Year 2025,
Issue: 060, 19 - 37, 25.03.2025
Halit Tirsi
,
Kamil Çetin
Project Number
2022-GAP-MÜMF-0055
References
- [1] M. Javaid, A. Haleem, R. P. Singh, R. Suman, “Substantial capabilities of robotics in enhancing industry 4.0 implementation”, Cognitive Robotics, vol. 1, pp. 58-75, 2021.
- [2] R. Goel, P. Gupta, “Robotics and industry 4.0. A Roadmap to Industry 4.0: Smart Production”, Sharp Business and Sustainable Development, vol. 1, pp. 157-169, 2020.
- [3] G. Seeja, O. Reddy, K. V. R. Kumar, S. S. L. Mounika, “Internet of things and robotic applications in the industrial automation process”, In Innovations in the Industrial Internet of Things (IIoT) and Smart Factory, pp. 50-64, 2021.
- [4] T. Brogårdh, “Present and future robot control development — An industrial perspective”, Annual Reviews in Control, vol. 31(1), pp. 69-79, 2007.
- [5] R. Goel, P. Gupta, “Robotics and industry 4.0. A Roadmap to Industry 4.0: Smart Production”, Sharp Business and Sustainable Development, vol. 1, pp. 157-169, 2020.
- [6] G. Michalos, S. Makris, N. Papakostas, D. Mourtzis, G. Chryssolouris, “Automotive assembly technologies review: challenges and outlook for a flexible and adaptive approach”, CIRP Journal of Manufacturing Science and Technology, vol. 2(2), pp. 81-91, 2010.
- [7] B. S. K. Ibrahim, A. M. Zargoun, “Modelling and control of SCARA manipulator”, Procedia Computer Science, vol. 42, pp. 106-113, 2014.
- [8] M. A. González-Palacios, M. A. Garcia-Murillo, M. González-Dávila, “A novel tool to optimize the performance of SCARA robots used in pick and place operations”, Journal of Mechanical Science and Technology, vol. 35, pp. 4715-4726, 2021.
- [9] C. Gosselin, M. Isaksson, K. Marlow, T. Laliberté, “Workspace and sensitivity analysis of a novel nonredundant parallel SCARA robot featuring infinite tool rotation”, IEEE Robotics and Automation Letters, vol. 1(2), pp. 776-783, 2016.
- [10] L. Bruzzone, G. Bozzini, “A statically balanced SCARA-like industrial manipulator with high energetic efficiency”, Meccanica, vol. 46, pp. 771-784, 2011.
- [11] L. Bruzzone, S. E. Nodehi, G. Berselli, P. Fanghella, “Energy Efficiency of a SCARA-Like Manipulator with Elastic Balancing”, In International Workshop IFToMM for Sustainable Development Goals, Cham: Springer Nature pp. 65-72, Switzerland, 2023.
- [12] W.A.C. Lopes, et al. "Digital Twins (DT) Applied to the Customization of 3D Printed Scara Robots Using Intelligent Manufacturing." IFIP International Conference on Advances in Production Management Systems, Cham: Springer Nature Switzerland, 2024.
- [13] R. Bouzid, J. Narayan, and H. Gritli, "Exploring artificial neural networks for the forward kinematics of a SCARA robotic manipulator using varied datasets and training optimizers", Engineering Research Express, vol. 4, 2024.
- [14] W. Sirianusornsak, and C. Raksiri, "A Study of Scara Robot Vibration Behavior by Computer Aided Engineer Program", The National Academic Conference, Nakhon Pathom Rajabhat University, 2024.
- [15] G. Boschetti, G. Rosati, and T. Sinico, "Retrofit and Interface of a SCARA Robot with a PLC for Real-Time Direct Joint Control", European Conference on Mechanism Science, Cham: Springer Nature Switzerland, 2024.
- [16] P. V. S. Subhashini, et al. "Modelling, Simulation and Kinematic Analysis of a Modified SCARA Manipulator (RRRRP)." International Conference on Cognitive Robotics and Intelligent Systems, 2024.
- [17] M. W. Spong, S. Hutchinson, M. Vidyasagar, “Robot modeling and control”, John Wiley & Sons, 2020.
- [18] P. I. Corke, “A simple and systematic approach to assigning Denavit–Hartenberg parameters”, IEEE transactions on robotics, vol. 23(3), pp. 590-594, 2007.
- [19] O. Altuzarra, O. Salgado, V. Petuya, A. Hernández, “Computational kinematics for robotic manipulators: Jacobian problems”, Engineering Computations, vol. 25(1), pp. 4-27, 2008.
- [20] P. K. Khosla, T. Kanade, “Parameter identification of robot dynamics”, IEEE conference on decision and control, pp. 1754-1760, Fort Lauderdale, FL, USA, 1985.
- [21] P. Tomei, “Adaptive PD controller for robot manipulators”, IEEE transactions on robotics and automation, vol. 7(4), pp. 565-570, 1991.
- [22] C. Brosilow, B. Joseph, “Techniques of model-based control”, Prentice Hall Professional, 2002.
- [23] W. J. Wilson, C. W. Hulls, G. S. Bell, “Relative end-effector control using cartesian position based visual servoing”, IEEE Transactions on Robotics and Automation, vol. 12(5), pp. 684-696, 1996.
- [24] M. H. Raibert, J. J. Craig, “Hybrid Position/Force Control of Manipulators”, ASME Journal of Dynamic Systems, Measurements and Control, vol. 102, pp. 126-133, 1981.
- [25] J. McDonald, “Hybrid Force-Position Control of a 4-DOF SCARA Manipulator”, Royal Millitary College of Canada, Master Thesis, 2022.
- [26] J. J. Craig, “Introduction to Robotics”, Global Edition, Pearson, 2021.
Model-based nonlinear control applications with kinematic and dynamic analysis of 4 DoF SCARA robot manipulator
Year 2025,
Issue: 060, 19 - 37, 25.03.2025
Halit Tirsi
,
Kamil Çetin
Abstract
The aim of this paper is to research and develop the model-based nonlinear control strategies (joint space position, Cartesian space position and hybrid position/force) of a 4 DoF SCARA robotic arm. To support these strategies, mathematical kinematics and dynamic equations are formulated using a dynamic model for prediction purposes. The joint space controller focuses on joint angles tracking while the end effector’s position is controlled with the Cartesian space controller. The hybrid controller allows interaction with the surface and control of the interaction force while maintaining a given Cartesian position. The motion trajectories are planned considering the kinematic model of the robotic arm. The study is employed in MATLAB Simulink where kinematic and dynamics models, trajectory generation and control blocks are integrated into a simulation environment. Results indicate that the torque limits of the robotic arm are sufficient for effective trajectory tracking within the imposed constraints. This research is of particular significance as it aims to conduct appreciable kinematic and dynamics studies of one of the most common types of 4 DoF SCARA robotic arm and develops precise model-based nonlinear controllers for the industrial robots.
Ethical Statement
The Authors declare that there is no conflict of interest.
Supporting Institution
İzmir Katip Çelebi University Scientific Research Projects Coordination Unit.
Project Number
2022-GAP-MÜMF-0055
Thanks
This study was supported by the İzmir Katip Çelebi University Scientific Research Projects Coordination Unit with the project number 2022-GAP-MÜMF-0055.
References
- [1] M. Javaid, A. Haleem, R. P. Singh, R. Suman, “Substantial capabilities of robotics in enhancing industry 4.0 implementation”, Cognitive Robotics, vol. 1, pp. 58-75, 2021.
- [2] R. Goel, P. Gupta, “Robotics and industry 4.0. A Roadmap to Industry 4.0: Smart Production”, Sharp Business and Sustainable Development, vol. 1, pp. 157-169, 2020.
- [3] G. Seeja, O. Reddy, K. V. R. Kumar, S. S. L. Mounika, “Internet of things and robotic applications in the industrial automation process”, In Innovations in the Industrial Internet of Things (IIoT) and Smart Factory, pp. 50-64, 2021.
- [4] T. Brogårdh, “Present and future robot control development — An industrial perspective”, Annual Reviews in Control, vol. 31(1), pp. 69-79, 2007.
- [5] R. Goel, P. Gupta, “Robotics and industry 4.0. A Roadmap to Industry 4.0: Smart Production”, Sharp Business and Sustainable Development, vol. 1, pp. 157-169, 2020.
- [6] G. Michalos, S. Makris, N. Papakostas, D. Mourtzis, G. Chryssolouris, “Automotive assembly technologies review: challenges and outlook for a flexible and adaptive approach”, CIRP Journal of Manufacturing Science and Technology, vol. 2(2), pp. 81-91, 2010.
- [7] B. S. K. Ibrahim, A. M. Zargoun, “Modelling and control of SCARA manipulator”, Procedia Computer Science, vol. 42, pp. 106-113, 2014.
- [8] M. A. González-Palacios, M. A. Garcia-Murillo, M. González-Dávila, “A novel tool to optimize the performance of SCARA robots used in pick and place operations”, Journal of Mechanical Science and Technology, vol. 35, pp. 4715-4726, 2021.
- [9] C. Gosselin, M. Isaksson, K. Marlow, T. Laliberté, “Workspace and sensitivity analysis of a novel nonredundant parallel SCARA robot featuring infinite tool rotation”, IEEE Robotics and Automation Letters, vol. 1(2), pp. 776-783, 2016.
- [10] L. Bruzzone, G. Bozzini, “A statically balanced SCARA-like industrial manipulator with high energetic efficiency”, Meccanica, vol. 46, pp. 771-784, 2011.
- [11] L. Bruzzone, S. E. Nodehi, G. Berselli, P. Fanghella, “Energy Efficiency of a SCARA-Like Manipulator with Elastic Balancing”, In International Workshop IFToMM for Sustainable Development Goals, Cham: Springer Nature pp. 65-72, Switzerland, 2023.
- [12] W.A.C. Lopes, et al. "Digital Twins (DT) Applied to the Customization of 3D Printed Scara Robots Using Intelligent Manufacturing." IFIP International Conference on Advances in Production Management Systems, Cham: Springer Nature Switzerland, 2024.
- [13] R. Bouzid, J. Narayan, and H. Gritli, "Exploring artificial neural networks for the forward kinematics of a SCARA robotic manipulator using varied datasets and training optimizers", Engineering Research Express, vol. 4, 2024.
- [14] W. Sirianusornsak, and C. Raksiri, "A Study of Scara Robot Vibration Behavior by Computer Aided Engineer Program", The National Academic Conference, Nakhon Pathom Rajabhat University, 2024.
- [15] G. Boschetti, G. Rosati, and T. Sinico, "Retrofit and Interface of a SCARA Robot with a PLC for Real-Time Direct Joint Control", European Conference on Mechanism Science, Cham: Springer Nature Switzerland, 2024.
- [16] P. V. S. Subhashini, et al. "Modelling, Simulation and Kinematic Analysis of a Modified SCARA Manipulator (RRRRP)." International Conference on Cognitive Robotics and Intelligent Systems, 2024.
- [17] M. W. Spong, S. Hutchinson, M. Vidyasagar, “Robot modeling and control”, John Wiley & Sons, 2020.
- [18] P. I. Corke, “A simple and systematic approach to assigning Denavit–Hartenberg parameters”, IEEE transactions on robotics, vol. 23(3), pp. 590-594, 2007.
- [19] O. Altuzarra, O. Salgado, V. Petuya, A. Hernández, “Computational kinematics for robotic manipulators: Jacobian problems”, Engineering Computations, vol. 25(1), pp. 4-27, 2008.
- [20] P. K. Khosla, T. Kanade, “Parameter identification of robot dynamics”, IEEE conference on decision and control, pp. 1754-1760, Fort Lauderdale, FL, USA, 1985.
- [21] P. Tomei, “Adaptive PD controller for robot manipulators”, IEEE transactions on robotics and automation, vol. 7(4), pp. 565-570, 1991.
- [22] C. Brosilow, B. Joseph, “Techniques of model-based control”, Prentice Hall Professional, 2002.
- [23] W. J. Wilson, C. W. Hulls, G. S. Bell, “Relative end-effector control using cartesian position based visual servoing”, IEEE Transactions on Robotics and Automation, vol. 12(5), pp. 684-696, 1996.
- [24] M. H. Raibert, J. J. Craig, “Hybrid Position/Force Control of Manipulators”, ASME Journal of Dynamic Systems, Measurements and Control, vol. 102, pp. 126-133, 1981.
- [25] J. McDonald, “Hybrid Force-Position Control of a 4-DOF SCARA Manipulator”, Royal Millitary College of Canada, Master Thesis, 2022.
- [26] J. J. Craig, “Introduction to Robotics”, Global Edition, Pearson, 2021.