Research Article
BibTex RIS Cite

Optimal retention limit with Monte Carlo stochastic optimization

Year 2011, Volume: 4 Issue: 1, 1 - 8, 01.03.2011

Abstract

In this study, VaR (Value-at-Risk) risk measure which is commonly used in financial sector in recent years, are

analyzed by minimizing cedent’s total risk of exposure using Monte Carlo Stochastic optimization method, with

calculating the optimal retention limit in terms of expected and standart deviation premium principles under

the stop loss reinsurance contract for the cedent. Thus, it is revealed that, in the circumstances, when analytic

solution is not achieved, the optimal retention limit can be achieved by Monte Carlo optimization method.

References

  • A. Balbas, B. Balbas, and A. Heras, 2009, Optimal Reinsurance with General Risk Measures, Insurance: Mathematics and Economics, 44, 374-384.
  • N. L. Bowers, H. U. Gerber, J. C. Hickman, D. A. Jones, C. J. Nesbitt, 1997, Actuarial Mathematics, The Society of Actuaries, USA.
  • J. Cai, and K. S. Tan , 2007, Optimal Retention For a Stop-Loss Reinsurance Under the VaR and CTE Risk Measures, ASTIN Bulletin, 37(1), 93-112.
  • J. Cai, K. S. Tan, C. Weng, and Y. Zhang, 2008, Optimal Reinsurance Under VaR and CTE Risk Measures, Insurance Math. and Econom., 43, 185-196.
  • C. D. Daykin, T. Pentikainen, and M. Pensonen, 1994, Practical Risk Theory for Actuaries, London: Chapman and Hall.
  • B. H. Dickman, and M. J. Gilman, 1987,Monte Carlo optimization, Journal of Optimization Theory and Applications, Tecnical note, Vol. 60, No 1, 149-157.
  • K. Dowd, 2004, Value-at-risk, in Encyclopedia of Actuarial Science, ed. Sundt, B. and Teugels, J. (New York: John Wiley & Sons, Ltd.
  • M.C. Fu, FW Glover, and J. April, Simulation optimization: a review, new developments, and applications, In: M.E. Kuhl, N.M. Steiger, J.A. Joines, editors, Proceedings of the 2005 winter simulation conference, 2005.
  • M.C. Fu, C.H. Chen, and L. Shi, Some topics for simulation optimization, In: S.J. Mason, R.R. Hill, L. Mönch, O. Rose, T. Jefferson, and J.W. Fowler, editors, Proceedings of the 2008 winter simulation conference, 2008.
  • T. Kaas, M. Goovaerts, J. Dhaene, and M. Denuit, 2001, Modern Actuarial Risk Theory, Kluwer Academic Publishers, Boston.
  • J. Mun, 2006, Modeling Risk Applying Monte Carlo Simulation, Real Options Analysis, Forecasting, And Optimization Techniques, New Jersey.
  • K. S. Tan, C. Weng, and Y. Zhang, 2009, VaR and CTE criteria for Optimal Quota-Share and Stop-Loss Reinsurance, The North American Actuarial Journal, Volume 13, No: 4.
  • V. R. Young, 2004, Premium Principles, In Encyclopedia of Actuarial Science, vol. 3, ed. J. Teugels and B. Sundt, pp. 1323-31, John Wiley.

Monte Carlo stokastik optimizasyonu ile optimal saklama payı seviyesi hesabı

Year 2011, Volume: 4 Issue: 1, 1 - 8, 01.03.2011

Abstract

Bu çalmada, son yllarda finans sektöründe yaygn olarak kullanlan riske maruz de#er (Value-at-Risk,

VaR) risk ölçüsü ile toplam hasar fazlas reasürans yöntemi altnda beklenen ve standart sapma prim ilkeleri

açsndan sigortacnn maruz kalaca# toplam ödemeyi Monte Carlo stokastik optimizasyon yöntemi ile

minimize ederek sigortac için optimal saklama paynn hesaplanmas incelenmitir. Böylece analitik

çözümün elde edilemedi#i durumlarda optimal saklama paynn Monte Carlo stokastik optimizasyon yöntemi

ile elde edilebilece#i gösterilmitir.

References

  • A. Balbas, B. Balbas, and A. Heras, 2009, Optimal Reinsurance with General Risk Measures, Insurance: Mathematics and Economics, 44, 374-384.
  • N. L. Bowers, H. U. Gerber, J. C. Hickman, D. A. Jones, C. J. Nesbitt, 1997, Actuarial Mathematics, The Society of Actuaries, USA.
  • J. Cai, and K. S. Tan , 2007, Optimal Retention For a Stop-Loss Reinsurance Under the VaR and CTE Risk Measures, ASTIN Bulletin, 37(1), 93-112.
  • J. Cai, K. S. Tan, C. Weng, and Y. Zhang, 2008, Optimal Reinsurance Under VaR and CTE Risk Measures, Insurance Math. and Econom., 43, 185-196.
  • C. D. Daykin, T. Pentikainen, and M. Pensonen, 1994, Practical Risk Theory for Actuaries, London: Chapman and Hall.
  • B. H. Dickman, and M. J. Gilman, 1987,Monte Carlo optimization, Journal of Optimization Theory and Applications, Tecnical note, Vol. 60, No 1, 149-157.
  • K. Dowd, 2004, Value-at-risk, in Encyclopedia of Actuarial Science, ed. Sundt, B. and Teugels, J. (New York: John Wiley & Sons, Ltd.
  • M.C. Fu, FW Glover, and J. April, Simulation optimization: a review, new developments, and applications, In: M.E. Kuhl, N.M. Steiger, J.A. Joines, editors, Proceedings of the 2005 winter simulation conference, 2005.
  • M.C. Fu, C.H. Chen, and L. Shi, Some topics for simulation optimization, In: S.J. Mason, R.R. Hill, L. Mönch, O. Rose, T. Jefferson, and J.W. Fowler, editors, Proceedings of the 2008 winter simulation conference, 2008.
  • T. Kaas, M. Goovaerts, J. Dhaene, and M. Denuit, 2001, Modern Actuarial Risk Theory, Kluwer Academic Publishers, Boston.
  • J. Mun, 2006, Modeling Risk Applying Monte Carlo Simulation, Real Options Analysis, Forecasting, And Optimization Techniques, New Jersey.
  • K. S. Tan, C. Weng, and Y. Zhang, 2009, VaR and CTE criteria for Optimal Quota-Share and Stop-Loss Reinsurance, The North American Actuarial Journal, Volume 13, No: 4.
  • V. R. Young, 2004, Premium Principles, In Encyclopedia of Actuarial Science, vol. 3, ed. J. Teugels and B. Sundt, pp. 1323-31, John Wiley.
There are 13 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Murat Büyükyazıcı

Erbil Taşar This is me

Publication Date March 1, 2011
Published in Issue Year 2011 Volume: 4 Issue: 1

Cite

IEEE M. Büyükyazıcı and E. Taşar, “Monte Carlo stokastik optimizasyonu ile optimal saklama payı seviyesi hesabı”, JSSA, vol. 4, no. 1, pp. 1–8, 2011.