Research Article
BibTex RIS Cite
Year 2023, , 17 - 32, 21.06.2023
https://doi.org/10.55385/kastamonujes.1298700

Abstract

References

  • Konishi, A., Umetani, K., & Hiraki, E. (2018, May). High-frequency self-driven synchronous rectifier controller for WPT systems. In 2018 International Power Electronics Conference (IPEC-Niigata 2018-ECCE Asia) (pp. 1602-1609). IEEE.
  • Siddiqui, A., Nagani, A., & Ali, R. (2015). Wireless power transfer techniques: a review. Recent & Innovation Trends in Computing & Communication, 3(12), 6711-616.
  • Tesla, N. (1905). Art of Transmitting Electrical Energy through the Natural Medium.
  • Nisshagen, M., & Sjöstrand, E. (2017). Wireless power transfer using resonant inductive coupling-Design and implementation of an IPT system with one meter air gap in the region between near-range and mid-range..
  • Tesla, N. (1900). System of Transmission of Electrical Energy, pp. 1–6, [Online]. Available: https://patentimages.storage.googleapis.com/62/90/92/45a5932052a940/US645576.pdf
  • Tesla, N. (1900). Apparatus for Transmission of Electrical Energy.
  • Tesla, N. (1898). “High Frequency Oscillators for Electro-Therapeutic and Other Purposes,” Proc. IEEE, 87(7), 1282.
  • Schawlow, A. L., & Townes, C. H. (1960). U.S. Patent No. 2,929,922. Washington, DC: U.S. Patent & Trademark Office.
  • Maiman, T. H. (1967). Ruby laser system, pp. 3, 353, 115.
  • Brown, W.C., (1969). Microwave to DC Converter.
  • Brown, W.C. (1965). Experimental Airborne Microwave Supported Platform.
  • Kimura, M., Miyakoshi, N., & Daibou, M. (1991, January). A miniature opto-electric transformer. In [1991] Proceedings. IEEE Micro Electro Mechanical Systems (pp. 227-232). IEEE.
  • Sahai, A., & Graham, D. (2011, May). Optical wireless power transmission at long wavelengths. In 2011 International Conference on Space Optical Systems & Applications (ICSOS) (pp. 164-170). IEEE.
  • Ishiyama, T., Kanai, Y., Ohwaki, J., & Mino, M. (2003, October). Impact of a wireless power transmission system using an ultrasonic air transducer for low-power mobile applications. In IEEE Symposium on Ultrasonics, 2003 (Vol. 2, pp. 1368-1371). IEEE.
  • Kurs, A., Karalis, A., Moffatt, R., Joannopoulos, J. D., Fisher, P., & Soljacic, M. (2007). Wireless power transfer via strongly coupled magnetic resonances. science, 317(5834), 83-86.
  • Cannon, B. L., Hoburg, J. F., Stancil, D. D., & Goldstein, S. C. (2009). Magnetic resonant coupling as a potential means for wireless power transfer to multiple small receivers. IEEE transactions on power electronics, 24(7), 1819-1825.
  • Karakaya, U. (2007). Motor Control Via Wireless Energy & Information Transfer, M.Sc. Thesis, Institute of Science & Technology, Istanbul Technical University, Turkiye.
  • Sample, A. P., Meyer, D. T., & Smith, J. R. (2010). Analysis, experimental results, & range adaptation of magnetically coupled resonators for wireless power transfer. IEEE Transactions on industrial electronics, 58(2), 544-554.
  • Koma, R., Nakamura, S., Ajisaka, S., & Hashimoto, H. (2011, July). Basic analysis of the circuit model using relay antenna in magnetic resonance coupling position sensing system. In 2011 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM) (pp. 25-30). IEEE.
  • Cheon, S., Kim, Y. H., Kang, S. Y., Lee, M. L., Lee, J. M., & Zyung, T. (2010). Circuit-model-based analysis of a wireless energy-transfer system via coupled magnetic resonances. IEEE Transactions on Industrial Electronics, 58(7), 2906-2914.
  • Wang, C. S., Covic, G. A., & Stielau, O. H. (2004). Power transfer capability & bifurcation phenomena of loosely coupled inductive power transfer systems. IEEE transactions on industrial electronics, 51(1), 148-157.
  • Sallán, J., Villa, J. L., Llombart, A., & Sanz, J. F. (2009). Optimal design of ICPT systems applied to electric vehicle battery charge. IEEE Transactions on Industrial Electronics, 56(6), 2140-2149.
  • Chopra, S., & Bauer, P. (2011, October). Analysis & design considerations for a contactless power transfer system. In 2011 IEEE 33rd International Telecommunications Energy Conference (INTELEC) (pp. 1-6). IEEE.
  • Imura, T., & Hori, Y. (2011). Maximizing air gap & efficiency of magnetic resonant coupling for wireless power transfer using equivalent circuit & Neumann formula. IEEE Transactions on industrial electronics, 58(10), 4746-4752.
  • Jang, Y. J., Suh, E. S., & Kim, J. W. (2015). System architecture & mathematical models of electric transit bus system utilizing wireless power transfer technology. IEEE Systems Journal, 10(2), 495-506.
  • Low, Z. N., Casanova, J. J., Maier, P. H., Taylor, J. A., Chinga, R. A., & Lin, J. (2009). Method of load/fault detection for loosely coupled planar wireless power transfer system with power delivery tracking. IEEE Transactions on Industrial Electronics, 57(4), 1478-1486.
  • Jadidian, J., and Katabi, D. (2014). Magnetic MIMO, (495–506).
  • Agcal, A., Ozcira, S., and Bekiroglu, N. (2016). Wireless power transfer by using magnetically coupled resonators. Journal of Wireless Power Transfer: Fundamentals and Technologies, 49-66.
  • Ozdemir, C. (2017). Adaptive Control System Design and Implementation for Power Quality and Power Transfer Efficiency at Wireless Power Transfer Systems, M.Sc. Thesis, Institute of Science and Technology, Mersin University, Türkiye.
  • Jeong, S., Lin, T. H., & Tentzeris, M. M. (2019). A real-time range-adaptive impedance matching utilizing a machine learning strategy based on neural networks for wireless power transfer systems. IEEE Transactions on Microwave Theory & Techniques, 67(12), 5340-5347.
  • Bai, T., Mei, B., Zhao, L., & Wang, X. (2019). Machine learning-assisted wireless power transfer based on magnetic resonance. IEEE Access, 7, 109454-109459.
  • Ustun, D., Balci, S., & Sabanci, K. (2020). A parametric simulation of the wireless power transfer with inductive coupling for electric vehicles, & modelling with artificial bee colony algorithm. Measurement, 150, 107082.
  • Faraci, G., Raciti, A., Rizzo, S. A., & Schembra, G. (2020). Green wireless power transfer system for a drone fleet managed by reinforcement learning in smart industry. Applied Energy, 259, 114204.
  • Kim, J., Clerckx, B., & Mitcheson, P. D. (2020). Signal & system design for wireless power transfer: Prototype, experiment & validation. IEEE Transactions on Wireless Communications, 19(11), 7453-7469.
  • Gheisarnejad, M., Farsizadeh, H., Tavana, M. R., & Khooban, M. H. (2020). A novel deep learning controller for DC–DC buck–boost converters in wireless power transfer feeding CPLs. IEEE Transactions on Industrial Electronics, 68(7), 6379-6384.
  • Nam, I., Dougal, R., & Santi, E. (2012, September). Novel control approach to achieving efficient wireless battery charging for portable electronic devices. In 2012 IEEE Energy Conversion Congress & Exposition (ECCE) (pp. 2482-2491). IEEE.
  • Phokhaphan, N., Choeisai, K., Noguchi, K., Araki, T., Kusaka, K., Orikawa, K., & Itoh, J. I. (2013, November). Wireless power transfer based on MHz inverter through PCB antenna. In 2013 1st International Future Energy Electronics Conference (IFEEC) (pp. 126-130). IEEE.
  • Gao, L., Hu, W., Xie, X., Deng, Q., Wu, Z., Zhou, H., & Jiang, Y. (2013, June). Optimum design of coil for wireless energy transmission system based on resonant coupling. In 2013 10th IEEE International Conference on Control & Automation (ICCA) (pp. 190-195). IEEE.
  • Ahn, D., & Hong, S. (2013). A transmitter or a receiver consisting of two strongly coupled resonators for enhanced resonant coupling in wireless power transfer. IEEE transactions on industrial electronics, 61(3), 1193-1203.
  • Villar, I., Iruretagoyena, U., Rujas, A., Garcia-Bediaga, A., and de Arenaza, I. P. (2015, September). Design and implementation of a SiC based contactless battery charger for electric vehicles. In 2015 IEEE Energy Conversion Congress & Exposition (ECCE) (pp. 1294-1300). IEEE.
  • Kuzey, S., Balci, S., & Altin, N. (2017). Design & analysis of a wireless power transfer system with alignment errors for electrical vehicle applications. International journal of hydrogen energy, 42(28), 17928-17939.
  • Aydin, E., Kosesoy, Y., Yildiriz, E., & Aydemir, M. T. (2018, November). Comparison of hexagonal & square coils for use in wireless charging of electric vehicle battery. In 2018 International Symposium on Electronics & Telecommunications (ISETC) (pp. 1-4). IEEE.
  • Doğan, Z., Özsoy, M., & İskender, İ. (2019). Manyetik Rezonansa Dayalı Kablosuz Enerji Transferi İçin Yeni Bir Nüve Geometrisi. Gazi University Journal of Science Part C: Design & Technology, 7(4), 1012-1024.
  • Neves, A., Sousa, D. M., Roque, A., & Terras, J. M. (2011, August). Analysis of an inductive charging system for a commercial electric vehicle. In Proceedings of the 2011 14th European Conference on Power Electronics & Applications (pp. 1-10). IEEE.
  • Kusaka, K., & Itoh, J. I. (2012, October). Input impedance matched AC-DC converter in wireless power transfer for EV charger. In 2012 15th International Conference on Electrical Machines & Systems (ICEMS) (pp. 1-6). IEEE.
  • Fincan, B. (2015). Designing A Wireless Charger For Electrical Vehicles, M.Sc. Thesis, Institute of Science & Technology, Istanbul Technical University, Turkiye.
  • Kuzey, S. (2017). Design of Inductive Magnetic Coupled Power Transmission System for Electric Vehicle, M.Sc. Thesis, Institute of Science & Technology, Gazi University, Turkiye.
  • Yakala, R. K., Pramanick, S., Nayak, D. P., & Kumar, M. (2021). Optimization of circular coil design for wireless power transfer system in electric vehicle battery charging applications. Transactions of the Indian National Academy of Engineering, 6, 765-774.
  • Çiçek, M., Gençtürk, M., Balci, S., & Sabanci, K. (2021). The modelling, simulation, & implementation of wireless power transfer for an electric vehicle charging station. Turkish Journal of Engineering, 6(3), 223-229.
  • Moradewicz, A. J., & Kazmierkowski, M. P. (2009). High efficiency contactless energy transfer system with power electronic resonant converter. Bulletin of the Polish Academy of Sciences: Technical Sciences, 375-381.
  • Rao¹, T. C., & Geetha, K. (2016). Categories, standards & recent trends in wireless power transfer: A survey. Indian journal of science and technology, 9, 20.
  • Cicek, M. (2022). Modeling, Simulation and Analysis of Wireless Power Transfer, M.Sc. Thesis, Institute of Science and TechnologyKaramanoglu Mehmetbey University, Turkiye.
  • Zheng, C. (2015). Loosely Coupled Transformer and Tuning Network Design for High-Efficiency Inductive Power Transfer Systems, Ph.D. Thesis, Virginia Polytechnic Institute and State University. Blacksburg, Virginia.
  • Khayrudinov, V. (2015). Wireless Power Transfer system : Development and Implementation, B.Sc. Thesis, ResearchGate, Helsinki Metropolia University of Applied Sciences.
  • Lu, X., Wang, P., Niyato, D., Kim, D. I., and Han, Z. (2015). Wireless charging technologies: Fundamentals, standards, and network applications. IEEE communications surveys and tutorials, 18(2), 1413-1452.
  • Coca, E. (2016). Wireless Power Transfer - Fundamentals and Technologies.
  • Cheng, D. K. (1983). Field and Wave Electromagnetics.
  • Rosa, E. B., & Grover, F. W. (1912). Formulas and tables for the calculation of mutual and self-inductance (Revised). Bulletin of the Bureau of Standards, 8(1), 1.
  • Uzun, G. (2012). Wireless Energy Transfer, M.Sc. Thesis, Institute of Science and Technology Ondokuz Mayıs University, Turkiye.
  • Mendes Duarte, R., & Klaric Felic, G. (2014). Analysis of the coupling coefficient in inductive energy transfer systems. Active & Passive Electronic Components.
  • Liu, X., Xia, C., & Yuan, X. (2018). Study of the circular flat spiral coil structure effect on wireless power transfer system performance. Energies, 11(11), 2875.
  • Oraz, A. A., & Alkaya, A. (2018). Contacless Power Transfer Methods for Electirc Vehicles Charging, CISET 2018 Cilicia International Symposium on Engineering & Technology, Mersin, Turkiye.
  • Zhang, Y., Yan, Z., Zhu, J., Li, S., & Mi, C. (2019). A review of foreign object detection (FOD) for inductive power transfer systems, eTransportation, Volume 1, 100002, https://doi.org/10.1016/j.etran.2019.04.002.
  • Wheeler, H. A. (1928). Simple inductance formulas for radio coils. Proceedings of the institute of Radio Engineers, 16(10), 1398-1400.
  • Agcal, A. (2017). Design & Implementation of a High Efficiency Wireless Power Transfer System with A New Closed Loop Algorithm, Ph.D. Thesis, Institute of Science & Technology Yıldız Technical University, Turkiye.
  • Namadmalan, A., Jaafari, B., Iqbal, A., & Al-Hitmi, M. (2020). Design optimization of inductive power transfer systems considering bifurcation & equivalent AC resistance for spiral coils. IEEE Access, 8, 141584-141593.
  • Fawwaz U. R., & Ulaby, T. (2015). Fundamentals of applied electrostatics.

A Comparative Performance Analysis of Wireless Power Transfer with Parametric Simulation Approach

Year 2023, , 17 - 32, 21.06.2023
https://doi.org/10.55385/kastamonujes.1298700

Abstract

This paper presents a parametric optimization and normalization approach for coreless Resonant Inductive Coupling Wireless Power Transfer (RIC-WPT) systems. The used system is based on a series–series (SS) compensated circuit via flat spiral coils. Moreover, the recommended approach system finds optimum capacitor values for the best efficiency point where the RIC-WPT system operates. Flat spiral three-dimensional (3D) coils are modelled and parametric analysed with different air gaps in ANSYS-Electronics-Maxwell software which is based on the Finite Element Method (FEM). Then power electronics circuit with a full-bridge inverter is designed in Ansys/Simplorer software. The coils and the power electronics circuit are co-simulated with parametric values. Thus, as a result of parametric simulation studies, the most efficient version of a Wireless Power Transfer (WPT) system structure is proposed with the design and normalized power electronics elements that can be physically applied for the chosen operating frequency value. As a result of the simulation studies, power transmission is realized with an efficiency of approximately 74.31% while the distance between the coils was 200 mm. Furthermore, useful information for WPT designs is been obtained thanks to co-simulation studies by changing power electronics circuit parameters and electromagnetic modelling parameters.

References

  • Konishi, A., Umetani, K., & Hiraki, E. (2018, May). High-frequency self-driven synchronous rectifier controller for WPT systems. In 2018 International Power Electronics Conference (IPEC-Niigata 2018-ECCE Asia) (pp. 1602-1609). IEEE.
  • Siddiqui, A., Nagani, A., & Ali, R. (2015). Wireless power transfer techniques: a review. Recent & Innovation Trends in Computing & Communication, 3(12), 6711-616.
  • Tesla, N. (1905). Art of Transmitting Electrical Energy through the Natural Medium.
  • Nisshagen, M., & Sjöstrand, E. (2017). Wireless power transfer using resonant inductive coupling-Design and implementation of an IPT system with one meter air gap in the region between near-range and mid-range..
  • Tesla, N. (1900). System of Transmission of Electrical Energy, pp. 1–6, [Online]. Available: https://patentimages.storage.googleapis.com/62/90/92/45a5932052a940/US645576.pdf
  • Tesla, N. (1900). Apparatus for Transmission of Electrical Energy.
  • Tesla, N. (1898). “High Frequency Oscillators for Electro-Therapeutic and Other Purposes,” Proc. IEEE, 87(7), 1282.
  • Schawlow, A. L., & Townes, C. H. (1960). U.S. Patent No. 2,929,922. Washington, DC: U.S. Patent & Trademark Office.
  • Maiman, T. H. (1967). Ruby laser system, pp. 3, 353, 115.
  • Brown, W.C., (1969). Microwave to DC Converter.
  • Brown, W.C. (1965). Experimental Airborne Microwave Supported Platform.
  • Kimura, M., Miyakoshi, N., & Daibou, M. (1991, January). A miniature opto-electric transformer. In [1991] Proceedings. IEEE Micro Electro Mechanical Systems (pp. 227-232). IEEE.
  • Sahai, A., & Graham, D. (2011, May). Optical wireless power transmission at long wavelengths. In 2011 International Conference on Space Optical Systems & Applications (ICSOS) (pp. 164-170). IEEE.
  • Ishiyama, T., Kanai, Y., Ohwaki, J., & Mino, M. (2003, October). Impact of a wireless power transmission system using an ultrasonic air transducer for low-power mobile applications. In IEEE Symposium on Ultrasonics, 2003 (Vol. 2, pp. 1368-1371). IEEE.
  • Kurs, A., Karalis, A., Moffatt, R., Joannopoulos, J. D., Fisher, P., & Soljacic, M. (2007). Wireless power transfer via strongly coupled magnetic resonances. science, 317(5834), 83-86.
  • Cannon, B. L., Hoburg, J. F., Stancil, D. D., & Goldstein, S. C. (2009). Magnetic resonant coupling as a potential means for wireless power transfer to multiple small receivers. IEEE transactions on power electronics, 24(7), 1819-1825.
  • Karakaya, U. (2007). Motor Control Via Wireless Energy & Information Transfer, M.Sc. Thesis, Institute of Science & Technology, Istanbul Technical University, Turkiye.
  • Sample, A. P., Meyer, D. T., & Smith, J. R. (2010). Analysis, experimental results, & range adaptation of magnetically coupled resonators for wireless power transfer. IEEE Transactions on industrial electronics, 58(2), 544-554.
  • Koma, R., Nakamura, S., Ajisaka, S., & Hashimoto, H. (2011, July). Basic analysis of the circuit model using relay antenna in magnetic resonance coupling position sensing system. In 2011 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM) (pp. 25-30). IEEE.
  • Cheon, S., Kim, Y. H., Kang, S. Y., Lee, M. L., Lee, J. M., & Zyung, T. (2010). Circuit-model-based analysis of a wireless energy-transfer system via coupled magnetic resonances. IEEE Transactions on Industrial Electronics, 58(7), 2906-2914.
  • Wang, C. S., Covic, G. A., & Stielau, O. H. (2004). Power transfer capability & bifurcation phenomena of loosely coupled inductive power transfer systems. IEEE transactions on industrial electronics, 51(1), 148-157.
  • Sallán, J., Villa, J. L., Llombart, A., & Sanz, J. F. (2009). Optimal design of ICPT systems applied to electric vehicle battery charge. IEEE Transactions on Industrial Electronics, 56(6), 2140-2149.
  • Chopra, S., & Bauer, P. (2011, October). Analysis & design considerations for a contactless power transfer system. In 2011 IEEE 33rd International Telecommunications Energy Conference (INTELEC) (pp. 1-6). IEEE.
  • Imura, T., & Hori, Y. (2011). Maximizing air gap & efficiency of magnetic resonant coupling for wireless power transfer using equivalent circuit & Neumann formula. IEEE Transactions on industrial electronics, 58(10), 4746-4752.
  • Jang, Y. J., Suh, E. S., & Kim, J. W. (2015). System architecture & mathematical models of electric transit bus system utilizing wireless power transfer technology. IEEE Systems Journal, 10(2), 495-506.
  • Low, Z. N., Casanova, J. J., Maier, P. H., Taylor, J. A., Chinga, R. A., & Lin, J. (2009). Method of load/fault detection for loosely coupled planar wireless power transfer system with power delivery tracking. IEEE Transactions on Industrial Electronics, 57(4), 1478-1486.
  • Jadidian, J., and Katabi, D. (2014). Magnetic MIMO, (495–506).
  • Agcal, A., Ozcira, S., and Bekiroglu, N. (2016). Wireless power transfer by using magnetically coupled resonators. Journal of Wireless Power Transfer: Fundamentals and Technologies, 49-66.
  • Ozdemir, C. (2017). Adaptive Control System Design and Implementation for Power Quality and Power Transfer Efficiency at Wireless Power Transfer Systems, M.Sc. Thesis, Institute of Science and Technology, Mersin University, Türkiye.
  • Jeong, S., Lin, T. H., & Tentzeris, M. M. (2019). A real-time range-adaptive impedance matching utilizing a machine learning strategy based on neural networks for wireless power transfer systems. IEEE Transactions on Microwave Theory & Techniques, 67(12), 5340-5347.
  • Bai, T., Mei, B., Zhao, L., & Wang, X. (2019). Machine learning-assisted wireless power transfer based on magnetic resonance. IEEE Access, 7, 109454-109459.
  • Ustun, D., Balci, S., & Sabanci, K. (2020). A parametric simulation of the wireless power transfer with inductive coupling for electric vehicles, & modelling with artificial bee colony algorithm. Measurement, 150, 107082.
  • Faraci, G., Raciti, A., Rizzo, S. A., & Schembra, G. (2020). Green wireless power transfer system for a drone fleet managed by reinforcement learning in smart industry. Applied Energy, 259, 114204.
  • Kim, J., Clerckx, B., & Mitcheson, P. D. (2020). Signal & system design for wireless power transfer: Prototype, experiment & validation. IEEE Transactions on Wireless Communications, 19(11), 7453-7469.
  • Gheisarnejad, M., Farsizadeh, H., Tavana, M. R., & Khooban, M. H. (2020). A novel deep learning controller for DC–DC buck–boost converters in wireless power transfer feeding CPLs. IEEE Transactions on Industrial Electronics, 68(7), 6379-6384.
  • Nam, I., Dougal, R., & Santi, E. (2012, September). Novel control approach to achieving efficient wireless battery charging for portable electronic devices. In 2012 IEEE Energy Conversion Congress & Exposition (ECCE) (pp. 2482-2491). IEEE.
  • Phokhaphan, N., Choeisai, K., Noguchi, K., Araki, T., Kusaka, K., Orikawa, K., & Itoh, J. I. (2013, November). Wireless power transfer based on MHz inverter through PCB antenna. In 2013 1st International Future Energy Electronics Conference (IFEEC) (pp. 126-130). IEEE.
  • Gao, L., Hu, W., Xie, X., Deng, Q., Wu, Z., Zhou, H., & Jiang, Y. (2013, June). Optimum design of coil for wireless energy transmission system based on resonant coupling. In 2013 10th IEEE International Conference on Control & Automation (ICCA) (pp. 190-195). IEEE.
  • Ahn, D., & Hong, S. (2013). A transmitter or a receiver consisting of two strongly coupled resonators for enhanced resonant coupling in wireless power transfer. IEEE transactions on industrial electronics, 61(3), 1193-1203.
  • Villar, I., Iruretagoyena, U., Rujas, A., Garcia-Bediaga, A., and de Arenaza, I. P. (2015, September). Design and implementation of a SiC based contactless battery charger for electric vehicles. In 2015 IEEE Energy Conversion Congress & Exposition (ECCE) (pp. 1294-1300). IEEE.
  • Kuzey, S., Balci, S., & Altin, N. (2017). Design & analysis of a wireless power transfer system with alignment errors for electrical vehicle applications. International journal of hydrogen energy, 42(28), 17928-17939.
  • Aydin, E., Kosesoy, Y., Yildiriz, E., & Aydemir, M. T. (2018, November). Comparison of hexagonal & square coils for use in wireless charging of electric vehicle battery. In 2018 International Symposium on Electronics & Telecommunications (ISETC) (pp. 1-4). IEEE.
  • Doğan, Z., Özsoy, M., & İskender, İ. (2019). Manyetik Rezonansa Dayalı Kablosuz Enerji Transferi İçin Yeni Bir Nüve Geometrisi. Gazi University Journal of Science Part C: Design & Technology, 7(4), 1012-1024.
  • Neves, A., Sousa, D. M., Roque, A., & Terras, J. M. (2011, August). Analysis of an inductive charging system for a commercial electric vehicle. In Proceedings of the 2011 14th European Conference on Power Electronics & Applications (pp. 1-10). IEEE.
  • Kusaka, K., & Itoh, J. I. (2012, October). Input impedance matched AC-DC converter in wireless power transfer for EV charger. In 2012 15th International Conference on Electrical Machines & Systems (ICEMS) (pp. 1-6). IEEE.
  • Fincan, B. (2015). Designing A Wireless Charger For Electrical Vehicles, M.Sc. Thesis, Institute of Science & Technology, Istanbul Technical University, Turkiye.
  • Kuzey, S. (2017). Design of Inductive Magnetic Coupled Power Transmission System for Electric Vehicle, M.Sc. Thesis, Institute of Science & Technology, Gazi University, Turkiye.
  • Yakala, R. K., Pramanick, S., Nayak, D. P., & Kumar, M. (2021). Optimization of circular coil design for wireless power transfer system in electric vehicle battery charging applications. Transactions of the Indian National Academy of Engineering, 6, 765-774.
  • Çiçek, M., Gençtürk, M., Balci, S., & Sabanci, K. (2021). The modelling, simulation, & implementation of wireless power transfer for an electric vehicle charging station. Turkish Journal of Engineering, 6(3), 223-229.
  • Moradewicz, A. J., & Kazmierkowski, M. P. (2009). High efficiency contactless energy transfer system with power electronic resonant converter. Bulletin of the Polish Academy of Sciences: Technical Sciences, 375-381.
  • Rao¹, T. C., & Geetha, K. (2016). Categories, standards & recent trends in wireless power transfer: A survey. Indian journal of science and technology, 9, 20.
  • Cicek, M. (2022). Modeling, Simulation and Analysis of Wireless Power Transfer, M.Sc. Thesis, Institute of Science and TechnologyKaramanoglu Mehmetbey University, Turkiye.
  • Zheng, C. (2015). Loosely Coupled Transformer and Tuning Network Design for High-Efficiency Inductive Power Transfer Systems, Ph.D. Thesis, Virginia Polytechnic Institute and State University. Blacksburg, Virginia.
  • Khayrudinov, V. (2015). Wireless Power Transfer system : Development and Implementation, B.Sc. Thesis, ResearchGate, Helsinki Metropolia University of Applied Sciences.
  • Lu, X., Wang, P., Niyato, D., Kim, D. I., and Han, Z. (2015). Wireless charging technologies: Fundamentals, standards, and network applications. IEEE communications surveys and tutorials, 18(2), 1413-1452.
  • Coca, E. (2016). Wireless Power Transfer - Fundamentals and Technologies.
  • Cheng, D. K. (1983). Field and Wave Electromagnetics.
  • Rosa, E. B., & Grover, F. W. (1912). Formulas and tables for the calculation of mutual and self-inductance (Revised). Bulletin of the Bureau of Standards, 8(1), 1.
  • Uzun, G. (2012). Wireless Energy Transfer, M.Sc. Thesis, Institute of Science and Technology Ondokuz Mayıs University, Turkiye.
  • Mendes Duarte, R., & Klaric Felic, G. (2014). Analysis of the coupling coefficient in inductive energy transfer systems. Active & Passive Electronic Components.
  • Liu, X., Xia, C., & Yuan, X. (2018). Study of the circular flat spiral coil structure effect on wireless power transfer system performance. Energies, 11(11), 2875.
  • Oraz, A. A., & Alkaya, A. (2018). Contacless Power Transfer Methods for Electirc Vehicles Charging, CISET 2018 Cilicia International Symposium on Engineering & Technology, Mersin, Turkiye.
  • Zhang, Y., Yan, Z., Zhu, J., Li, S., & Mi, C. (2019). A review of foreign object detection (FOD) for inductive power transfer systems, eTransportation, Volume 1, 100002, https://doi.org/10.1016/j.etran.2019.04.002.
  • Wheeler, H. A. (1928). Simple inductance formulas for radio coils. Proceedings of the institute of Radio Engineers, 16(10), 1398-1400.
  • Agcal, A. (2017). Design & Implementation of a High Efficiency Wireless Power Transfer System with A New Closed Loop Algorithm, Ph.D. Thesis, Institute of Science & Technology Yıldız Technical University, Turkiye.
  • Namadmalan, A., Jaafari, B., Iqbal, A., & Al-Hitmi, M. (2020). Design optimization of inductive power transfer systems considering bifurcation & equivalent AC resistance for spiral coils. IEEE Access, 8, 141584-141593.
  • Fawwaz U. R., & Ulaby, T. (2015). Fundamentals of applied electrostatics.
There are 67 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Mehmet Çiçek 0000-0003-2816-2020

Selami Balcı 0000-0002-3922-4824

Kadir Sabancı 0000-0003-0238-9606

Early Pub Date June 20, 2023
Publication Date June 21, 2023
Submission Date May 17, 2023
Published in Issue Year 2023

Cite

APA Çiçek, M., Balcı, S., & Sabancı, K. (2023). A Comparative Performance Analysis of Wireless Power Transfer with Parametric Simulation Approach. Kastamonu University Journal of Engineering and Sciences, 9(1), 17-32. https://doi.org/10.55385/kastamonujes.1298700
AMA Çiçek M, Balcı S, Sabancı K. A Comparative Performance Analysis of Wireless Power Transfer with Parametric Simulation Approach. KUJES. June 2023;9(1):17-32. doi:10.55385/kastamonujes.1298700
Chicago Çiçek, Mehmet, Selami Balcı, and Kadir Sabancı. “A Comparative Performance Analysis of Wireless Power Transfer With Parametric Simulation Approach”. Kastamonu University Journal of Engineering and Sciences 9, no. 1 (June 2023): 17-32. https://doi.org/10.55385/kastamonujes.1298700.
EndNote Çiçek M, Balcı S, Sabancı K (June 1, 2023) A Comparative Performance Analysis of Wireless Power Transfer with Parametric Simulation Approach. Kastamonu University Journal of Engineering and Sciences 9 1 17–32.
IEEE M. Çiçek, S. Balcı, and K. Sabancı, “A Comparative Performance Analysis of Wireless Power Transfer with Parametric Simulation Approach”, KUJES, vol. 9, no. 1, pp. 17–32, 2023, doi: 10.55385/kastamonujes.1298700.
ISNAD Çiçek, Mehmet et al. “A Comparative Performance Analysis of Wireless Power Transfer With Parametric Simulation Approach”. Kastamonu University Journal of Engineering and Sciences 9/1 (June 2023), 17-32. https://doi.org/10.55385/kastamonujes.1298700.
JAMA Çiçek M, Balcı S, Sabancı K. A Comparative Performance Analysis of Wireless Power Transfer with Parametric Simulation Approach. KUJES. 2023;9:17–32.
MLA Çiçek, Mehmet et al. “A Comparative Performance Analysis of Wireless Power Transfer With Parametric Simulation Approach”. Kastamonu University Journal of Engineering and Sciences, vol. 9, no. 1, 2023, pp. 17-32, doi:10.55385/kastamonujes.1298700.
Vancouver Çiçek M, Balcı S, Sabancı K. A Comparative Performance Analysis of Wireless Power Transfer with Parametric Simulation Approach. KUJES. 2023;9(1):17-32.