Research Article
BibTex RIS Cite
Year 2021, , 230 - 240, 31.07.2021
https://doi.org/10.33773/jum.945748

Abstract

References

  • S. Abbaszadeh, and A. Ebadian (2018). Nonlinear integrals and Hadamard-type inequalities, Soft Computing, 22 (9) (2018), 2843-2849.
  • M. Alomari and M. Darus, On the Hadamard's inequality for log-convex functions on the coordinates, J. Ineq. Appl. 2009 (2009), Article ID 283147, 13 pp.
  • M. Alomari, M. Darus and S. S. Dragomir, New inequalities of Hermite-Hadamard type for functions whose second derivatives absolute values are quasi-convex, Tamkang. J. Math. 41(4) (2010) 353-359.
  • M. Alomari, M. Darus and U.S. Kirmaci, Requnements of Hadamard-type inequalities for quasi-convex functions with applications to trapezoidal formula and to special means, Comp. Math. Appl. 59 (2010) 225-232.
  • M. U. Awan, M. A. Noor, K. I. Noor and F. Safdar, On strongly generalized convex functions, Filomat 31(18) (2017) 5783-5790.

ON SOME NEW HERMITE-HADAMARD TYPE INEQUALITIES FOR FUNCTIONS WHOSE nTH DERIVATIVES ARE (mü 1; mü 2)- STRONGLY CONVEX

Year 2021, , 230 - 240, 31.07.2021
https://doi.org/10.33773/jum.945748

Abstract

The aim of this paper, is to establish some new inequalities of
Hermite-Hadamard type by using (mü 1; mü 2)-strongly convex function via whose
nth derivatives in absolute value at certain powers. Moreover, we also consider
their relevances for other related known results.

References

  • S. Abbaszadeh, and A. Ebadian (2018). Nonlinear integrals and Hadamard-type inequalities, Soft Computing, 22 (9) (2018), 2843-2849.
  • M. Alomari and M. Darus, On the Hadamard's inequality for log-convex functions on the coordinates, J. Ineq. Appl. 2009 (2009), Article ID 283147, 13 pp.
  • M. Alomari, M. Darus and S. S. Dragomir, New inequalities of Hermite-Hadamard type for functions whose second derivatives absolute values are quasi-convex, Tamkang. J. Math. 41(4) (2010) 353-359.
  • M. Alomari, M. Darus and U.S. Kirmaci, Requnements of Hadamard-type inequalities for quasi-convex functions with applications to trapezoidal formula and to special means, Comp. Math. Appl. 59 (2010) 225-232.
  • M. U. Awan, M. A. Noor, K. I. Noor and F. Safdar, On strongly generalized convex functions, Filomat 31(18) (2017) 5783-5790.
There are 5 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

Seda Kılınç Yıldırım 0000-0002-3258-6240

Hüseyin Yıldırım 0000-0001-8855-9260

Publication Date July 31, 2021
Submission Date June 15, 2021
Acceptance Date July 29, 2021
Published in Issue Year 2021

Cite

APA Kılınç Yıldırım, S., & Yıldırım, H. (2021). ON SOME NEW HERMITE-HADAMARD TYPE INEQUALITIES FOR FUNCTIONS WHOSE nTH DERIVATIVES ARE (mü 1; mü 2)- STRONGLY CONVEX. Journal of Universal Mathematics, 4(2), 230-240. https://doi.org/10.33773/jum.945748
AMA Kılınç Yıldırım S, Yıldırım H. ON SOME NEW HERMITE-HADAMARD TYPE INEQUALITIES FOR FUNCTIONS WHOSE nTH DERIVATIVES ARE (mü 1; mü 2)- STRONGLY CONVEX. JUM. July 2021;4(2):230-240. doi:10.33773/jum.945748
Chicago Kılınç Yıldırım, Seda, and Hüseyin Yıldırım. “ON SOME NEW HERMITE-HADAMARD TYPE INEQUALITIES FOR FUNCTIONS WHOSE NTH DERIVATIVES ARE (mü 1; Mü 2)- STRONGLY CONVEX”. Journal of Universal Mathematics 4, no. 2 (July 2021): 230-40. https://doi.org/10.33773/jum.945748.
EndNote Kılınç Yıldırım S, Yıldırım H (July 1, 2021) ON SOME NEW HERMITE-HADAMARD TYPE INEQUALITIES FOR FUNCTIONS WHOSE nTH DERIVATIVES ARE (mü 1; mü 2)- STRONGLY CONVEX. Journal of Universal Mathematics 4 2 230–240.
IEEE S. Kılınç Yıldırım and H. Yıldırım, “ON SOME NEW HERMITE-HADAMARD TYPE INEQUALITIES FOR FUNCTIONS WHOSE nTH DERIVATIVES ARE (mü 1; mü 2)- STRONGLY CONVEX”, JUM, vol. 4, no. 2, pp. 230–240, 2021, doi: 10.33773/jum.945748.
ISNAD Kılınç Yıldırım, Seda - Yıldırım, Hüseyin. “ON SOME NEW HERMITE-HADAMARD TYPE INEQUALITIES FOR FUNCTIONS WHOSE NTH DERIVATIVES ARE (mü 1; Mü 2)- STRONGLY CONVEX”. Journal of Universal Mathematics 4/2 (July 2021), 230-240. https://doi.org/10.33773/jum.945748.
JAMA Kılınç Yıldırım S, Yıldırım H. ON SOME NEW HERMITE-HADAMARD TYPE INEQUALITIES FOR FUNCTIONS WHOSE nTH DERIVATIVES ARE (mü 1; mü 2)- STRONGLY CONVEX. JUM. 2021;4:230–240.
MLA Kılınç Yıldırım, Seda and Hüseyin Yıldırım. “ON SOME NEW HERMITE-HADAMARD TYPE INEQUALITIES FOR FUNCTIONS WHOSE NTH DERIVATIVES ARE (mü 1; Mü 2)- STRONGLY CONVEX”. Journal of Universal Mathematics, vol. 4, no. 2, 2021, pp. 230-4, doi:10.33773/jum.945748.
Vancouver Kılınç Yıldırım S, Yıldırım H. ON SOME NEW HERMITE-HADAMARD TYPE INEQUALITIES FOR FUNCTIONS WHOSE nTH DERIVATIVES ARE (mü 1; mü 2)- STRONGLY CONVEX. JUM. 2021;4(2):230-4.