Research Article
BibTex RIS Cite

Evaluating the Educational Effectiveness of Radar Systems Laboratory Sessions in the Undergraduate Curriculum

Year 2024, Volume: 5 Issue: 2, 186 - 198
https://doi.org/10.53525/jster.1571904

Abstract

Introductory courses regarding radar technologies are very popular in the undergraduate curriculum of many electrical and electronics engineering departments. Hands-on experience is an essential part for understanding the theoretical concepts given in lectures. In most cases, it is not affordable for universities to acquire experimental radar systems, especially those in developing countries. This paper presents a detailed description of a cost-effective, easy-to-deploy radar system laboratory sessions and measures the educational effectiveness of the proposed material. The provided radar models can be used in teaching undergraduate students the working principles of frequency modulated continuous wave (FMCW) radar systems, as well as assisting graduate students in their research activities. The effectiveness of the laboratory sessions is measured thoroughly via qualitative and quantitative methods based on the proposed learning process and students’ success. The results show that the lab sessions have increased the students' understanding of the topics covered within the course, and the students' general perception is positive.

References

  • [1] Sianez, D. M., Fugère, M. A., & Lennon, C. A. (2010). Technology and engineering education students’ perceptions of hands-on and hands-off activities. Research in Science & Technological Education, 28(3), 291-299.
  • [2] Vásquez-Carbonell, M. (2022). A systematic literature review of augmented reality in engineering education: Hardware, software, student motivation & development recommendations. Digital Education Review, 41, 249-267.
  • [3] Wankat, P. C., & Oreovicz, F. S. (2005). Teaching prospective engineering faculty how to teach. International Journal of Engineering Education, 21(5), 925.
  • [4] Gokdogan, B. Y., Coruk, R. B., Benzaghta, M., & Kara, A. (2023). A hybrid-flipped classroom approach: Students’ perception and performance assessment. Ingeniería e Investigación, 43(3), 16.
  • [5] Singh, J., Perera, V., Magana, A. J., Newell, B., Wei-Kocsis, J., Seah, Y. Y., & Xie, C. (2022). Using machine learning to predict engineering technology students’ success with computer-aided design. Computer Applications in Engineering Education, 30(3), 852-862.
  • [6] Coruk, R. B., Yalcinkaya, B., & Kara, A. (2020). On the design and effectiveness of simulink-based educational material for a communication systems course. Computer Applications in Engineering Education, 28(6), 1641-1651.
  • [7] Coruk, R. B., Gokdogan, B. Y., Benzaghta, M., & Kara, A. (2022). On the classification of modulation schemes using higher order statistics and support vector machines. Wireless Personal Communications, 126(2), 1363-1381.
  • [8] Diewald, A. R., Wallrath, P., & Müller, S. (2018, September). Five radar sessions for university education. In 2018 48th European Microwave Conference (EuMC) (pp. 456-459). IEEE.
  • [9] Poveda-García, M., López-Pastor, J. A., Gómez-Alcaraz, A., Martínez-Tamargo, L. M., Pérez-Buitrago, M., Martínez-Sala, A., & Gómez-Tornero, J. L. (2018, September). Amplitude-monopulse radar lab using WiFi cards. In 2018 48th European Microwave Conference (EuMC) (pp. 464-467). IEEE.
  • [10] Chilson, P. B., & Yeary, M. B. (2011). Hands-on learning modules for interdisciplinary environments: An example with a focus on weather radar applications. IEEE Transactions on Education, 55(2), 238-247.
  • [11] Ali, T., & Burki, J. (2016, December). Design and development of X-band FMCW based lab model of Synthetic Aperture Radar (SAR) for applications in engineering education. In 2016 19th International Multi-Topic Conference (INMIC) (pp. 1-6). IEEE.
  • [12] Berg, J., Müller, S., & Diewald, A. R. (2022). Far-and near-range measurements with a synthetic aperture radar for educational purposes and comparison of two different signal processing algorithms. Advances in Radio Science, 19, 221-232.
  • [13] Burki, J., Ali, T., & Arshad, S. (2013, December). Vector network analyzer (VNA) based synthetic aperture radar (SAR) imaging. In INMIC (pp. 207-212). IEEE.
  • [14] Blomerus, N. D., Cilliers, J. E., & de Villiers, J. P. (2020, April). Development and testing of a low-cost audio-based ISAR imaging and machine learning system for radar education. In 2020 IEEE International Radar Conference (RADAR) (pp. 766-771). IEEE.
  • [15] Charvat, G. L., & Kempel, L. C. (2006). Synthetic aperture radar imaging using a unique approach to frequency-modulated continuous-wave radar design. IEEE Antennas and Propagation Magazine, 48(1), 171-177.
  • [16] Chizh, M., Pietrelli, A., Ferrara, V., & Zhuravlev, A. (2017, November). Development of embedded and user-side software for interactive setup of a frequency-modulated continuous wave ground penetrating radar dedicated to educational purposes. In 2017 IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems (COMCAS) (pp. 1-5). IEEE.
  • [17] Charvat, G. L., Fenn, A. J., & Perry, B. T. (2012, May). The MIT IAP radar course: Build a small radar system capable of sensing range, Doppler, and synthetic aperture (SAR) imaging. In 2012 IEEE Radar Conference (pp. 0138-0144). IEEE.
  • [18] Luttamaguzi, J., Eslami, A., Brooks, D. M., Sheybani, E., Javidi, G., & Gabriel, P. M. (2017). Using simulations and computational analyses to study a frequency-modulated continuous-wave radar. International Journal of Interdisciplinary Telecommunications and Networking (IJITN), 9(1), 38-51.
  • [19] Perry, B. T., Levy, T., Bell, P., Davis, S., Kolodziej, K., O'Donoughue, N., & Herd, J. S. (2013, October). Low-cost phased array radar for applications in engineering education. In 2013 IEEE International Symposium on Phased Array Systems and Technology (pp. 416-420). IEEE.
  • [20] Campbell, R. L., & Pejcinovic, B. (2015, September). Project-based RF/microwave education. In 2015 10th European Microwave Integrated Circuits Conference (EuMIC) (pp. 456-459). IEEE.
  • [21] Hum, S. V., & Okoniewski, M. (2007). A low-cost hands-on laboratory for an undergraduate microwave course. IEEE Antennas and Propagation Magazine, 49(3), 175-184.
  • [22] Robistow, B., Newman, R., DePue, T. H., Banavar, M. K., Barry, D., Curtis, P., & Spanias, A. (2017, March). Reflections: An eModule for echolocation education. In 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 1562-1566). IEEE.
  • [23] Pereira Júnior, E. L., Moreira, M. Â. L., Portella, A. G., de Azevedo Junior, C. M., de Araújo Costa, I. P., Fávero, L. P., & dos Santos, M. (2023). Systematic literature review on virtual electronics laboratories in education: Identifying the need for an aeronautical radar simulator. Electronics, 12(12), 2573.
  • [24] Bonefacic, D., & Jancula, J. (2006, June). Laboratory model of a monopulse radar tracking system. In Proceedings ELMAR 2006 (pp. 227-230). IEEE.
  • [25] Bonefačić, D., Jančula, J., & Majurec, N. (2007). Model of a monopulse radar tracking system for student laboratory. Radioengineering, 16(3), 63.
  • [26] Saratayon, P., Pirom, V., & Saelim, T. (2013). RSSI monopulse azimuth tracking demonstration using wideband personal area network device. International Journal of Engineering Research and Technology, 2(9), 663-670.
  • [27] Abdulrazigh, M. Y., Uzundurukan, E., & Kara, A. (2018, May). Analysis of measurement instrumentation delay in modular experimental radar at C band. In 2018 26th Signal Processing and Communications Applications Conference (SIU) (pp. 1-4). IEEE.
  • [28] Doğanay, B., Arslan, M., Demir, E. C., Çoruk, R. B., Gökdoğan, B. Y., & Aydin, E. (2022, May). UAV Detection and Ranging with 77-81 GHz FMCW Radar. In 2022 30th Signal Processing and Communications Applications Conference (SIU) (pp. 1-4). IEEE.
  • [29] Texas Instruments. (2017). AWR1642 single-chip 77-and 79-GHz FMCW radar sensor. Datasheet AWR1642, Rev. 60.
  • [30] Atılım. (2020). Radar systems [Video list]. YouTube. https://youtu.be/ImRsq5WwrhM?si=sA4b2Oq86yuGdSNs (accessed on 27 February 2024).
  • [31] Mahafza, B. R. (2017). Introduction to radar analysis. CRC Press.
  • [32] Dham, V. (2017). Programming chirp parameters in TI radar devices. Application Report SWRA553, Texas Instruments, 1457.
  • [33] Gökdoğan, B. Y., Çoruk, R. B., Aydın, E., & Kara, A. 2D Millimeter-Wave SAR Imaging with Automotive Radar. Journal of Science, Technology and Engineering Research, 5(1), 68-77.

Lisans Müfredatında Radar Sistemleri Laboratuvar Oturumlarının Eğitimsel Etkinliğinin Değerlendirilmesi

Year 2024, Volume: 5 Issue: 2, 186 - 198
https://doi.org/10.53525/jster.1571904

Abstract

Radar teknolojilerine ilişkin giriş dersleri, birçok elektrik ve elektronik mühendisliği bölümünün lisans müfredatında oldukça popülerdir. Derslerde verilen teorik kavramları anlamak için uygulamalı deneyim olmazsa olmazdır. Çoğu durumda, özellikle gelişmekte olan ülkelerdeki üniversiteler için deneysel radar sistemleri edinmek uygun maliyetli değildir. Bu makale, uygun maliyetli, erişimi kolay radar sistemi laboratuvar oturumlarının ayrıntılı bir açıklamasını sunar ve önerilen materyalin eğitimsel etkinliğini ölçer. Sağlanan radar modelleri, lisans öğrencilerine frekans modüleli sürekli dalga (FMCW) radar sistemlerinin çalışma prensiplerini öğretmek ve lisansüstü öğrencilere araştırma faaliyetlerinde yardımcı olmak için kullanılabilir. Laboratuvar oturumlarının etkinliği, önerilen öğrenme süreci ve öğrencilerin başarısına dayalı nitel ve nicel yöntemlerle kapsamlı bir şekilde ölçülür. Sonuçlar, laboratuvar oturumlarının öğrencilerin ders kapsamında ele alınan konulara ilişkin anlayışlarını artırdığını ve öğrencilerin genel algısının olumlu olduğunu göstermektedir.

References

  • [1] Sianez, D. M., Fugère, M. A., & Lennon, C. A. (2010). Technology and engineering education students’ perceptions of hands-on and hands-off activities. Research in Science & Technological Education, 28(3), 291-299.
  • [2] Vásquez-Carbonell, M. (2022). A systematic literature review of augmented reality in engineering education: Hardware, software, student motivation & development recommendations. Digital Education Review, 41, 249-267.
  • [3] Wankat, P. C., & Oreovicz, F. S. (2005). Teaching prospective engineering faculty how to teach. International Journal of Engineering Education, 21(5), 925.
  • [4] Gokdogan, B. Y., Coruk, R. B., Benzaghta, M., & Kara, A. (2023). A hybrid-flipped classroom approach: Students’ perception and performance assessment. Ingeniería e Investigación, 43(3), 16.
  • [5] Singh, J., Perera, V., Magana, A. J., Newell, B., Wei-Kocsis, J., Seah, Y. Y., & Xie, C. (2022). Using machine learning to predict engineering technology students’ success with computer-aided design. Computer Applications in Engineering Education, 30(3), 852-862.
  • [6] Coruk, R. B., Yalcinkaya, B., & Kara, A. (2020). On the design and effectiveness of simulink-based educational material for a communication systems course. Computer Applications in Engineering Education, 28(6), 1641-1651.
  • [7] Coruk, R. B., Gokdogan, B. Y., Benzaghta, M., & Kara, A. (2022). On the classification of modulation schemes using higher order statistics and support vector machines. Wireless Personal Communications, 126(2), 1363-1381.
  • [8] Diewald, A. R., Wallrath, P., & Müller, S. (2018, September). Five radar sessions for university education. In 2018 48th European Microwave Conference (EuMC) (pp. 456-459). IEEE.
  • [9] Poveda-García, M., López-Pastor, J. A., Gómez-Alcaraz, A., Martínez-Tamargo, L. M., Pérez-Buitrago, M., Martínez-Sala, A., & Gómez-Tornero, J. L. (2018, September). Amplitude-monopulse radar lab using WiFi cards. In 2018 48th European Microwave Conference (EuMC) (pp. 464-467). IEEE.
  • [10] Chilson, P. B., & Yeary, M. B. (2011). Hands-on learning modules for interdisciplinary environments: An example with a focus on weather radar applications. IEEE Transactions on Education, 55(2), 238-247.
  • [11] Ali, T., & Burki, J. (2016, December). Design and development of X-band FMCW based lab model of Synthetic Aperture Radar (SAR) for applications in engineering education. In 2016 19th International Multi-Topic Conference (INMIC) (pp. 1-6). IEEE.
  • [12] Berg, J., Müller, S., & Diewald, A. R. (2022). Far-and near-range measurements with a synthetic aperture radar for educational purposes and comparison of two different signal processing algorithms. Advances in Radio Science, 19, 221-232.
  • [13] Burki, J., Ali, T., & Arshad, S. (2013, December). Vector network analyzer (VNA) based synthetic aperture radar (SAR) imaging. In INMIC (pp. 207-212). IEEE.
  • [14] Blomerus, N. D., Cilliers, J. E., & de Villiers, J. P. (2020, April). Development and testing of a low-cost audio-based ISAR imaging and machine learning system for radar education. In 2020 IEEE International Radar Conference (RADAR) (pp. 766-771). IEEE.
  • [15] Charvat, G. L., & Kempel, L. C. (2006). Synthetic aperture radar imaging using a unique approach to frequency-modulated continuous-wave radar design. IEEE Antennas and Propagation Magazine, 48(1), 171-177.
  • [16] Chizh, M., Pietrelli, A., Ferrara, V., & Zhuravlev, A. (2017, November). Development of embedded and user-side software for interactive setup of a frequency-modulated continuous wave ground penetrating radar dedicated to educational purposes. In 2017 IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems (COMCAS) (pp. 1-5). IEEE.
  • [17] Charvat, G. L., Fenn, A. J., & Perry, B. T. (2012, May). The MIT IAP radar course: Build a small radar system capable of sensing range, Doppler, and synthetic aperture (SAR) imaging. In 2012 IEEE Radar Conference (pp. 0138-0144). IEEE.
  • [18] Luttamaguzi, J., Eslami, A., Brooks, D. M., Sheybani, E., Javidi, G., & Gabriel, P. M. (2017). Using simulations and computational analyses to study a frequency-modulated continuous-wave radar. International Journal of Interdisciplinary Telecommunications and Networking (IJITN), 9(1), 38-51.
  • [19] Perry, B. T., Levy, T., Bell, P., Davis, S., Kolodziej, K., O'Donoughue, N., & Herd, J. S. (2013, October). Low-cost phased array radar for applications in engineering education. In 2013 IEEE International Symposium on Phased Array Systems and Technology (pp. 416-420). IEEE.
  • [20] Campbell, R. L., & Pejcinovic, B. (2015, September). Project-based RF/microwave education. In 2015 10th European Microwave Integrated Circuits Conference (EuMIC) (pp. 456-459). IEEE.
  • [21] Hum, S. V., & Okoniewski, M. (2007). A low-cost hands-on laboratory for an undergraduate microwave course. IEEE Antennas and Propagation Magazine, 49(3), 175-184.
  • [22] Robistow, B., Newman, R., DePue, T. H., Banavar, M. K., Barry, D., Curtis, P., & Spanias, A. (2017, March). Reflections: An eModule for echolocation education. In 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 1562-1566). IEEE.
  • [23] Pereira Júnior, E. L., Moreira, M. Â. L., Portella, A. G., de Azevedo Junior, C. M., de Araújo Costa, I. P., Fávero, L. P., & dos Santos, M. (2023). Systematic literature review on virtual electronics laboratories in education: Identifying the need for an aeronautical radar simulator. Electronics, 12(12), 2573.
  • [24] Bonefacic, D., & Jancula, J. (2006, June). Laboratory model of a monopulse radar tracking system. In Proceedings ELMAR 2006 (pp. 227-230). IEEE.
  • [25] Bonefačić, D., Jančula, J., & Majurec, N. (2007). Model of a monopulse radar tracking system for student laboratory. Radioengineering, 16(3), 63.
  • [26] Saratayon, P., Pirom, V., & Saelim, T. (2013). RSSI monopulse azimuth tracking demonstration using wideband personal area network device. International Journal of Engineering Research and Technology, 2(9), 663-670.
  • [27] Abdulrazigh, M. Y., Uzundurukan, E., & Kara, A. (2018, May). Analysis of measurement instrumentation delay in modular experimental radar at C band. In 2018 26th Signal Processing and Communications Applications Conference (SIU) (pp. 1-4). IEEE.
  • [28] Doğanay, B., Arslan, M., Demir, E. C., Çoruk, R. B., Gökdoğan, B. Y., & Aydin, E. (2022, May). UAV Detection and Ranging with 77-81 GHz FMCW Radar. In 2022 30th Signal Processing and Communications Applications Conference (SIU) (pp. 1-4). IEEE.
  • [29] Texas Instruments. (2017). AWR1642 single-chip 77-and 79-GHz FMCW radar sensor. Datasheet AWR1642, Rev. 60.
  • [30] Atılım. (2020). Radar systems [Video list]. YouTube. https://youtu.be/ImRsq5WwrhM?si=sA4b2Oq86yuGdSNs (accessed on 27 February 2024).
  • [31] Mahafza, B. R. (2017). Introduction to radar analysis. CRC Press.
  • [32] Dham, V. (2017). Programming chirp parameters in TI radar devices. Application Report SWRA553, Texas Instruments, 1457.
  • [33] Gökdoğan, B. Y., Çoruk, R. B., Aydın, E., & Kara, A. 2D Millimeter-Wave SAR Imaging with Automotive Radar. Journal of Science, Technology and Engineering Research, 5(1), 68-77.
There are 33 citations in total.

Details

Primary Language English
Subjects Electronic Sensors, Radio Frequency Engineering
Journal Section Research Articles
Authors

Bengisu Yalçınkaya 0000-0003-3644-0692

Mohamed Benzaghta 0000-0002-9927-1649

Remziye Büşra Çoruk 0000-0002-9466-3862

Ali Kara 0000-0002-9739-7619

Publication Date
Submission Date October 22, 2024
Acceptance Date December 3, 2024
Published in Issue Year 2024 Volume: 5 Issue: 2

Cite

APA Yalçınkaya, B., Benzaghta, M., Çoruk, R. B., Kara, A. (n.d.). Evaluating the Educational Effectiveness of Radar Systems Laboratory Sessions in the Undergraduate Curriculum. Journal of Science, Technology and Engineering Research, 5(2), 186-198. https://doi.org/10.53525/jster.1571904
AMA Yalçınkaya B, Benzaghta M, Çoruk RB, Kara A. Evaluating the Educational Effectiveness of Radar Systems Laboratory Sessions in the Undergraduate Curriculum. Journal of Science, Technology and Engineering Research. 5(2):186-198. doi:10.53525/jster.1571904
Chicago Yalçınkaya, Bengisu, Mohamed Benzaghta, Remziye Büşra Çoruk, and Ali Kara. “Evaluating the Educational Effectiveness of Radar Systems Laboratory Sessions in the Undergraduate Curriculum”. Journal of Science, Technology and Engineering Research 5, no. 2 n.d.: 186-98. https://doi.org/10.53525/jster.1571904.
EndNote Yalçınkaya B, Benzaghta M, Çoruk RB, Kara A Evaluating the Educational Effectiveness of Radar Systems Laboratory Sessions in the Undergraduate Curriculum. Journal of Science, Technology and Engineering Research 5 2 186–198.
IEEE B. Yalçınkaya, M. Benzaghta, R. B. Çoruk, and A. Kara, “Evaluating the Educational Effectiveness of Radar Systems Laboratory Sessions in the Undergraduate Curriculum”, Journal of Science, Technology and Engineering Research, vol. 5, no. 2, pp. 186–198, doi: 10.53525/jster.1571904.
ISNAD Yalçınkaya, Bengisu et al. “Evaluating the Educational Effectiveness of Radar Systems Laboratory Sessions in the Undergraduate Curriculum”. Journal of Science, Technology and Engineering Research 5/2 (n.d.), 186-198. https://doi.org/10.53525/jster.1571904.
JAMA Yalçınkaya B, Benzaghta M, Çoruk RB, Kara A. Evaluating the Educational Effectiveness of Radar Systems Laboratory Sessions in the Undergraduate Curriculum. Journal of Science, Technology and Engineering Research.;5:186–198.
MLA Yalçınkaya, Bengisu et al. “Evaluating the Educational Effectiveness of Radar Systems Laboratory Sessions in the Undergraduate Curriculum”. Journal of Science, Technology and Engineering Research, vol. 5, no. 2, pp. 186-98, doi:10.53525/jster.1571904.
Vancouver Yalçınkaya B, Benzaghta M, Çoruk RB, Kara A. Evaluating the Educational Effectiveness of Radar Systems Laboratory Sessions in the Undergraduate Curriculum. Journal of Science, Technology and Engineering Research. 5(2):186-98.

Studies published in the journal are licensed under a

Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 (CC BY-NC-ND 4.0) International License. 

by-nc-nd.png

Free counters!