Review Article
BibTex RIS Cite

Hydrogen generation from sodium borohydride solutions using different catalysts for the survival of living beings in the long-time space flights

Year 2024, Volume: 5 Issue: 2, 199 - 222, 21.12.2024
https://doi.org/10.53525/jster.1593599

Abstract

Hydrogen (H2), environmentally friendly effective energy carrier with the most advantageous combustion by-products, readily attained from borohydride (NaBH4) with higher hydrogen (H2) generation rates (HGRs) as safer than e other hydrates necessitating the use of various catalysts. The catalysts' performances are major factors in high HGR from NaBH4 regardless of hydrolysis or methanolysis reactions. The HGR is influenced by NaBH4 concentrations, reaction temperature, and the catalyst amounts. Nobel metals e.g., ruthenium (Ru), platinum (Pt), Rhodium (Rh) etc reported as highly effective catalysts for fast H2 production from NaBH4 solutions including ethanol, methanol, and ethylene glycol. Due to shortage and cost considerations of noble metals, transition metal-based catalysts e.g., cobalt (Co), nickel (Ni), and manganese (Mn) have gained great interest for H2 production from NaBH4 hydrolysis/alcoholysis. Metal nanoparticle-based catalysts, and their synthetic and natural polymer composites along with non-metallic catalyst including micro/nanogels, bulk hydrogels, cryogels, and polymeric ionic liquids (PILs) have been employed as catalysts in methanolysis/hydrolysis of NaBH4 to attain lower Ea and high HGR values. Therefore, in this review catalysts whether metal or non-metal used in H2 generation reactions will be surveyed, Moreover, space application of H2 energy systems with their commercial application for future use will be assessed.

References

  • [1]. Abdelhamid, H.N., 2021. A review on hydrogen generation from the hydrolysis of sodium borohydride. Int. J. Hydrogen Energy 46, 726–765. https://doi.org/10.1016/j.ijhydene.2020.09.186
  • [2]. Ai, L., Gao, X., Jiang, J., 2014. In situ synthesis of cobalt stabilized on macroscopic biopolymer hydrogel as economical and recyclable catalyst for hydrogen generation from sodium borohydride hydrolysis. J. Power Sources 257, 213–220. https://doi.org/10.1016/j.jpowsour.2014.01.119
  • [3]. Akdim, O., Chamoun, R., Demirci, U.B., Zaatar, Y., Khoury, A., Miele, P., 2011a. Anchored cobalt film as stable supported catalyst for hydrolysis of sodium borohydride for chemical hydrogen storage. Int. J. Hydrogen Energy 36, 14527–14533. https://doi.org/10.1016/j.ijhydene.2011.07.051
  • [4]. Akdim, O., Demirci, U.B., Miele, P., 2011b. Deactivation and reactivation of cobalt in hydrolysis of sodium borohydride. Int. J. Hydrogen Energy 36, 13669–13675. https://doi.org/10.1016/j.ijhydene.2011.07.125
  • [5]. Akdim, O., Demirci, U.B., Miele, P., 2009. Acetic acid, a relatively green single-use catalyst for hydrogen generation from sodium borohydride. Int. J. Hydrogen Energy 34, 7231–7238. https://doi.org/10.1016/j.ijhydene.2009.06.068
  • [6]. Ali, F., Khan, S.B., Asiri, A.M., 2019. Chitosan coated cellulose cotton fibers as catalyst for the H2 production from NaBH4 methanolysis. Int. J. Hydrogen Energy 44, 4143–4155. https://doi.org/10.1016/j.ijhydene.2018.12.158
  • [7]. Ari, B., Ay, M., Sunol, A.K., Sahiner, N., 2019. Surface-modified carbon black derived from used car tires as alternative, reusable, and regenerable catalysts for H2 release studies from sodium borohydride methanolysis. Int. J. Energy Res. 43, 7159–7172. https://doi.org/10.1002/er.4742
  • [8]. Arzac, G.M., Fernández, A., 2020. Advances in the implementation of PVD-based techniques for the preparation of metal catalysts for the hydrolysis of sodium borohydride. Int. J. Hydrogen Energy 45, 33288–33309. https://doi.org/10.1016/j.ijhydene.2020.09.041
  • [9]. Arzac, G.M., Paladini, M., Godinho, V., Beltrán, A.M., Jiménez de Haro, M.C., Fernández, A., 2018. Strong activation effect on a Ru-Co-C thin film catalyst for the hydrolysis of sodium borohydride. Sci. Rep. 8, 9755. https://doi.org/10.1038/s41598-018-28032-6
  • [10]. Balbay, A., Şahin, Ö., 2014. Hydrogen Production from Sodium Borohydride in Boric Acid-water Mixtures. Energy Sources, Part A Recover. Util. Environ. Eff. 36, 1166–1174. https://doi.org/10.1080/15567036.2011.618818
  • [11]. Balbay, A., Saka, C., 2018a. The effect of the concentration of hydrochloric acid and acetic acid aqueous solution for fast hydrogen production from methanol solution of NaBH4. Int. J. Hydrogen Energy 43, 14265–14272. https://doi.org/10.1016/j.ijhydene.2018.05.131
  • [12]. Balbay, A., Saka, C., 2018b. Semi-methanolysis reaction of potassium borohydride with phosphoric acid for effective hydrogen production. Int. J. Hydrogen Energy 43, 21299–21306. https://doi.org/10.1016/j.ijhydene.2018.09.167
  • [13]. Bartkus, T.P., T’ien, J.S., Sung, C.-J., 2013. A semi-global reaction rate model based on experimental data for the self-hydrolysis kinetics of aqueous sodium borohydride. Int. J. Hydrogen Energy 38, 4024–4033. https://doi.org/10.1016/j.ijhydene.2013.01.041
  • [14]. Baydaroglu, F., Özdemir, E., Hasimoglu, A., 2014. An effective synthesis route for improving the catalytic activity of carbon-supported Co–B catalyst for hydrogen generation through hydrolysis of NaBH4. Int. J. Hydrogen Energy 39, 1516–1522. https://doi.org/10.1016/j.ijhydene.2013.04.111
  • [15]. Boran, A., Erkan, S., Eroglu, I., 2019. Hydrogen generation from solid state NaBH4 by using FeCl3 catalyst for portable proton exchange membrane fuel cell applications. Int. J. Hydrogen Energy 44, 18915–18926. https://doi.org/10.1016/j.ijhydene.2018.11.033
  • [16]. Brack, P., Dann, S.E., Wijayantha, K.G.U., 2015. Heterogeneous and homogenous catalysts for hydrogen generation by hydrolysis of aqueous sodium borohydride (NaBH 4 ) solutions. Energy Sci. Eng. 3, 174–188. https://doi.org/10.1002/ese3.67
  • [17]. Cai, H., Liu, L., Chen, Q., Lu, P., Dong, J., 2016. Ni-polymer nanogel hybrid particles: A new strategy for hydrogen production from the hydrolysis of dimethylamine-borane and sodium borohydride. Energy 99, 129–135. https://doi.org/10.1016/j.energy.2016.01.046
  • [18]. Çakanyildirim, Ç., Guru, M., 2021. Farklı destekler ile hazırlanan sentetik Co-Mn-Pt katalizörünün NaBH4 hidroliz performansı ve kinetik değerlendirmesi. Gazi Üniversitesi Mühendislik Mimar. Fakültesi Derg. 37, 423–438. https://doi.org/10.17341/gazimmfd.877826
  • [19]. Chairam, S., Jarujamrus, P., Amatatongchai, M., 2019. Starch hydrogel-loaded cobalt nanoparticles for hydrogen production from hydrolysis of sodium borohydride. Adv. Nat. Sci. Nanosci. Nanotechnol. 10, 025013. https://doi.org/10.1088/2043-6254/ab23fb
  • [20]. Chen, C.-W., Chen, C.-Y., Huang, Y.-H., 2009. Method of preparing Ru-immobilized polymer-supported catalyst for hydrogen generation from NaBH4 solution. Int. J. Hydrogen Energy 34, 2164–2173. https://doi.org/10.1016/j.ijhydene.2008.12.077
  • [21]. Chen, W., Ouyang, L.Z., Liu, J.W., Yao, X.D., Wang, H., Liu, Z.W., Zhu, M., 2017. Hydrolysis and regeneration of sodium borohydride (NaBH 4 ) – A combination of hydrogen production and storage. J. Power Sources 359, 400–407. https://doi.org/10.1016/j.jpowsour.2017.05.075
  • [22]. Chen, Y., Liu, L., Wang, Y., Kim, H., 2011. Preparation of porous PVDF-NiB capsules as catalytic adsorbents for hydrogen generation from sodium borohydride. Fuel Process. Technol. 92, 1368–1373. https://doi.org/10.1016/j.fuproc.2011.02.019
  • [23]. Chinnappan, A., Chung, W.-J., Kim, H., 2015a. Hypercross-linked microporous polymeric ionic liquid membranes: synthesis, properties and their application in H 2 generation. J. Mater. Chem. A 3, 22960–22968. https://doi.org/10.1039/C5TA06142C
  • [24]. Chinnappan, A., Jadhav, A.H., Puguan, J.M.C., Appiah-Ntiamoah, R., Kim, H., 2015b. Fabrication of ionic liquid/polymer nanoscale networks by electrospinning and chemical cross-linking and their application in hydrogen generation from the hydrolysis of NaBH4. Energy 79, 482–488. https://doi.org/10.1016/j.energy.2014.11.041
  • [25]. Chinnappan, A., Puguan, J.M.C., Chung, W.-J., Kim, H., 2015c. Hydrogen generation from the hydrolysis of sodium borohydride using chemically modified multiwalled carbon nanotubes with pyridinium based ionic liquid and decorated with highly dispersed Mn nanoparticles. J. Power Sources 293, 429–436. https://doi.org/10.1016/j.jpowsour.2015.05.096
  • [26]. Choudhury, Suman Roy, Pillai, J.N., Somaiah, B., Pareta, M., Satvilkar, P., Kumar, A., Negi, P.K., Mahtre, N.N., Choudhury, Suhasini Roy, Verma, V., Dalvi, V., Singh, P.K., Suryawanshi, S.E., Mandal, S.K., n.d. Atmospheric-independent propulsion system for phosphoric acid fuel cell-based submarines with on-board hydrogen generator.
  • [27]. Demir, D.D., Salcı, A., Solmaz, R., 2018. Preparation, characterization and hydrogen production performance of MoPd deposited carbon felt/Mo electrodes. Int. J. Hydrogen Energy 43, 10530–10539. https://doi.org/10.1016/j.ijhydene.2018.01.030
  • [28]. Demirci, S., Yildiz, M., Inger, E., Sahiner, N., 2020. Porous carbon particles as metal-free superior catalyst for hydrogen release from methanolysis of sodium borohydride. Renew. Energy 147, 69–76. https://doi.org/10.1016/j.renene.2019.08.131
  • [29]. Demirci, S., Zekoski, T., Sahiner, N., 2019. The preparation and use of p(2-acrylamido-2-methyl-1-propanesulfonic acid)-tris(dioxa-3,6-heptyl)amine (p(AMPS)-TDA-1) ionic liquid microgel in hydrogen production. Polym. Bull. 76, 1717–1735. https://doi.org/10.1007/s00289-018-2465-0
  • [30]. Demirci, U.B., Akdim, O., Andrieux, J., Hannauer, J., Chamoun, R., Miele, P., 2010. Sodium Borohydride Hydrolysis as Hydrogen Generator: Issues, State of the Art and Applicability Upstream from a Fuel Cell. Fuel Cells 10, 335–350. https://doi.org/10.1002/fuce.200800171
  • [31]. Demirci, U.B., Akdim, O., Miele, P., 2009. Ten-year efforts and a no-go recommendation for sodium borohydride for on-board automotive hydrogen storage. Int. J. Hydrogen Energy 34, 2638–2645. https://doi.org/10.1016/j.ijhydene.2009.01.038
  • [32]. Demirci, U.B., Garin, F., 2008. Ru-based bimetallic alloys for hydrogen generation by hydrolysis of sodium tetrahydroborate. J. Alloys Compd. 463, 107–111. https://doi.org/10.1016/j.jallcom.2007.08.077
  • [33]. Ding, J., Li, Q., Su, Y., Yue, Q., Gao, B., Zhou, W., 2018. Preparation and catalytic activity of wheat straw cellulose based hydrogel-nanometal composites for hydrogen generation from NaBH 4 hydrolysis. Int. J. Hydrogen Energy 43, 9978–9987. https://doi.org/10.1016/j.ijhydene.2018.04.077
  • [34]. Dragan, M., 2022. Hydrogen Storage in Complex Metal Hydrides NaBH4: Hydrolysis Reaction and Experimental Strategies. Catalysts 12, 356. https://doi.org/10.3390/catal12040356
  • [35]. Dursun, Y.A., Solmaz, R., 2024. Fabrication of Bingöl pollen self-assembled monolayer films on copper as a novel cathode for electrochemical hydrogen production. Int. J. Hydrogen Energy 52, 1280–1290. https://doi.org/10.1016/j.ijhydene.2023.11.218
  • [36]. Elsayed, M.M., 2019. Hydrogel Preparation Technologies: Relevance Kinetics, Thermodynamics and Scaling up Aspects. J. Polym. Environ. 27, 871–891. https://doi.org/10.1007/s10924-019-01376-4
  • [37]. Ganesan, K., Hayagreevan, C., Rahul, R., Jeevagan, A.J., Adinaveen, T., Bhuvaneshwari, D.S., Muthukumar, P., Amalraj, M., 2022. Catalytic hydrolysis of sodium borohydride for hydrogen production using phosphorylated silica particles. Environ. Sci. Pollut. Res. 30, 21199–21212. https://doi.org/10.1007/s11356-022-23672-8
  • [38]. Ghorbanloo, M., Nazari, P., 2020. A soft anionic hydrogel reactor for silver nanoparticle preparation and use in H2 production, 4-nitrophenol reduction and alcohol oxidation. J. Porous Mater. 27, 37–47. https://doi.org/10.1007/s10934-019-00794-y
  • [39]. Giappa, R.M., Tylianakis, E., Di Gennaro, M., Gkagkas, K., Froudakis, G.E., 2021. A combination of multi-scale calculations with machine learning for investigating hydrogen storage in metal organic frameworks. Int. J. Hydrogen Energy 46, 27612–27621. https://doi.org/10.1016/j.ijhydene.2021.06.021
  • [40]. Grochala, W., 2015. First there was hydrogen. Nat. Chem. 7, 264–264. https://doi.org/10.1038/nchem.2186
  • [41]. Guan, S., An, L., Chen, Y., Li, M., Shi, J., Liu, X., Fan, Y., Li, B., Liu, B., 2022. Stabilized cobalt-based nanofilm catalyst prepared using an ionic liquid/water interfacial process for hydrogen generation from sodium borohydride. J. Colloid Interface Sci. 608, 3111–3120. https://doi.org/10.1016/j.jcis.2021.11.041
  • [42]. Hsueh, C.-L., Chen, C.-Y., Ku, J.-R., Tsai, S.-F., Hsu, Y.-Y., Tsau, F., Jeng, M.-S., 2008. Simple and fast fabrication of polymer template-Ru composite as a catalyst for hydrogen generation from alkaline NaBH4 solution. J. Power Sources 177, 485–492. https://doi.org/10.1016/j.jpowsour.2007.11.096
  • [43]. Huang, Y., Wang, Y., Zhao, R., Shen, P.K., Wei, Z., 2008. Accurately measuring the hydrogen generation rate for hydrolysis of sodium borohydride on multiwalled carbon nanotubes/Co–B catalysts. Int. J. Hydrogen Energy 33, 7110–7115. https://doi.org/10.1016/j.ijhydene.2008.09.046
  • [44]. Hydrogen Storage and Transport by Organic Hydrides and Application of Ammonia, 2019. , in: Science and Engineering of Hydrogen-Based Energy Technologies. Elsevier, pp. 229–236. https://doi.org/10.1016/B978-0-12-814251-6.00011-3
  • [45]. Inger, E., 2019. Can fool’s gold “pyrite” become real gold as a catalyst for clean-energy H2 production? Int. J. Hydrogen Energy 44, 32124–32135. https://doi.org/10.1016/j.ijhydene.2019.10.106
  • [46]. Inger, E., Demirci, S., Can, M., Sunol, A.K., Philippidis, G., Sahiner, N., 2020. PEI modified natural sands of Florida as catalysts for hydrogen production from sodium borohydride dehydrogenation in methanol. Int. J. Energy Res. https://doi.org/10.1002/er.6060
  • [47]. Ingersoll, J.C., Mani, N., Thenmozhiyal, J.C., Muthaiah, A., 2007. Catalytic hydrolysis of sodium borohydride by a novel nickel–cobalt–boride catalyst. J. Power Sources 173, 450–457. https://doi.org/10.1016/j.jpowsour.2007.04.040
  • [48]. Jia, H., Chen, X., Liu, C.-Y., Liu, X.-J., Zheng, X.-C., Guan, X.-X., Liu, P., 2018. Ultrafine palladium nanoparticles anchoring graphene oxide-ionic liquid grafted chitosan self-assembled materials: The novel organic-inorganic hybrid catalysts for hydrogen generation in hydrolysis of ammonia borane. Int. J. Hydrogen Energy 43, 12081–12090. https://doi.org/10.1016/j.ijhydene.2018.04.156
  • [49]. Jung, E.S., Kim, H., Kwon, S., Oh, T.H., 2018. Fuel cell system with sodium borohydride hydrogen generator for small unmanned aerial vehicles. Int. J. Green Energy 15, 385–392. https://doi.org/10.1080/15435075.2018.1464924
  • [50]. Karaman, O., 2022. Three-dimensional graphene network supported nickel-cobalt bimetallic alloy nanocatalyst for hydrogen production by hydrolysis of sodium borohydride and developing of an artificial neural network modeling to forecast hydrogen production rate. Chem. Eng. Res. Des. 181, 321–330. https://doi.org/10.1016/j.cherd.2022.03.028
  • [51]. Karamveer Sheoran, Thakur, V.K., Siwal, S.S., 2022. Synthesis and overview of carbon-based materials for high performance energy storage application: A review. Mater. Today Proc. 56, 9–17. https://doi.org/10.1016/j.matpr.2021.11.369
  • [52]. Kaur, A., Gangacharyulu, D., Bajpai, P.K., 2015. Kinetic studies on the NaBH4/H2O hydrogen storage system with CoCl2 as a catalyst. Bulg. Chem. Commun. 48, 757–761.
  • [53]. Kojima, Y., 2005. Hydrogen storage and generation using sodium borohydride. R&D Rev. Toyota CRDL 40, 31–36.
  • [54]. Krishnan, P., Advani, S.G., Prasad, A.K., 2009. Thin-film CoB catalyst templates for the hydrolysis of NaBH4 solution for hydrogen generation. Appl. Catal. B Environ. 86, 137–144. https://doi.org/10.1016/j.apcatb.2008.08.005
  • [55]. Kurmoo, M., 2009. Magnetic metal–organic frameworks. Chem. Soc. Rev. 38, 1353. https://doi.org/10.1039/b804757j
  • [56]. Kutyła, D., Salcı, A., Kwiecińska, A., Kołczyk-Siedlecka, K., Kowalik, R., Żabiński, P., Solmaz, R., 2020. Catalytic activity of electrodeposited ternary Co–Ni–Rh thin films for water splitting process. Int. J. Hydrogen Energy 45, 34805–34817. https://doi.org/10.1016/j.ijhydene.2020.05.196
  • [57]. Kwon, S., Kim, M.J., Kang, S., Kim, T., 2019. Development of a high-storage-density hydrogen generator using solid-state NaBH4 as a hydrogen source for unmanned aerial vehicles. Appl. Energy 251, 113331. https://doi.org/10.1016/j.apenergy.2019.113331
  • [58]. Lebedeva, O., Kultin, D., Kustov, L., 2024. Polymeric ionic liquids: Here, there and everywhere. Eur. Polym. J. 203, 112657. https://doi.org/10.1016/j.eurpolymj.2023.112657
  • [59]. Li, Y., Zhang, Q., Zhang, N., Zhu, L., Zheng, J., Chen, B.H., 2013. Ru–RuO2/C as an efficient catalyst for the sodium borohydride hydrolysis to hydrogen. Int. J. Hydrogen Energy 38, 13360–13367. https://doi.org/10.1016/j.ijhydene.2013.07.071
  • [60]. Li, Z., Li, H., Wang, L., Liu, T., Zhang, T., Wang, G., Xie, G., 2014. Hydrogen generation from catalytic hydrolysis of sodium borohydride solution using supported amorphous alloy catalysts (Ni–Co–P/γ-Al 2 O 3 ). Int. J. Hydrogen Energy 39, 14935–14941. https://doi.org/10.1016/j.ijhydene.2014.07.063
  • [61]. Liang, Y., Dai, H.-B., Ma, L.-P., Wang, P., Cheng, H.-M., 2010. Hydrogen generation from sodium borohydride solution using a ruthenium supported on graphite catalyst. Int. J. Hydrogen Energy 35, 3023–3028. https://doi.org/10.1016/j.ijhydene.2009.07.008
  • [62]. Liu, W., Cai, H., Lu, P., Xu, Q., Zhongfu, Y., Dong, J., 2013. Polymer hydrogel supported Pd–Ni–B nanoclusters as robust catalysts for hydrogen production from hydrolysis of sodium borohydride. Int. J. Hydrogen Energy 38, 9206–9216. https://doi.org/10.1016/j.ijhydene.2013.05.109
  • [63]. Liu, Z., Guo, B., Chan, S.H., Tang, E.H., Hong, L., 2008. Pt and Ru dispersed on LiCoO2 for hydrogen generation from sodium borohydride solutions. J. Power Sources 176, 306–311. https://doi.org/10.1016/j.jpowsour.2007.09.114
  • [64]. Lu, L., 2019. Nanoporous noble metal-based alloys: a review on synthesis and applications to electrocatalysis and electrochemical sensing. Microchim. Acta 186, 664. https://doi.org/10.1007/s00604-019-3772-3
  • [65]. Lu, Y.-C., Chen, M.-S., Chen, Y.-W., 2012. Hydrogen generation by sodium borohydride hydrolysis on nanosized CoB catalysts supported on TiO2, Al2O3 and CeO2. Int. J. Hydrogen Energy 37, 4254–4258. https://doi.org/10.1016/j.ijhydene.2011.11.105
  • [66]. Luo, C., Fu, F., Yang, X., Wei, J., Wang, C., Zhu, J., Huang, D., Astruc, D., Zhao, P., 2019. Highly Efficient and Selective Co@ZIF‐8 Nanocatalyst for Hydrogen Release from Sodium Borohydride Hydrolysis. ChemCatChem 11, 1643–1649. https://doi.org/10.1002/cctc.201900051
  • [67]. Martínez, R.J., Godínez, L.A., Robles, I., 2023. Waste resources utilization for biosorbent preparation, sorption studies, and electrocatalytic applications, in: Valorization of Wastes for Sustainable Development. Elsevier, pp. 395–418. https://doi.org/10.1016/B978-0-323-95417-4.00015-9
  • [68]. Meyyappan, M., Srivastava, D., 2002. Carbon nanotubes. Handb. Nanosci. Eng. Technol. 18-1-18–26. https://doi.org/10.1177/0022034513490957
  • [69]. Nie, M., Zou, Y.C., Huang, Y.M., Wang, J.Q., 2012. Ni–Fe–B catalysts for NaBH 4 hydrolysis. Int. J. Hydrogen Energy 37, 1568–1576. https://doi.org/10.1016/j.ijhydene.2011.10.006
  • [70]. Onat, E., Çevik, S., Şahin, Ö., Horoz, S., İzgi, M.S., 2021. Investigation of high catalytic activity catalyst for high hydrogen production rate: Co-Ru@MOF. J. Aust. Ceram. Soc. 57, 1389–1395. https://doi.org/10.1007/s41779-021-00643-9
  • [71]. Osman, A.I., Mehta, N., Elgarahy, A.M., Hefny, M., Al-Hinai, A., Al-Muhtaseb, A.H., Rooney, D.W., 2022. Hydrogen production, storage, utilisation and environmental impacts: a review. Environ. Chem. Lett. 20, 153–188. https://doi.org/10.1007/s10311-021-01322-8
  • [72]. Özkar, S., Zahmakıran, M., 2005. Hydrogen generation from hydrolysis of sodium borohydride using Ru(0) nanoclusters as catalyst. J. Alloys Compd. 404–406, 728–731. https://doi.org/10.1016/j.jallcom.2004.10.084
  • [73]. Ozturk, O.F., Demirci, S., Sengel, S.B., Sahiner, N., 2018. Highly regenerable ionic liquid microgels as inherently metal-free green catalyst for H2 generation. Polym. Adv. Technol. 29, 1426–1434. https://doi.org/10.1002/pat.4254
  • [74]. Paladini, M., Arzac, G.M., Godinho, V., Haro, M.C.J. De, Fernández, A., 2014. Supported Co catalysts prepared as thin films by magnetron sputtering for sodium borohydride and ammonia borane hydrolysis. Appl. Catal. B Environ. 158–159, 400–409. https://doi.org/10.1016/j.apcatb.2014.04.047
  • [75]. Paladini, M., Arzac, G.M., Godinho, V., Hufschmidt, D., de Haro, M.C.J., Beltrán, A.M., Fernández, A., 2017. The role of cobalt hydroxide in deactivation of thin film Co-based catalysts for sodium borohydride hydrolysis. Appl. Catal. B Environ. 210, 342–351. https://doi.org/10.1016/j.apcatb.2017.04.005
  • [76]. Paterson, R., Alharbi, A.A., Wills, C., Dixon, C., Šiller, L., Chamberlain, T.W., Griffiths, A., Collins, S.M., Wu, K., Simmons, M.D., Bourne, R.A., Lovelock, K.R.J., Seymour, J., Knight, J.G., Doherty, S., 2022. Heteroatom modified polymer immobilized ionic liquid stabilized ruthenium nanoparticles: Efficient catalysts for the hydrolytic evolution of hydrogen from sodium borohydride. Mol. Catal. 528, 112476. https://doi.org/10.1016/j.mcat.2022.112476
  • [77]. Retnamma, R., Novais, A.Q., Rangel, C.M., 2011. Kinetics of hydrolysis of sodium borohydride for hydrogen production in fuel cell applications: A review. Int. J. Hydrogen Energy 36, 9772–9790. https://doi.org/10.1016/j.ijhydene.2011.04.223
  • [78]. Sahiner, N., 2017. Modified multi-wall carbon nanotubes as metal free catalyst for application in H2 production from methanolysis of NaBH4. J. Power Sources 366, 178–184. https://doi.org/10.1016/j.jpowsour.2017.09.041
  • [79]. Sahiner, N., 2013. Soft and flexible hydrogel templates of different sizes and various functionalities for metal nanoparticle preparation and their use in catalysis. Prog. Polym. Sci. 38, 1329–1356. https://doi.org/10.1016/j.progpolymsci.2013.06.004
  • [80]. Sahiner, N., Demir, S., Yildiz, S., 2014. Magnetic colloidal polymeric ionic liquid synthesis and use in hydrogen production. Colloids Surfaces A Physicochem. Eng. Asp. 449, 87–95. https://doi.org/10.1016/j.colsurfa.2014.02.046
  • [81]. Sahiner, N., Demirci, S., 2017. Natural microgranular cellulose as alternative catalyst to metal nanoparticles for H2 production from NaBH4 methanolysis. Appl. Catal. B Environ. 202, 199–206. https://doi.org/10.1016/j.apcatb.2016.09.028
  • [82]. Sahiner, N., Demirci, S., 2016. Very fast H2</inf> production from the methanolysis of NaBH4 by metal-free poly(ethylene imine) microgel catalysts. Int. J. Energy Res. https://doi.org/10.1002/er.3679
  • [83]. Sahiner, Nurettin, Demirci, S., 2016. PEI-based hydrogels with different morphology and sizes: Bulkgel, microgel, and cryogel for catalytic energy and environmental catalytic applications. Eur. Polym. J. 76, 156–169. https://doi.org/10.1016/j.eurpolymj.2016.01.046
  • [84]. Sahiner, N., Sengel, S.B., 2017. Environmentally benign halloysite clay nanotubes as alternative catalyst to metal nanoparticles in H2 production from methanolysis of sodium borohydride. Fuel Process. Technol. 158, 1–8. https://doi.org/10.1016/j.fuproc.2016.12.009
  • [85]. Sahiner, N., Sengel, S.B., 2016. Quaternized polymeric microgels as metal free catalyst for H2 production from the methanolysis of sodium borohydride. J. Power Sources 336, 27–34. https://doi.org/10.1016/j.jpowsour.2016.10.054
  • [86]. Sahiner, N., Seven, F., Al-Lohedan, H., 2015. Super-fast hydrogen generation via super porous Q-P(VI)-M cryogel catalyst systems from hydrolysis of NaBH4. Int. J. Hydrogen Energy 40, 4605–4616. https://doi.org/10.1016/j.ijhydene.2015.02.049
  • [87]. Sahiner, N., Yildiz, S., 2014. Preparation of superporous poly(4-vinyl pyridine) cryogel and their templated metal nanoparticle composites for H2 production via hydrolysis reactions. Fuel Process. Technol. 126, 324–331. https://doi.org/10.1016/j.fuproc.2014.05.025
  • [88]. Saka, C., 2024. Fabrication of protonated chitosan/montmorillonite catalyst for hydrogen production via sodium borohydride in the optimum methanol/propylene glycol mixture. Int. J. Hydrogen Energy 65, 410–420. https://doi.org/10.1016/j.ijhydene.2024.03.371
  • [89]. Saka, C., 2023. Highly active hydrogen generation from sodium borohydride methanolysis and ethylene glycolysis reactions using protonated chitosan-zeolite hybrid metal-free particles. Appl. Catal. B Environ. 325, 122335. https://doi.org/10.1016/j.apcatb.2022.122335
  • [90]. Saka, C., 2021a. Highly active and durable hydrogen release in NaBH4 methanolysis reaction with sulphur and phosphorus-doped metal-free microalgal carbon nanoparticles. Appl. Catal. B Environ. 292, 120165. https://doi.org/10.1016/j.apcatb.2021.120165
  • [91]. Saka, C., 2021b. Very efficient dehydrogenation of methanolysis reaction with nitrogen doped Chlorella Vulgaris microalgae carbon as metal-free catalysts. Int. J. Hydrogen Energy 46, 20961–20971. https://doi.org/10.1016/j.ijhydene.2021.03.220
  • [92]. Saka, C., Balbay, A., 2019. Influence of process parameters on enhanced hydrogen generation via semi-methanolysis and semi-ethanolysis reactions of sodium borohydride using phosphoric acid. Int. J. Hydrogen Energy 44, 30119–30126. https://doi.org/10.1016/j.ijhydene.2019.09.172
  • [93]. Samatya Ölmez, S., Balbay, A., Saka, C., 2022. Phosphorus doped carbon nanodots particles based on pomegranate peels for highly active dehydrogenation of sodium borohydride in methanol. Int. J. Hydrogen Energy 47, 31647–31655. https://doi.org/10.1016/j.ijhydene.2022.07.091
  • [94]. Santos, D.M.F., Sequeira, C.A.C., 2011. Sodium borohydride as a fuel for the future. Renew. Sustain. Energy Rev. 15, 3980–4001. https://doi.org/10.1016/j.rser.2011.07.018
  • [95]. Seven, F., Sahiner, N., 2014. Modified macroporous P(2-hydroxyethyl methacrylate) P(HEMA) cryogel composites for H 2 production from hydrolysis of NaBH 4. Fuel Process. Technol. 128, 394–401. https://doi.org/10.1016/j.fuproc.2014.08.008
  • [96]. Singh, C., Mukhopadhyay, S., Hod, I., 2021. Metal–organic framework derived nanomaterials for electrocatalysis: recent developments for CO2 and N2 reduction. Nano Converg. 8, 1. https://doi.org/10.1186/s40580-020-00251-6
  • [97]. Solmaz, R., Yüksel, H., 2019. Fabrication, characterization and application of three-dimensional copper nanodomes as efficient cathodes for hydrogen production. Int. J. Hydrogen Energy 44, 14108–14116. https://doi.org/10.1016/j.ijhydene.2019.02.112
  • [98]. Thoniyot, P., Tan, M.J., Karim, A.A., Young, D.J., Loh, X.J., 2015. Nanoparticle–Hydrogel Composites: Concept, Design, and Applications of These Promising, Multi‐Functional Materials. Adv. Sci. 2. https://doi.org/10.1002/advs.201400010
  • [99]. Uzundurukan, A., Devrim, Y., 2019. Hydrogen generation from sodium borohydride hydrolysis by multi-walled carbon nanotube supported platinum catalyst: A kinetic study. Int. J. Hydrogen Energy 44, 17586–17594. https://doi.org/10.1016/j.ijhydene.2019.04.188
  • [100]. Walter, J.C., Zurawski, A., Montgomery, D., Thornburg, M., Revankar, S., 2008. Sodium borohydride hydrolysis kinetics comparison for nickel, cobalt, and ruthenium boride catalysts. J. Power Sources 179, 335–339. https://doi.org/10.1016/j.jpowsour.2007.12.006
  • [101]. Wang, M.C., Ouyang, L.Z., Liu, J.W., Wang, H., Zhu, M., 2017. Hydrogen generation from sodium borohydride hydrolysis accelerated by zinc chloride without catalyst: A kinetic study. J. Alloys Compd. 717, 48–54. https://doi.org/10.1016/j.jallcom.2017.04.274
  • [102]. Wang, X., Zhao, Y., Peng, X., Wang, J., Jing, C., Tian, J., 2015. Synthesis and characterizations of CoPt nanoparticles supported on poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) functionalized multi-walled carbon nanotubes with superior activity for NaBH4 hydrolysis. Mater. Sci. Eng. B 200, 99–106. https://doi.org/10.1016/j.mseb.2015.07.002
  • [103]. Xiang, W., Yang, N., Li, X., Linnemann, J., Hagemann, U., Ruediger, O., Heidelmann, M., Falk, T., Aramini, M., DeBeer, S., Muhler, M., Tschulik, K., Li, T., 2022. 3D atomic-scale imaging of mixed Co-Fe spinel oxide nanoparticles during oxygen evolution reaction. Nat. Commun. 13, 179. https://doi.org/10.1038/s41467-021-27788-2
  • [104]. Xu, G.-R., An, Z.-H., Xu, K., Liu, Q., Das, R., Zhao, H.-L., 2021. Metal organic framework (MOF)-based micro/nanoscaled materials for heavy metal ions removal: The cutting-edge study on designs, synthesis, and applications. Coord. Chem. Rev. 427, 213554. https://doi.org/10.1016/j.ccr.2020.213554
  • [105]. Yang, C.-C., Chen, M.-S., Chen, Y.-W., 2011. Hydrogen generation by hydrolysis of sodium borohydride on CoB/SiO2 catalyst. Int. J. Hydrogen Energy 36, 1418–1423. https://doi.org/10.1016/j.ijhydene.2010.11.006
  • [106]. Zaier, I., Metin, O., 2021. One-pot synthesis of graphene hydrogel-anchored cobalt-copper nanoparticles and their catalysis in hydrogen generation from ammonia borane. Turkish J. Chem. 45. https://doi.org/10.3906/kim-2107-32
  • [107]. Zhang, J., Lin, F., Yang, L., He, Z., Huang, X., Zhang, D., Dong, H., 2020. Ultrasmall Ru nanoparticles supported on chitin nanofibers for hydrogen production from NaBH4 hydrolysis. Chinese Chem. Lett. 31, 2019–2022. https://doi.org/10.1016/j.cclet.2019.11.042
  • [108]. Zhang, J.S., Delgass, W.N., Fisher, T.S., Gore, J.P., 2007. Kinetics of Ru-catalyzed sodium borohydride hydrolysis. J. Power Sources 164, 772–781. https://doi.org/10.1016/j.jpowsour.2006.11.002
  • [109]. Zhao, L., Li, Q., Su, Y., Yue, Q., Gao, B., 2017. A novel Enteromorpha based hydrogel for copper and nickel nanoparticle preparation and their use in hydrogen production as catalysts. Int. J. Hydrogen Energy 42, 6746–6756. https://doi.org/10.1016/j.ijhydene.2017.02.092
  • [110]. Zhong, H., Ouyang, L., Liu, J., Peng, C., Zhu, X., Zhu, W., Fang, F., Zhu, M., 2018. Sodium borohydride regeneration via direct hydrogen transformation of sodium metaborate tetrahydrate. J. Power Sources 390, 71–77. https://doi.org/10.1016/j.jpowsour.2018.04.037
  • [111]. Zhu, J., Li, R., Niu, W., Wu, Y., Gou, X., 2012. Facile hydrogen generation using colloidal carbon supported cobalt to catalyze hydrolysis of sodium borohydride. J. Power Sources 211, 33–39.
  • https://doi.org/10.1016/j.jpowsour.2012.03.051 [112]. Zhuang, D.-W., Kang, Q., Muir, S.S., Yao, X., Dai, H.-B., Ma, G.-L., Wang, P., 2013. Evaluation of a cobalt–molybdenum–boron catalyst for hydrogen generation of alkaline sodium borohydride solution–aluminum powder system. J. Power Sources 224, 304–311. https://doi.org/10.1016/j.jpowsour.2012.09.106

Sodyum borohidrit çözeltilerinden hidrojen üretimi için katalizör incelemesi ve Uzun süreli uzay uçuşlarında canlıların hayatta kalma yeteneği

Year 2024, Volume: 5 Issue: 2, 199 - 222, 21.12.2024
https://doi.org/10.53525/jster.1593599

Abstract

Hidrojen (H2), borohidrürden (NaBH4) kolayca elde edilen, diğer hidratlardan daha güvenli olan ve çeşitli katalizörlerin kullanımını gerektiren daha yüksek hidrojen (H2) üretim hızlarına (HGR'ler) sahip, en avantajlı yanma yan ürünlerine sahip, çevre dostu, etkili bir enerji taşıyıcısıdır. Katalizörlerin performansları, hidroliz veya metanoliz reaksiyonlarından bağımsız olarak NaBH4'ten gelen yüksek HGR'de ana faktörlerdir. HGR, NaBH4 konsantrasyonlarından, reaksiyon sıcaklığından ve katalizör miktarlarından etkilenir. Rutenyum (Ru), platin (Pt), Rodyum (Rh) vb. gibi Nobel metallerinin, etanol, metanol ve etilen glikolü içeren NaBH4 çözeltilerinden hızlı H2 üretimi için oldukça etkili katalizörler olduğu rapor edilmiştir. Soy metallerin kıtlığı ve maliyet kaygıları nedeniyle, kobalt (Co), nikel (Ni) ve manganez (Mn) gibi geçiş metali bazlı katalizörler, NaBH4 hidrolizi/alkolizinden H2 üretimi için büyük ilgi kazanmıştır. Metal nanoparçacık bazlı katalizörler ve bunların sentetik ve doğal polimer kompozitlerinin yanı sıra mikro/nanojeller, toplu hidrojeller, kriyojeller ve polimerik iyonik sıvılar (PIL'ler) içeren metalik olmayan katalizörler, daha düşük değerlere ulaşmak için NaBH4'ün metanolizinde/hidrolizinde, düşük aktivasyon enerjisi, Ea ve yüksek HGR değerlileri katalizör olarak kullanılmıştır. Bu nedenle bu derlemede H2 üretim reaksiyonlarında kullanılan katalizörlerin metal veya metal olmayan olup olmadığı araştırılacak, ayrıca H2 enerji sistemlerinin uzay uygulamaları ve gelecekte kullanım için ticari uygulamaları değerlendirilecektir

References

  • [1]. Abdelhamid, H.N., 2021. A review on hydrogen generation from the hydrolysis of sodium borohydride. Int. J. Hydrogen Energy 46, 726–765. https://doi.org/10.1016/j.ijhydene.2020.09.186
  • [2]. Ai, L., Gao, X., Jiang, J., 2014. In situ synthesis of cobalt stabilized on macroscopic biopolymer hydrogel as economical and recyclable catalyst for hydrogen generation from sodium borohydride hydrolysis. J. Power Sources 257, 213–220. https://doi.org/10.1016/j.jpowsour.2014.01.119
  • [3]. Akdim, O., Chamoun, R., Demirci, U.B., Zaatar, Y., Khoury, A., Miele, P., 2011a. Anchored cobalt film as stable supported catalyst for hydrolysis of sodium borohydride for chemical hydrogen storage. Int. J. Hydrogen Energy 36, 14527–14533. https://doi.org/10.1016/j.ijhydene.2011.07.051
  • [4]. Akdim, O., Demirci, U.B., Miele, P., 2011b. Deactivation and reactivation of cobalt in hydrolysis of sodium borohydride. Int. J. Hydrogen Energy 36, 13669–13675. https://doi.org/10.1016/j.ijhydene.2011.07.125
  • [5]. Akdim, O., Demirci, U.B., Miele, P., 2009. Acetic acid, a relatively green single-use catalyst for hydrogen generation from sodium borohydride. Int. J. Hydrogen Energy 34, 7231–7238. https://doi.org/10.1016/j.ijhydene.2009.06.068
  • [6]. Ali, F., Khan, S.B., Asiri, A.M., 2019. Chitosan coated cellulose cotton fibers as catalyst for the H2 production from NaBH4 methanolysis. Int. J. Hydrogen Energy 44, 4143–4155. https://doi.org/10.1016/j.ijhydene.2018.12.158
  • [7]. Ari, B., Ay, M., Sunol, A.K., Sahiner, N., 2019. Surface-modified carbon black derived from used car tires as alternative, reusable, and regenerable catalysts for H2 release studies from sodium borohydride methanolysis. Int. J. Energy Res. 43, 7159–7172. https://doi.org/10.1002/er.4742
  • [8]. Arzac, G.M., Fernández, A., 2020. Advances in the implementation of PVD-based techniques for the preparation of metal catalysts for the hydrolysis of sodium borohydride. Int. J. Hydrogen Energy 45, 33288–33309. https://doi.org/10.1016/j.ijhydene.2020.09.041
  • [9]. Arzac, G.M., Paladini, M., Godinho, V., Beltrán, A.M., Jiménez de Haro, M.C., Fernández, A., 2018. Strong activation effect on a Ru-Co-C thin film catalyst for the hydrolysis of sodium borohydride. Sci. Rep. 8, 9755. https://doi.org/10.1038/s41598-018-28032-6
  • [10]. Balbay, A., Şahin, Ö., 2014. Hydrogen Production from Sodium Borohydride in Boric Acid-water Mixtures. Energy Sources, Part A Recover. Util. Environ. Eff. 36, 1166–1174. https://doi.org/10.1080/15567036.2011.618818
  • [11]. Balbay, A., Saka, C., 2018a. The effect of the concentration of hydrochloric acid and acetic acid aqueous solution for fast hydrogen production from methanol solution of NaBH4. Int. J. Hydrogen Energy 43, 14265–14272. https://doi.org/10.1016/j.ijhydene.2018.05.131
  • [12]. Balbay, A., Saka, C., 2018b. Semi-methanolysis reaction of potassium borohydride with phosphoric acid for effective hydrogen production. Int. J. Hydrogen Energy 43, 21299–21306. https://doi.org/10.1016/j.ijhydene.2018.09.167
  • [13]. Bartkus, T.P., T’ien, J.S., Sung, C.-J., 2013. A semi-global reaction rate model based on experimental data for the self-hydrolysis kinetics of aqueous sodium borohydride. Int. J. Hydrogen Energy 38, 4024–4033. https://doi.org/10.1016/j.ijhydene.2013.01.041
  • [14]. Baydaroglu, F., Özdemir, E., Hasimoglu, A., 2014. An effective synthesis route for improving the catalytic activity of carbon-supported Co–B catalyst for hydrogen generation through hydrolysis of NaBH4. Int. J. Hydrogen Energy 39, 1516–1522. https://doi.org/10.1016/j.ijhydene.2013.04.111
  • [15]. Boran, A., Erkan, S., Eroglu, I., 2019. Hydrogen generation from solid state NaBH4 by using FeCl3 catalyst for portable proton exchange membrane fuel cell applications. Int. J. Hydrogen Energy 44, 18915–18926. https://doi.org/10.1016/j.ijhydene.2018.11.033
  • [16]. Brack, P., Dann, S.E., Wijayantha, K.G.U., 2015. Heterogeneous and homogenous catalysts for hydrogen generation by hydrolysis of aqueous sodium borohydride (NaBH 4 ) solutions. Energy Sci. Eng. 3, 174–188. https://doi.org/10.1002/ese3.67
  • [17]. Cai, H., Liu, L., Chen, Q., Lu, P., Dong, J., 2016. Ni-polymer nanogel hybrid particles: A new strategy for hydrogen production from the hydrolysis of dimethylamine-borane and sodium borohydride. Energy 99, 129–135. https://doi.org/10.1016/j.energy.2016.01.046
  • [18]. Çakanyildirim, Ç., Guru, M., 2021. Farklı destekler ile hazırlanan sentetik Co-Mn-Pt katalizörünün NaBH4 hidroliz performansı ve kinetik değerlendirmesi. Gazi Üniversitesi Mühendislik Mimar. Fakültesi Derg. 37, 423–438. https://doi.org/10.17341/gazimmfd.877826
  • [19]. Chairam, S., Jarujamrus, P., Amatatongchai, M., 2019. Starch hydrogel-loaded cobalt nanoparticles for hydrogen production from hydrolysis of sodium borohydride. Adv. Nat. Sci. Nanosci. Nanotechnol. 10, 025013. https://doi.org/10.1088/2043-6254/ab23fb
  • [20]. Chen, C.-W., Chen, C.-Y., Huang, Y.-H., 2009. Method of preparing Ru-immobilized polymer-supported catalyst for hydrogen generation from NaBH4 solution. Int. J. Hydrogen Energy 34, 2164–2173. https://doi.org/10.1016/j.ijhydene.2008.12.077
  • [21]. Chen, W., Ouyang, L.Z., Liu, J.W., Yao, X.D., Wang, H., Liu, Z.W., Zhu, M., 2017. Hydrolysis and regeneration of sodium borohydride (NaBH 4 ) – A combination of hydrogen production and storage. J. Power Sources 359, 400–407. https://doi.org/10.1016/j.jpowsour.2017.05.075
  • [22]. Chen, Y., Liu, L., Wang, Y., Kim, H., 2011. Preparation of porous PVDF-NiB capsules as catalytic adsorbents for hydrogen generation from sodium borohydride. Fuel Process. Technol. 92, 1368–1373. https://doi.org/10.1016/j.fuproc.2011.02.019
  • [23]. Chinnappan, A., Chung, W.-J., Kim, H., 2015a. Hypercross-linked microporous polymeric ionic liquid membranes: synthesis, properties and their application in H 2 generation. J. Mater. Chem. A 3, 22960–22968. https://doi.org/10.1039/C5TA06142C
  • [24]. Chinnappan, A., Jadhav, A.H., Puguan, J.M.C., Appiah-Ntiamoah, R., Kim, H., 2015b. Fabrication of ionic liquid/polymer nanoscale networks by electrospinning and chemical cross-linking and their application in hydrogen generation from the hydrolysis of NaBH4. Energy 79, 482–488. https://doi.org/10.1016/j.energy.2014.11.041
  • [25]. Chinnappan, A., Puguan, J.M.C., Chung, W.-J., Kim, H., 2015c. Hydrogen generation from the hydrolysis of sodium borohydride using chemically modified multiwalled carbon nanotubes with pyridinium based ionic liquid and decorated with highly dispersed Mn nanoparticles. J. Power Sources 293, 429–436. https://doi.org/10.1016/j.jpowsour.2015.05.096
  • [26]. Choudhury, Suman Roy, Pillai, J.N., Somaiah, B., Pareta, M., Satvilkar, P., Kumar, A., Negi, P.K., Mahtre, N.N., Choudhury, Suhasini Roy, Verma, V., Dalvi, V., Singh, P.K., Suryawanshi, S.E., Mandal, S.K., n.d. Atmospheric-independent propulsion system for phosphoric acid fuel cell-based submarines with on-board hydrogen generator.
  • [27]. Demir, D.D., Salcı, A., Solmaz, R., 2018. Preparation, characterization and hydrogen production performance of MoPd deposited carbon felt/Mo electrodes. Int. J. Hydrogen Energy 43, 10530–10539. https://doi.org/10.1016/j.ijhydene.2018.01.030
  • [28]. Demirci, S., Yildiz, M., Inger, E., Sahiner, N., 2020. Porous carbon particles as metal-free superior catalyst for hydrogen release from methanolysis of sodium borohydride. Renew. Energy 147, 69–76. https://doi.org/10.1016/j.renene.2019.08.131
  • [29]. Demirci, S., Zekoski, T., Sahiner, N., 2019. The preparation and use of p(2-acrylamido-2-methyl-1-propanesulfonic acid)-tris(dioxa-3,6-heptyl)amine (p(AMPS)-TDA-1) ionic liquid microgel in hydrogen production. Polym. Bull. 76, 1717–1735. https://doi.org/10.1007/s00289-018-2465-0
  • [30]. Demirci, U.B., Akdim, O., Andrieux, J., Hannauer, J., Chamoun, R., Miele, P., 2010. Sodium Borohydride Hydrolysis as Hydrogen Generator: Issues, State of the Art and Applicability Upstream from a Fuel Cell. Fuel Cells 10, 335–350. https://doi.org/10.1002/fuce.200800171
  • [31]. Demirci, U.B., Akdim, O., Miele, P., 2009. Ten-year efforts and a no-go recommendation for sodium borohydride for on-board automotive hydrogen storage. Int. J. Hydrogen Energy 34, 2638–2645. https://doi.org/10.1016/j.ijhydene.2009.01.038
  • [32]. Demirci, U.B., Garin, F., 2008. Ru-based bimetallic alloys for hydrogen generation by hydrolysis of sodium tetrahydroborate. J. Alloys Compd. 463, 107–111. https://doi.org/10.1016/j.jallcom.2007.08.077
  • [33]. Ding, J., Li, Q., Su, Y., Yue, Q., Gao, B., Zhou, W., 2018. Preparation and catalytic activity of wheat straw cellulose based hydrogel-nanometal composites for hydrogen generation from NaBH 4 hydrolysis. Int. J. Hydrogen Energy 43, 9978–9987. https://doi.org/10.1016/j.ijhydene.2018.04.077
  • [34]. Dragan, M., 2022. Hydrogen Storage in Complex Metal Hydrides NaBH4: Hydrolysis Reaction and Experimental Strategies. Catalysts 12, 356. https://doi.org/10.3390/catal12040356
  • [35]. Dursun, Y.A., Solmaz, R., 2024. Fabrication of Bingöl pollen self-assembled monolayer films on copper as a novel cathode for electrochemical hydrogen production. Int. J. Hydrogen Energy 52, 1280–1290. https://doi.org/10.1016/j.ijhydene.2023.11.218
  • [36]. Elsayed, M.M., 2019. Hydrogel Preparation Technologies: Relevance Kinetics, Thermodynamics and Scaling up Aspects. J. Polym. Environ. 27, 871–891. https://doi.org/10.1007/s10924-019-01376-4
  • [37]. Ganesan, K., Hayagreevan, C., Rahul, R., Jeevagan, A.J., Adinaveen, T., Bhuvaneshwari, D.S., Muthukumar, P., Amalraj, M., 2022. Catalytic hydrolysis of sodium borohydride for hydrogen production using phosphorylated silica particles. Environ. Sci. Pollut. Res. 30, 21199–21212. https://doi.org/10.1007/s11356-022-23672-8
  • [38]. Ghorbanloo, M., Nazari, P., 2020. A soft anionic hydrogel reactor for silver nanoparticle preparation and use in H2 production, 4-nitrophenol reduction and alcohol oxidation. J. Porous Mater. 27, 37–47. https://doi.org/10.1007/s10934-019-00794-y
  • [39]. Giappa, R.M., Tylianakis, E., Di Gennaro, M., Gkagkas, K., Froudakis, G.E., 2021. A combination of multi-scale calculations with machine learning for investigating hydrogen storage in metal organic frameworks. Int. J. Hydrogen Energy 46, 27612–27621. https://doi.org/10.1016/j.ijhydene.2021.06.021
  • [40]. Grochala, W., 2015. First there was hydrogen. Nat. Chem. 7, 264–264. https://doi.org/10.1038/nchem.2186
  • [41]. Guan, S., An, L., Chen, Y., Li, M., Shi, J., Liu, X., Fan, Y., Li, B., Liu, B., 2022. Stabilized cobalt-based nanofilm catalyst prepared using an ionic liquid/water interfacial process for hydrogen generation from sodium borohydride. J. Colloid Interface Sci. 608, 3111–3120. https://doi.org/10.1016/j.jcis.2021.11.041
  • [42]. Hsueh, C.-L., Chen, C.-Y., Ku, J.-R., Tsai, S.-F., Hsu, Y.-Y., Tsau, F., Jeng, M.-S., 2008. Simple and fast fabrication of polymer template-Ru composite as a catalyst for hydrogen generation from alkaline NaBH4 solution. J. Power Sources 177, 485–492. https://doi.org/10.1016/j.jpowsour.2007.11.096
  • [43]. Huang, Y., Wang, Y., Zhao, R., Shen, P.K., Wei, Z., 2008. Accurately measuring the hydrogen generation rate for hydrolysis of sodium borohydride on multiwalled carbon nanotubes/Co–B catalysts. Int. J. Hydrogen Energy 33, 7110–7115. https://doi.org/10.1016/j.ijhydene.2008.09.046
  • [44]. Hydrogen Storage and Transport by Organic Hydrides and Application of Ammonia, 2019. , in: Science and Engineering of Hydrogen-Based Energy Technologies. Elsevier, pp. 229–236. https://doi.org/10.1016/B978-0-12-814251-6.00011-3
  • [45]. Inger, E., 2019. Can fool’s gold “pyrite” become real gold as a catalyst for clean-energy H2 production? Int. J. Hydrogen Energy 44, 32124–32135. https://doi.org/10.1016/j.ijhydene.2019.10.106
  • [46]. Inger, E., Demirci, S., Can, M., Sunol, A.K., Philippidis, G., Sahiner, N., 2020. PEI modified natural sands of Florida as catalysts for hydrogen production from sodium borohydride dehydrogenation in methanol. Int. J. Energy Res. https://doi.org/10.1002/er.6060
  • [47]. Ingersoll, J.C., Mani, N., Thenmozhiyal, J.C., Muthaiah, A., 2007. Catalytic hydrolysis of sodium borohydride by a novel nickel–cobalt–boride catalyst. J. Power Sources 173, 450–457. https://doi.org/10.1016/j.jpowsour.2007.04.040
  • [48]. Jia, H., Chen, X., Liu, C.-Y., Liu, X.-J., Zheng, X.-C., Guan, X.-X., Liu, P., 2018. Ultrafine palladium nanoparticles anchoring graphene oxide-ionic liquid grafted chitosan self-assembled materials: The novel organic-inorganic hybrid catalysts for hydrogen generation in hydrolysis of ammonia borane. Int. J. Hydrogen Energy 43, 12081–12090. https://doi.org/10.1016/j.ijhydene.2018.04.156
  • [49]. Jung, E.S., Kim, H., Kwon, S., Oh, T.H., 2018. Fuel cell system with sodium borohydride hydrogen generator for small unmanned aerial vehicles. Int. J. Green Energy 15, 385–392. https://doi.org/10.1080/15435075.2018.1464924
  • [50]. Karaman, O., 2022. Three-dimensional graphene network supported nickel-cobalt bimetallic alloy nanocatalyst for hydrogen production by hydrolysis of sodium borohydride and developing of an artificial neural network modeling to forecast hydrogen production rate. Chem. Eng. Res. Des. 181, 321–330. https://doi.org/10.1016/j.cherd.2022.03.028
  • [51]. Karamveer Sheoran, Thakur, V.K., Siwal, S.S., 2022. Synthesis and overview of carbon-based materials for high performance energy storage application: A review. Mater. Today Proc. 56, 9–17. https://doi.org/10.1016/j.matpr.2021.11.369
  • [52]. Kaur, A., Gangacharyulu, D., Bajpai, P.K., 2015. Kinetic studies on the NaBH4/H2O hydrogen storage system with CoCl2 as a catalyst. Bulg. Chem. Commun. 48, 757–761.
  • [53]. Kojima, Y., 2005. Hydrogen storage and generation using sodium borohydride. R&D Rev. Toyota CRDL 40, 31–36.
  • [54]. Krishnan, P., Advani, S.G., Prasad, A.K., 2009. Thin-film CoB catalyst templates for the hydrolysis of NaBH4 solution for hydrogen generation. Appl. Catal. B Environ. 86, 137–144. https://doi.org/10.1016/j.apcatb.2008.08.005
  • [55]. Kurmoo, M., 2009. Magnetic metal–organic frameworks. Chem. Soc. Rev. 38, 1353. https://doi.org/10.1039/b804757j
  • [56]. Kutyła, D., Salcı, A., Kwiecińska, A., Kołczyk-Siedlecka, K., Kowalik, R., Żabiński, P., Solmaz, R., 2020. Catalytic activity of electrodeposited ternary Co–Ni–Rh thin films for water splitting process. Int. J. Hydrogen Energy 45, 34805–34817. https://doi.org/10.1016/j.ijhydene.2020.05.196
  • [57]. Kwon, S., Kim, M.J., Kang, S., Kim, T., 2019. Development of a high-storage-density hydrogen generator using solid-state NaBH4 as a hydrogen source for unmanned aerial vehicles. Appl. Energy 251, 113331. https://doi.org/10.1016/j.apenergy.2019.113331
  • [58]. Lebedeva, O., Kultin, D., Kustov, L., 2024. Polymeric ionic liquids: Here, there and everywhere. Eur. Polym. J. 203, 112657. https://doi.org/10.1016/j.eurpolymj.2023.112657
  • [59]. Li, Y., Zhang, Q., Zhang, N., Zhu, L., Zheng, J., Chen, B.H., 2013. Ru–RuO2/C as an efficient catalyst for the sodium borohydride hydrolysis to hydrogen. Int. J. Hydrogen Energy 38, 13360–13367. https://doi.org/10.1016/j.ijhydene.2013.07.071
  • [60]. Li, Z., Li, H., Wang, L., Liu, T., Zhang, T., Wang, G., Xie, G., 2014. Hydrogen generation from catalytic hydrolysis of sodium borohydride solution using supported amorphous alloy catalysts (Ni–Co–P/γ-Al 2 O 3 ). Int. J. Hydrogen Energy 39, 14935–14941. https://doi.org/10.1016/j.ijhydene.2014.07.063
  • [61]. Liang, Y., Dai, H.-B., Ma, L.-P., Wang, P., Cheng, H.-M., 2010. Hydrogen generation from sodium borohydride solution using a ruthenium supported on graphite catalyst. Int. J. Hydrogen Energy 35, 3023–3028. https://doi.org/10.1016/j.ijhydene.2009.07.008
  • [62]. Liu, W., Cai, H., Lu, P., Xu, Q., Zhongfu, Y., Dong, J., 2013. Polymer hydrogel supported Pd–Ni–B nanoclusters as robust catalysts for hydrogen production from hydrolysis of sodium borohydride. Int. J. Hydrogen Energy 38, 9206–9216. https://doi.org/10.1016/j.ijhydene.2013.05.109
  • [63]. Liu, Z., Guo, B., Chan, S.H., Tang, E.H., Hong, L., 2008. Pt and Ru dispersed on LiCoO2 for hydrogen generation from sodium borohydride solutions. J. Power Sources 176, 306–311. https://doi.org/10.1016/j.jpowsour.2007.09.114
  • [64]. Lu, L., 2019. Nanoporous noble metal-based alloys: a review on synthesis and applications to electrocatalysis and electrochemical sensing. Microchim. Acta 186, 664. https://doi.org/10.1007/s00604-019-3772-3
  • [65]. Lu, Y.-C., Chen, M.-S., Chen, Y.-W., 2012. Hydrogen generation by sodium borohydride hydrolysis on nanosized CoB catalysts supported on TiO2, Al2O3 and CeO2. Int. J. Hydrogen Energy 37, 4254–4258. https://doi.org/10.1016/j.ijhydene.2011.11.105
  • [66]. Luo, C., Fu, F., Yang, X., Wei, J., Wang, C., Zhu, J., Huang, D., Astruc, D., Zhao, P., 2019. Highly Efficient and Selective Co@ZIF‐8 Nanocatalyst for Hydrogen Release from Sodium Borohydride Hydrolysis. ChemCatChem 11, 1643–1649. https://doi.org/10.1002/cctc.201900051
  • [67]. Martínez, R.J., Godínez, L.A., Robles, I., 2023. Waste resources utilization for biosorbent preparation, sorption studies, and electrocatalytic applications, in: Valorization of Wastes for Sustainable Development. Elsevier, pp. 395–418. https://doi.org/10.1016/B978-0-323-95417-4.00015-9
  • [68]. Meyyappan, M., Srivastava, D., 2002. Carbon nanotubes. Handb. Nanosci. Eng. Technol. 18-1-18–26. https://doi.org/10.1177/0022034513490957
  • [69]. Nie, M., Zou, Y.C., Huang, Y.M., Wang, J.Q., 2012. Ni–Fe–B catalysts for NaBH 4 hydrolysis. Int. J. Hydrogen Energy 37, 1568–1576. https://doi.org/10.1016/j.ijhydene.2011.10.006
  • [70]. Onat, E., Çevik, S., Şahin, Ö., Horoz, S., İzgi, M.S., 2021. Investigation of high catalytic activity catalyst for high hydrogen production rate: Co-Ru@MOF. J. Aust. Ceram. Soc. 57, 1389–1395. https://doi.org/10.1007/s41779-021-00643-9
  • [71]. Osman, A.I., Mehta, N., Elgarahy, A.M., Hefny, M., Al-Hinai, A., Al-Muhtaseb, A.H., Rooney, D.W., 2022. Hydrogen production, storage, utilisation and environmental impacts: a review. Environ. Chem. Lett. 20, 153–188. https://doi.org/10.1007/s10311-021-01322-8
  • [72]. Özkar, S., Zahmakıran, M., 2005. Hydrogen generation from hydrolysis of sodium borohydride using Ru(0) nanoclusters as catalyst. J. Alloys Compd. 404–406, 728–731. https://doi.org/10.1016/j.jallcom.2004.10.084
  • [73]. Ozturk, O.F., Demirci, S., Sengel, S.B., Sahiner, N., 2018. Highly regenerable ionic liquid microgels as inherently metal-free green catalyst for H2 generation. Polym. Adv. Technol. 29, 1426–1434. https://doi.org/10.1002/pat.4254
  • [74]. Paladini, M., Arzac, G.M., Godinho, V., Haro, M.C.J. De, Fernández, A., 2014. Supported Co catalysts prepared as thin films by magnetron sputtering for sodium borohydride and ammonia borane hydrolysis. Appl. Catal. B Environ. 158–159, 400–409. https://doi.org/10.1016/j.apcatb.2014.04.047
  • [75]. Paladini, M., Arzac, G.M., Godinho, V., Hufschmidt, D., de Haro, M.C.J., Beltrán, A.M., Fernández, A., 2017. The role of cobalt hydroxide in deactivation of thin film Co-based catalysts for sodium borohydride hydrolysis. Appl. Catal. B Environ. 210, 342–351. https://doi.org/10.1016/j.apcatb.2017.04.005
  • [76]. Paterson, R., Alharbi, A.A., Wills, C., Dixon, C., Šiller, L., Chamberlain, T.W., Griffiths, A., Collins, S.M., Wu, K., Simmons, M.D., Bourne, R.A., Lovelock, K.R.J., Seymour, J., Knight, J.G., Doherty, S., 2022. Heteroatom modified polymer immobilized ionic liquid stabilized ruthenium nanoparticles: Efficient catalysts for the hydrolytic evolution of hydrogen from sodium borohydride. Mol. Catal. 528, 112476. https://doi.org/10.1016/j.mcat.2022.112476
  • [77]. Retnamma, R., Novais, A.Q., Rangel, C.M., 2011. Kinetics of hydrolysis of sodium borohydride for hydrogen production in fuel cell applications: A review. Int. J. Hydrogen Energy 36, 9772–9790. https://doi.org/10.1016/j.ijhydene.2011.04.223
  • [78]. Sahiner, N., 2017. Modified multi-wall carbon nanotubes as metal free catalyst for application in H2 production from methanolysis of NaBH4. J. Power Sources 366, 178–184. https://doi.org/10.1016/j.jpowsour.2017.09.041
  • [79]. Sahiner, N., 2013. Soft and flexible hydrogel templates of different sizes and various functionalities for metal nanoparticle preparation and their use in catalysis. Prog. Polym. Sci. 38, 1329–1356. https://doi.org/10.1016/j.progpolymsci.2013.06.004
  • [80]. Sahiner, N., Demir, S., Yildiz, S., 2014. Magnetic colloidal polymeric ionic liquid synthesis and use in hydrogen production. Colloids Surfaces A Physicochem. Eng. Asp. 449, 87–95. https://doi.org/10.1016/j.colsurfa.2014.02.046
  • [81]. Sahiner, N., Demirci, S., 2017. Natural microgranular cellulose as alternative catalyst to metal nanoparticles for H2 production from NaBH4 methanolysis. Appl. Catal. B Environ. 202, 199–206. https://doi.org/10.1016/j.apcatb.2016.09.028
  • [82]. Sahiner, N., Demirci, S., 2016. Very fast H2</inf> production from the methanolysis of NaBH4 by metal-free poly(ethylene imine) microgel catalysts. Int. J. Energy Res. https://doi.org/10.1002/er.3679
  • [83]. Sahiner, Nurettin, Demirci, S., 2016. PEI-based hydrogels with different morphology and sizes: Bulkgel, microgel, and cryogel for catalytic energy and environmental catalytic applications. Eur. Polym. J. 76, 156–169. https://doi.org/10.1016/j.eurpolymj.2016.01.046
  • [84]. Sahiner, N., Sengel, S.B., 2017. Environmentally benign halloysite clay nanotubes as alternative catalyst to metal nanoparticles in H2 production from methanolysis of sodium borohydride. Fuel Process. Technol. 158, 1–8. https://doi.org/10.1016/j.fuproc.2016.12.009
  • [85]. Sahiner, N., Sengel, S.B., 2016. Quaternized polymeric microgels as metal free catalyst for H2 production from the methanolysis of sodium borohydride. J. Power Sources 336, 27–34. https://doi.org/10.1016/j.jpowsour.2016.10.054
  • [86]. Sahiner, N., Seven, F., Al-Lohedan, H., 2015. Super-fast hydrogen generation via super porous Q-P(VI)-M cryogel catalyst systems from hydrolysis of NaBH4. Int. J. Hydrogen Energy 40, 4605–4616. https://doi.org/10.1016/j.ijhydene.2015.02.049
  • [87]. Sahiner, N., Yildiz, S., 2014. Preparation of superporous poly(4-vinyl pyridine) cryogel and their templated metal nanoparticle composites for H2 production via hydrolysis reactions. Fuel Process. Technol. 126, 324–331. https://doi.org/10.1016/j.fuproc.2014.05.025
  • [88]. Saka, C., 2024. Fabrication of protonated chitosan/montmorillonite catalyst for hydrogen production via sodium borohydride in the optimum methanol/propylene glycol mixture. Int. J. Hydrogen Energy 65, 410–420. https://doi.org/10.1016/j.ijhydene.2024.03.371
  • [89]. Saka, C., 2023. Highly active hydrogen generation from sodium borohydride methanolysis and ethylene glycolysis reactions using protonated chitosan-zeolite hybrid metal-free particles. Appl. Catal. B Environ. 325, 122335. https://doi.org/10.1016/j.apcatb.2022.122335
  • [90]. Saka, C., 2021a. Highly active and durable hydrogen release in NaBH4 methanolysis reaction with sulphur and phosphorus-doped metal-free microalgal carbon nanoparticles. Appl. Catal. B Environ. 292, 120165. https://doi.org/10.1016/j.apcatb.2021.120165
  • [91]. Saka, C., 2021b. Very efficient dehydrogenation of methanolysis reaction with nitrogen doped Chlorella Vulgaris microalgae carbon as metal-free catalysts. Int. J. Hydrogen Energy 46, 20961–20971. https://doi.org/10.1016/j.ijhydene.2021.03.220
  • [92]. Saka, C., Balbay, A., 2019. Influence of process parameters on enhanced hydrogen generation via semi-methanolysis and semi-ethanolysis reactions of sodium borohydride using phosphoric acid. Int. J. Hydrogen Energy 44, 30119–30126. https://doi.org/10.1016/j.ijhydene.2019.09.172
  • [93]. Samatya Ölmez, S., Balbay, A., Saka, C., 2022. Phosphorus doped carbon nanodots particles based on pomegranate peels for highly active dehydrogenation of sodium borohydride in methanol. Int. J. Hydrogen Energy 47, 31647–31655. https://doi.org/10.1016/j.ijhydene.2022.07.091
  • [94]. Santos, D.M.F., Sequeira, C.A.C., 2011. Sodium borohydride as a fuel for the future. Renew. Sustain. Energy Rev. 15, 3980–4001. https://doi.org/10.1016/j.rser.2011.07.018
  • [95]. Seven, F., Sahiner, N., 2014. Modified macroporous P(2-hydroxyethyl methacrylate) P(HEMA) cryogel composites for H 2 production from hydrolysis of NaBH 4. Fuel Process. Technol. 128, 394–401. https://doi.org/10.1016/j.fuproc.2014.08.008
  • [96]. Singh, C., Mukhopadhyay, S., Hod, I., 2021. Metal–organic framework derived nanomaterials for electrocatalysis: recent developments for CO2 and N2 reduction. Nano Converg. 8, 1. https://doi.org/10.1186/s40580-020-00251-6
  • [97]. Solmaz, R., Yüksel, H., 2019. Fabrication, characterization and application of three-dimensional copper nanodomes as efficient cathodes for hydrogen production. Int. J. Hydrogen Energy 44, 14108–14116. https://doi.org/10.1016/j.ijhydene.2019.02.112
  • [98]. Thoniyot, P., Tan, M.J., Karim, A.A., Young, D.J., Loh, X.J., 2015. Nanoparticle–Hydrogel Composites: Concept, Design, and Applications of These Promising, Multi‐Functional Materials. Adv. Sci. 2. https://doi.org/10.1002/advs.201400010
  • [99]. Uzundurukan, A., Devrim, Y., 2019. Hydrogen generation from sodium borohydride hydrolysis by multi-walled carbon nanotube supported platinum catalyst: A kinetic study. Int. J. Hydrogen Energy 44, 17586–17594. https://doi.org/10.1016/j.ijhydene.2019.04.188
  • [100]. Walter, J.C., Zurawski, A., Montgomery, D., Thornburg, M., Revankar, S., 2008. Sodium borohydride hydrolysis kinetics comparison for nickel, cobalt, and ruthenium boride catalysts. J. Power Sources 179, 335–339. https://doi.org/10.1016/j.jpowsour.2007.12.006
  • [101]. Wang, M.C., Ouyang, L.Z., Liu, J.W., Wang, H., Zhu, M., 2017. Hydrogen generation from sodium borohydride hydrolysis accelerated by zinc chloride without catalyst: A kinetic study. J. Alloys Compd. 717, 48–54. https://doi.org/10.1016/j.jallcom.2017.04.274
  • [102]. Wang, X., Zhao, Y., Peng, X., Wang, J., Jing, C., Tian, J., 2015. Synthesis and characterizations of CoPt nanoparticles supported on poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) functionalized multi-walled carbon nanotubes with superior activity for NaBH4 hydrolysis. Mater. Sci. Eng. B 200, 99–106. https://doi.org/10.1016/j.mseb.2015.07.002
  • [103]. Xiang, W., Yang, N., Li, X., Linnemann, J., Hagemann, U., Ruediger, O., Heidelmann, M., Falk, T., Aramini, M., DeBeer, S., Muhler, M., Tschulik, K., Li, T., 2022. 3D atomic-scale imaging of mixed Co-Fe spinel oxide nanoparticles during oxygen evolution reaction. Nat. Commun. 13, 179. https://doi.org/10.1038/s41467-021-27788-2
  • [104]. Xu, G.-R., An, Z.-H., Xu, K., Liu, Q., Das, R., Zhao, H.-L., 2021. Metal organic framework (MOF)-based micro/nanoscaled materials for heavy metal ions removal: The cutting-edge study on designs, synthesis, and applications. Coord. Chem. Rev. 427, 213554. https://doi.org/10.1016/j.ccr.2020.213554
  • [105]. Yang, C.-C., Chen, M.-S., Chen, Y.-W., 2011. Hydrogen generation by hydrolysis of sodium borohydride on CoB/SiO2 catalyst. Int. J. Hydrogen Energy 36, 1418–1423. https://doi.org/10.1016/j.ijhydene.2010.11.006
  • [106]. Zaier, I., Metin, O., 2021. One-pot synthesis of graphene hydrogel-anchored cobalt-copper nanoparticles and their catalysis in hydrogen generation from ammonia borane. Turkish J. Chem. 45. https://doi.org/10.3906/kim-2107-32
  • [107]. Zhang, J., Lin, F., Yang, L., He, Z., Huang, X., Zhang, D., Dong, H., 2020. Ultrasmall Ru nanoparticles supported on chitin nanofibers for hydrogen production from NaBH4 hydrolysis. Chinese Chem. Lett. 31, 2019–2022. https://doi.org/10.1016/j.cclet.2019.11.042
  • [108]. Zhang, J.S., Delgass, W.N., Fisher, T.S., Gore, J.P., 2007. Kinetics of Ru-catalyzed sodium borohydride hydrolysis. J. Power Sources 164, 772–781. https://doi.org/10.1016/j.jpowsour.2006.11.002
  • [109]. Zhao, L., Li, Q., Su, Y., Yue, Q., Gao, B., 2017. A novel Enteromorpha based hydrogel for copper and nickel nanoparticle preparation and their use in hydrogen production as catalysts. Int. J. Hydrogen Energy 42, 6746–6756. https://doi.org/10.1016/j.ijhydene.2017.02.092
  • [110]. Zhong, H., Ouyang, L., Liu, J., Peng, C., Zhu, X., Zhu, W., Fang, F., Zhu, M., 2018. Sodium borohydride regeneration via direct hydrogen transformation of sodium metaborate tetrahydrate. J. Power Sources 390, 71–77. https://doi.org/10.1016/j.jpowsour.2018.04.037
  • [111]. Zhu, J., Li, R., Niu, W., Wu, Y., Gou, X., 2012. Facile hydrogen generation using colloidal carbon supported cobalt to catalyze hydrolysis of sodium borohydride. J. Power Sources 211, 33–39.
  • https://doi.org/10.1016/j.jpowsour.2012.03.051 [112]. Zhuang, D.-W., Kang, Q., Muir, S.S., Yao, X., Dai, H.-B., Ma, G.-L., Wang, P., 2013. Evaluation of a cobalt–molybdenum–boron catalyst for hydrogen generation of alkaline sodium borohydride solution–aluminum powder system. J. Power Sources 224, 304–311. https://doi.org/10.1016/j.jpowsour.2012.09.106
There are 112 citations in total.

Details

Primary Language English
Subjects Electrical Energy Storage, Energy, Renewable Energy Resources , Air-Space Transportation
Journal Section Review Article
Authors

Erk İnger 0000-0002-1857-8180

Publication Date December 21, 2024
Submission Date November 29, 2024
Acceptance Date December 16, 2024
Published in Issue Year 2024 Volume: 5 Issue: 2

Cite

APA İnger, E. (2024). Hydrogen generation from sodium borohydride solutions using different catalysts for the survival of living beings in the long-time space flights. Journal of Science, Technology and Engineering Research, 5(2), 199-222. https://doi.org/10.53525/jster.1593599
AMA İnger E. Hydrogen generation from sodium borohydride solutions using different catalysts for the survival of living beings in the long-time space flights. Journal of Science, Technology and Engineering Research. December 2024;5(2):199-222. doi:10.53525/jster.1593599
Chicago İnger, Erk. “Hydrogen Generation from Sodium Borohydride Solutions Using Different Catalysts for the Survival of Living Beings in the Long-Time Space Flights”. Journal of Science, Technology and Engineering Research 5, no. 2 (December 2024): 199-222. https://doi.org/10.53525/jster.1593599.
EndNote İnger E (December 1, 2024) Hydrogen generation from sodium borohydride solutions using different catalysts for the survival of living beings in the long-time space flights. Journal of Science, Technology and Engineering Research 5 2 199–222.
IEEE E. İnger, “Hydrogen generation from sodium borohydride solutions using different catalysts for the survival of living beings in the long-time space flights”, Journal of Science, Technology and Engineering Research, vol. 5, no. 2, pp. 199–222, 2024, doi: 10.53525/jster.1593599.
ISNAD İnger, Erk. “Hydrogen Generation from Sodium Borohydride Solutions Using Different Catalysts for the Survival of Living Beings in the Long-Time Space Flights”. Journal of Science, Technology and Engineering Research 5/2 (December 2024), 199-222. https://doi.org/10.53525/jster.1593599.
JAMA İnger E. Hydrogen generation from sodium borohydride solutions using different catalysts for the survival of living beings in the long-time space flights. Journal of Science, Technology and Engineering Research. 2024;5:199–222.
MLA İnger, Erk. “Hydrogen Generation from Sodium Borohydride Solutions Using Different Catalysts for the Survival of Living Beings in the Long-Time Space Flights”. Journal of Science, Technology and Engineering Research, vol. 5, no. 2, 2024, pp. 199-22, doi:10.53525/jster.1593599.
Vancouver İnger E. Hydrogen generation from sodium borohydride solutions using different catalysts for the survival of living beings in the long-time space flights. Journal of Science, Technology and Engineering Research. 2024;5(2):199-222.

Studies published in the journal are licensed under a

Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 (CC BY-NC-ND 4.0) International License. 

by-nc-nd.png

Free counters!