Research Article
BibTex RIS Cite

Production of Self-Cleaning Laminate Surfaces with Antimicrobial Effect

Year 2021, Volume: 2 Issue: 1, 68 - 76, 21.06.2021
https://doi.org/10.5281/zenodo.4955016

Abstract

Sn and Fe doped TiO2 nanoparticle sols having a mean particle size of 15 nm have been successfully synthesized via a sol-gel method and their absorption behavior were determined. Effects of different types of acids and acid/precursor mol ratio on particle size were investigated. Results indicate that photocatalytic performance decreases as the particle size increases and there is an optimum %wt value of doping. Synthesized sols were also applied as a coating on lignocellulosic industrial materials such as high density (HDF) melamine faced laminate floorings and their self cleaning properties and anti-microbial efficiencies were evaluated. In Figure A Self-cleaning properties of doped-TiO2 nanoparticle coated surfaces against different types of pollutants were observed as %80,1 more efficient against Rhodamine B dye, %89,9 against Methylene Blue dye.

References

  • https://www.thespruce.com/what-is-laminate-flooring-1821619, last access: 04.03.2021
  • NALFA Standards Publication LF 01-2003 Published by the North American LaminateFlooring Association © 2003. Product Standards - North American Laminate Floor Association, pp.1-27.
  • L. Hu, S. Lyu, F. Fu, J. Huang and S. Wang. 2015. “Preparation and properties of multifunctional thermochromic energy-storage wood materials,” Journal of Materials Science, vol.51, No.5 pp. 2716-2726. https://doi.org/10.1007/s10853-015-9585-9
  • W. Yingke, L. Yiping, L. Juan, C. Liwei, H. Shilin, and T. Xuelin, 2020. “Fast self-healing superhydrophobic surfaces enabled by biomimetic wax regeneration” Chemical Engineering Journal, vol. 390, pages. 124311. https://doi.org/10.1016/j.cej.2020.124311
  • C. Jia, Y. Zhang, J. Cui and L. Gan, 2019. “The Antibacterial Properties and Safety of a Nanoparticle-Coated Parquet Floor,” Coatings, Vol.9, No.6 pp. 403. https://doi.org/10.3390/coatings9060403
  • R.I. Adams, S. Bhangar, K.C. Dannemiller, J.A. Eisen, N. Fierer, J.A. Gilbert, 2016. “Ten questions concerning the microbiomes of buildings,” Building and Environment, vol. 109, pp. 224-34. https://doi.org/10.1016/j.buildenv.2016.09.001
  • A. Suzuki, Y. Namba, M. Matsuura, A. Horisawa, 1984. “Bacterial contamination of floors and other surfaces in operating rooms: a five-year survey,” International Journal of Hygiene and Environmental Health, vol. 93, pp. 559-66. https://doi.org/10.1017/s002217240006513x
  • W. Whyte, W.M. Whyte, S. Blake, G. Green, 2014. “Dispersion of microbes from floors when walking in ventilated rooms,” International Journal of Ventilation, vol. 12, pp. 271-84. https://doi.org/10.1080/14733315.2013.11684022
  • J.F. Meadow, A.E. Altrichter, S.W. Kembel, J. Kline, G. Mhuireach, M. Moriyama, 2014. “Indoor airborne bacterial communities are influenced by ventilation, occupancy, and outdoor air source,” Indoor Air, vol. 24, pp. 41-8. https://doi.org/10.1111/ina.12047
  • S. Lax, D.P. Smith, 2014. “Longitudinal analysis of microbial interaction between humans and the indoor environment,” Science, vol. 345, pp. 1048-52. https://doi.org/10.1126/science.1254529
  • J.A. Bernstein, N. Alexis, H. Bacchus, I.L. Bernstein, P. Fritz, E. Horner, N. Li, S. Mason, A. Nel, J. Oullette, K. Reijula, T. Reponen, J. Seltzer, A. Smith, S.M. Tarlo, 2008. “The health effects of nonindustrial indoor air pollution,” Journal of Allergy and Clinical Immunology, Vol. 121, pp. 585-591. https://doi.org/10.1016/j.jaci.2007.10.045
  • EPA's Office of Research and Development's "Total Exposure Assessment Methodology (TEAM) Study" (Volumes I through IV, completed in 1985).
  • T. Ros-Dosdá, I. Celades, L., Vilalta, P. Fullana-i-Palmer and E. Monfort, 2019. “Environmental comparison of indoor floor coverings,” Science of The Total Environment, vol.693, pages. 133519. https://doi.org/10.1016/j.scitotenv.2019.07.325
  • L. Znaidi, R. Seraphimova, J.F. Bocquet, C. Colbeau-Justin, C. Pommier, 2001. “A semi-continuous process for the synthesis of nanosize TiO2 powders and their use as photocatalysts,” Materials Research Bulletin, vol. 36, no. 5-6, pp. 811-825. https://doi.org/10.1016/S0025-5408(00)00482-7
  • R. Yuan, B. Zhou, D. Hua, C. Shi, L. Ma, 2014. “Effect of metal-ion doping on the characteristics and photocatalytic activity of TiO2 nanotubes for the removal of toluene from water,” Water Science & Technology, vol. 69, no.8 pp. 1697-1704. https://doi.org/10.2166/wst.2014.071
  • G. Yang, Z. Jiang, H. Shi, T. Xiao, Z. Yan, 2010. “Preparation of highly visible-light active N-doped TiO2 photocatalyst,” Journal of Materials Chemistry, vol. 20, pp. 5301-5309. https://doi.org/10.1039/C0JM00376J
  • J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, D.W. Bahnemann, 2014. “Understanding TiO2 Photocatalysis: Mechanisms and Materials,” Chemical Reviews, vol. 114, pp. 9919-9986. https://doi.org/10.1021/cr5001892
  • T. Matsunaga, R. Tomoda, T. Nakajima, H. Wake, 1985. “Photoelectrochemical sterilization of microbial cells by semiconductor powders,” Fems Microbiology Letters, Vol 29, pp. 211-214. https://doi.org/10.1111/j.1574-6968.1985.tb00864.x
  • A.K. Benabbou, Z. Derriche, C. Felix, P. Lejeune, C. Guillard, 2007. “Photocatalytic inactivation of Escherichia coli: Effect of concentration of TiO2 and microorganism, nature and intensity of UV irradiation,” Applied Catalysis B: Environmental, Vol 76, pp. 257-263. https://doi.org/10.1016/j.apcatb.2007.05.026
  • S. Pigeot-Remy, F. Simonet, E. Errazuriz-Cerda, J.C. Lazzaroni, D. Atlan, C. Guillard, 2011. “Photocatalysis and disinfection of water: Identification of potential bacterial targets,” Applied Catalysis B: Environmental, Vol 104, pp. 390-398 https://doi.org/10.1016/j.apcatb.2011.03.001

Kendi Kendini Temizleme Özelliğine Sahip Antimikrobiyal Etki Gösteren Laminat Yüzeylerinin Eldesi

Year 2021, Volume: 2 Issue: 1, 68 - 76, 21.06.2021
https://doi.org/10.5281/zenodo.4955016

Abstract

Gelişen teknoloji ile birlikte mevcut malzemelerde sürekli olarak iyileştirme ve geliştirme ihtiyacı oluşmaktadır. Geçmişte, laminat parke ürünlerinden beklenen özellikler, genleşme katsayılarının düşük olması, yüksek dayanım göstermesi, aşınma ve su direncinin yüksek olması vb. mekanik mukavemetlerini iyileştirmek iken, günümüzde bu özelliklere ek olarak antibakteriyel aktivitesinin yüksek olması, kolay temizlenebilir veya kendi kendini temizleme özelliğinin bulunması, yangına karşı yüksek direnç göstermesi, foto-kromik veya termo-krom yüzeye sahip olması, ses bariyeri özelliğinin bulunması vb. özellikler aranmaktadır. Yapılan araştırmalar; insanların zamanlarının %85'inden fazlasını kapalı alanlarda geçirdiğini dolayısıyla kapalı alanlarda kullanılan malzemelerin kalitesinin yaşam kalitesini yakından etkilediğini bildirmektedir. Ayrıca olası pandemi koşulları düşünüldüğünde kapalı alanlarda geçirilen zaman diliminin artması nedeniyle kendi kendine temizlenebilen ve antimikrobiyal aktivite gösteren yüzeylerin iç mekanlarda kullanımının hayati öneme sahip olduğu söylenebilir. Yapılan çalışma sonucunda görünür ışıkta kendi kendini temizleyebilen ve antimikrobiyal etki gösteren fonksiyonel yüzey çözeltileri elde edilmiştir. Bu amaç doğrultusunda sentezlenen nanopartiküllerin aktivasyon enerjisi, katkılama ile azaltılmış ve absorpsiyon spektrumu ışığın görünür bölgesine doğru kaydırılmıştır. Ortalama partikül boyutu 15 nm olan Sn ve Fe katkılı TiO2 nanopartikül solları bir sol-jel yöntemi ile başarıyla sentezlenmiş ve absorpsiyon davranışları belirlenmiştir. Farklı asit türlerinin ve asit / başlatıcı mol oranının partikül boyutu üzerindeki etkileri araştırılmıştır. Sentezlenen soller yüksek yoğunluklu (HDF) melamin kaplı laminat parkeler gibi lignoselülozik endüstriyel malzemeler üzerine kaplama olarak uygulanmış ve kendi kendini temizleme özellikleri ve antimikrobiyal etkinlikleri değerlendirilmiştir.

References

  • https://www.thespruce.com/what-is-laminate-flooring-1821619, last access: 04.03.2021
  • NALFA Standards Publication LF 01-2003 Published by the North American LaminateFlooring Association © 2003. Product Standards - North American Laminate Floor Association, pp.1-27.
  • L. Hu, S. Lyu, F. Fu, J. Huang and S. Wang. 2015. “Preparation and properties of multifunctional thermochromic energy-storage wood materials,” Journal of Materials Science, vol.51, No.5 pp. 2716-2726. https://doi.org/10.1007/s10853-015-9585-9
  • W. Yingke, L. Yiping, L. Juan, C. Liwei, H. Shilin, and T. Xuelin, 2020. “Fast self-healing superhydrophobic surfaces enabled by biomimetic wax regeneration” Chemical Engineering Journal, vol. 390, pages. 124311. https://doi.org/10.1016/j.cej.2020.124311
  • C. Jia, Y. Zhang, J. Cui and L. Gan, 2019. “The Antibacterial Properties and Safety of a Nanoparticle-Coated Parquet Floor,” Coatings, Vol.9, No.6 pp. 403. https://doi.org/10.3390/coatings9060403
  • R.I. Adams, S. Bhangar, K.C. Dannemiller, J.A. Eisen, N. Fierer, J.A. Gilbert, 2016. “Ten questions concerning the microbiomes of buildings,” Building and Environment, vol. 109, pp. 224-34. https://doi.org/10.1016/j.buildenv.2016.09.001
  • A. Suzuki, Y. Namba, M. Matsuura, A. Horisawa, 1984. “Bacterial contamination of floors and other surfaces in operating rooms: a five-year survey,” International Journal of Hygiene and Environmental Health, vol. 93, pp. 559-66. https://doi.org/10.1017/s002217240006513x
  • W. Whyte, W.M. Whyte, S. Blake, G. Green, 2014. “Dispersion of microbes from floors when walking in ventilated rooms,” International Journal of Ventilation, vol. 12, pp. 271-84. https://doi.org/10.1080/14733315.2013.11684022
  • J.F. Meadow, A.E. Altrichter, S.W. Kembel, J. Kline, G. Mhuireach, M. Moriyama, 2014. “Indoor airborne bacterial communities are influenced by ventilation, occupancy, and outdoor air source,” Indoor Air, vol. 24, pp. 41-8. https://doi.org/10.1111/ina.12047
  • S. Lax, D.P. Smith, 2014. “Longitudinal analysis of microbial interaction between humans and the indoor environment,” Science, vol. 345, pp. 1048-52. https://doi.org/10.1126/science.1254529
  • J.A. Bernstein, N. Alexis, H. Bacchus, I.L. Bernstein, P. Fritz, E. Horner, N. Li, S. Mason, A. Nel, J. Oullette, K. Reijula, T. Reponen, J. Seltzer, A. Smith, S.M. Tarlo, 2008. “The health effects of nonindustrial indoor air pollution,” Journal of Allergy and Clinical Immunology, Vol. 121, pp. 585-591. https://doi.org/10.1016/j.jaci.2007.10.045
  • EPA's Office of Research and Development's "Total Exposure Assessment Methodology (TEAM) Study" (Volumes I through IV, completed in 1985).
  • T. Ros-Dosdá, I. Celades, L., Vilalta, P. Fullana-i-Palmer and E. Monfort, 2019. “Environmental comparison of indoor floor coverings,” Science of The Total Environment, vol.693, pages. 133519. https://doi.org/10.1016/j.scitotenv.2019.07.325
  • L. Znaidi, R. Seraphimova, J.F. Bocquet, C. Colbeau-Justin, C. Pommier, 2001. “A semi-continuous process for the synthesis of nanosize TiO2 powders and their use as photocatalysts,” Materials Research Bulletin, vol. 36, no. 5-6, pp. 811-825. https://doi.org/10.1016/S0025-5408(00)00482-7
  • R. Yuan, B. Zhou, D. Hua, C. Shi, L. Ma, 2014. “Effect of metal-ion doping on the characteristics and photocatalytic activity of TiO2 nanotubes for the removal of toluene from water,” Water Science & Technology, vol. 69, no.8 pp. 1697-1704. https://doi.org/10.2166/wst.2014.071
  • G. Yang, Z. Jiang, H. Shi, T. Xiao, Z. Yan, 2010. “Preparation of highly visible-light active N-doped TiO2 photocatalyst,” Journal of Materials Chemistry, vol. 20, pp. 5301-5309. https://doi.org/10.1039/C0JM00376J
  • J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, D.W. Bahnemann, 2014. “Understanding TiO2 Photocatalysis: Mechanisms and Materials,” Chemical Reviews, vol. 114, pp. 9919-9986. https://doi.org/10.1021/cr5001892
  • T. Matsunaga, R. Tomoda, T. Nakajima, H. Wake, 1985. “Photoelectrochemical sterilization of microbial cells by semiconductor powders,” Fems Microbiology Letters, Vol 29, pp. 211-214. https://doi.org/10.1111/j.1574-6968.1985.tb00864.x
  • A.K. Benabbou, Z. Derriche, C. Felix, P. Lejeune, C. Guillard, 2007. “Photocatalytic inactivation of Escherichia coli: Effect of concentration of TiO2 and microorganism, nature and intensity of UV irradiation,” Applied Catalysis B: Environmental, Vol 76, pp. 257-263. https://doi.org/10.1016/j.apcatb.2007.05.026
  • S. Pigeot-Remy, F. Simonet, E. Errazuriz-Cerda, J.C. Lazzaroni, D. Atlan, C. Guillard, 2011. “Photocatalysis and disinfection of water: Identification of potential bacterial targets,” Applied Catalysis B: Environmental, Vol 104, pp. 390-398 https://doi.org/10.1016/j.apcatb.2011.03.001
There are 20 citations in total.

Details

Primary Language Turkish
Subjects Nanotechnology
Journal Section Research Articles
Authors

Ahmet Gençer 0000-0002-4961-966X

Gül Merve Gençer 0000-0001-7087-609X

Murat Akarsu 0000-0003-2053-2197

Ertuğrul Arpaç 0000-0001-8645-6786

Publication Date June 21, 2021
Submission Date May 30, 2021
Acceptance Date June 14, 2021
Published in Issue Year 2021 Volume: 2 Issue: 1

Cite

APA Gençer, A., Gençer, G. M., Akarsu, M., Arpaç, E. (2021). Kendi Kendini Temizleme Özelliğine Sahip Antimikrobiyal Etki Gösteren Laminat Yüzeylerinin Eldesi. Journal of Science, Technology and Engineering Research, 2(1), 68-76. https://doi.org/10.5281/zenodo.4955016
AMA Gençer A, Gençer GM, Akarsu M, Arpaç E. Kendi Kendini Temizleme Özelliğine Sahip Antimikrobiyal Etki Gösteren Laminat Yüzeylerinin Eldesi. Journal of Science, Technology and Engineering Research. June 2021;2(1):68-76. doi:10.5281/zenodo.4955016
Chicago Gençer, Ahmet, Gül Merve Gençer, Murat Akarsu, and Ertuğrul Arpaç. “Kendi Kendini Temizleme Özelliğine Sahip Antimikrobiyal Etki Gösteren Laminat Yüzeylerinin Eldesi”. Journal of Science, Technology and Engineering Research 2, no. 1 (June 2021): 68-76. https://doi.org/10.5281/zenodo.4955016.
EndNote Gençer A, Gençer GM, Akarsu M, Arpaç E (June 1, 2021) Kendi Kendini Temizleme Özelliğine Sahip Antimikrobiyal Etki Gösteren Laminat Yüzeylerinin Eldesi. Journal of Science, Technology and Engineering Research 2 1 68–76.
IEEE A. Gençer, G. M. Gençer, M. Akarsu, and E. Arpaç, “Kendi Kendini Temizleme Özelliğine Sahip Antimikrobiyal Etki Gösteren Laminat Yüzeylerinin Eldesi”, Journal of Science, Technology and Engineering Research, vol. 2, no. 1, pp. 68–76, 2021, doi: 10.5281/zenodo.4955016.
ISNAD Gençer, Ahmet et al. “Kendi Kendini Temizleme Özelliğine Sahip Antimikrobiyal Etki Gösteren Laminat Yüzeylerinin Eldesi”. Journal of Science, Technology and Engineering Research 2/1 (June 2021), 68-76. https://doi.org/10.5281/zenodo.4955016.
JAMA Gençer A, Gençer GM, Akarsu M, Arpaç E. Kendi Kendini Temizleme Özelliğine Sahip Antimikrobiyal Etki Gösteren Laminat Yüzeylerinin Eldesi. Journal of Science, Technology and Engineering Research. 2021;2:68–76.
MLA Gençer, Ahmet et al. “Kendi Kendini Temizleme Özelliğine Sahip Antimikrobiyal Etki Gösteren Laminat Yüzeylerinin Eldesi”. Journal of Science, Technology and Engineering Research, vol. 2, no. 1, 2021, pp. 68-76, doi:10.5281/zenodo.4955016.
Vancouver Gençer A, Gençer GM, Akarsu M, Arpaç E. Kendi Kendini Temizleme Özelliğine Sahip Antimikrobiyal Etki Gösteren Laminat Yüzeylerinin Eldesi. Journal of Science, Technology and Engineering Research. 2021;2(1):68-76.

Studies published in the journal are licensed under a

Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 (CC BY-NC-ND 4.0) International License. 

by-nc-nd.png

Free counters!