarkent, Ç., Köse, A., Tuğcu, B., Gebeloğlu, I. K., Öncel, S. Ş.,
& Elibol, M. (2020). Screening of antioxidant and cytotoxic activities
of several microalgal extracts with pharmaceutical potential. Health
and Technology, 10, 111-117.
- [26] Azaman, S. N. A., Nagao, N., Yusoff, F. M., Tan, S. W., & Yeap, S. K.
(2017). A comparison of the morphological and biochemical characteristics
of Chlorella sorokiniana and Chlorella zofingiensis cultured
under photoautotrophic and mixotrophic conditions. PeerJ, 5, e3473.
- [27] Ali, H. E. A., Shanab, S. M. M., Abo-State, M. A. M., Shalaby, E. A. A., Eldmerdash,
U., & Abdullah, M. A. (2014). Screening of microalgae for
antioxidant activities, carotenoids and phenolic contents. Applied
mechanics and materials, 625, 156-159.
- [28] Gilbert, R. J., Stringer, M. F., & Peace, T. C. (1974). The survival and
growth of Bacillus cereus in boiled and fried rice in relation to outbreaks
of food poisoning. Epidemiology & Infection, 73(3), 433-444.
- [29] Kausalya, M., & Rao, G. N. (2015). Antimicrobial activity of marine algae.
Journal of Algal Biomass Utilization, 6(1), 78-87.
- [30] Tüney, İ., Cadirci, B. H., Ünal, D., & Sukatar, A. (2006). Antimicrobial
activities of the extracts of marine algae from the coast of Urla (Izmir,
Turkey). Turkish Journal of Biology, 30(3), 171-175.
- [31] Plaza, M., Santoyo, S., Jaime, L., Avalo, B., Cifuentes, A., Reglero, G., &
Ibáñez, E. (2012). Comprehensive characterization of the functional
activities of pressurized liquid and ultrasound-assisted extracts from
Chlorella vulgaris. LWT-Food Science and Technology, 46(1), 245-
253.
- [32] Suresh, A., Praveenkumar, R., Thangaraj, R., Oscar, F. L., Baldev, E.,
Dhanasekaran, D., & Thajuddin, N. (2014). Microalgal fatty acid methyl
ester a new source of bioactive compounds with antimicrobial
activity. Asian Pacific Journal of Tropical Disease, 4, 979-984.
- [33] Stirk, W. A., & van Staden, J. (2022). Bioprospecting for bioactive compounds
in microalgae: Antimicrobial compounds. Biotechnology advances,
59, 107977.
- [34] Karthika, N., & Muruganandam, A. (2019). Bioactive compounds and
antimicrobial activity of cyanobacteria from south east coast of India.
International Journal of Current Research in Life Sciences, 8(1),
3027-3030.
- [35] Saad, M. G., Abdu, M., Shafik, H. M., Marwa, C., & Saad, G. (2019). Phytochemical
screening and antimicrobial activities of some green algae
from Egypt. J. Med. Plants Stud, 7, 12-16.
- [36] Alghanmi, H. A., & Omran, A. S. (2020). Antibacterial activity of ethanol
extracts of two algae species against some pathogenic bacteria
14(1), 383.
- [37] Uma, R., Sivasubramanian, V., & Niranjali Devaraj, S. (2011). Preliminary
phycochemical analysis and in vitro antibacterial screening of
green micro algae, Desmococcus olivaceous, Chlorococcum humicola
and Chlorella vulgaris. J Algal Biomass Utln, 2(3), 74-81.
- [38] Bai, V. D. M., & Krishnakumar, S. (2013). Evaluation of antimicrobial
metabolites from marine microalgae Tetraselmis suecica using gas
chromatography–mass spectrometry (GC–MS) analysis. Int J Pharm
Pharm Sci, 5(3), 17-23.
- [39] Asthana, R. K., Deepali, Tripathi, M. K., Srivastava, A., Singh, A. P.,
Singh, S. P., & Srivastava, B. S. (2009). Isolation and identification
of a new antibacterial entity from the Antarctic cyanobacterium
Nostoc CCC 537. Journal of applied phycology, 21, 81-88.
- [40] Biondi, N., Tredici, M. R., Taton, A., Wilmotte, A., Hodgson, D. A.,
Losi, D., & Marinelli, F. (2008). Cyanobacteria from benthic mats of
Antarctic lakes as a source of new bioactivities. Journal of applied
microbiology, 105(1), 105-115.
- [41] Elvedal, I. (2018). Bioactivity Potential of an Arctic Marine Diatom
Species Cultivated at Different Conditions (Master’s thesis, UiT
The Arctic University of Norway).
- [42] Özçimen, D. (2018). Investigation of antifungal effect of Chlorella
protothecoides microalgae oil against Botrytis cinerea and Aspergillus
niger fungi. Journal of Tekirdag Agricultural Faculty, 15(2),
45-52.
- [43] de Morais, M. G., Vaz, B. D. S., de Morais, E. G., & Costa, J. A. V.
(2015). Biologically active metabolites synthesized by microalgae.
BioMed research international, 2015(1), 835761.
- [44] Oh, B. T., Jeong, S. Y., Velmurugan, P., Park, J. H., & Jeong, D. Y.
(2017). Probiotic-mediated blueberry (Vaccinium corymbosum L.)
fruit fermentation to yield functionalized products for augmented
antibacterial and antioxidant activity. Journal of bioscience
and bioengineering, 124(5), 542-550.
- [45] Martins, R. M., Nedel, F., Guimarães, V. B., Da Silva, A. F., Colepicolo,
P., De Pereira, C. M., & Lund, R. G. (2018). Macroalgae extracts from
Antarctica have antimicrobial and anticancer potential. Frontiers
in microbiology, 9, 412.