BibTex RIS Cite

The Effect of Inquiry based Learning on Students’ Learning Approaches and Epistemological Beliefs in Chemistry Laboratory

Year 2017, Volume: 18 Special Issue, 125 - 144, 01.11.2017

Abstract

This study aims to determine the effects of inquiry-based learning in the chemistry laboratory on students’ learning approaches and epistemological beliefs, and to determine students’ views about this method. This study uses mixed methods research design. The study group comprised 24 students. Learning approaches scale, epistemological beliefs scale, and open-ended questions were used as data collection tools. Following the analyses, significant differences were found between pretest and posttest scores for the belief that learning depends on effort, for the belief that leaning depends on ability, and for surface approach; but no significant differences were found between pre-test and posttest scores for the belief that there is only one truth and for deep approach. On examining the qualitative data, five themes were obtained: enjoying the stages, time problem, the contributions of the stages to the learning process, the difficulty of the stages, and whether or not the stages are followed

References

  • Abdal-Haqq, I. (1998). Constructivism in teacher education: Considerations for those who would link practice to theory. Washington, DC: ERIC Clearinghouse on Teaching and Teacher Education (ERIC Document Reproduction Service No. ED426986). http://www.eric.ed.gov/ERICWebPortal/contentdelivery/servlet/ERICServlet?acc no=ED426986. October 24, 2016 from ERIC database
  • Anderson, R. D. (2002). Reforming science teaching: What research says about inquiry. Journal of Science Teacher Education, 13(1), 1–12.
  • Arslan, A., Ogan Bekiroğlu, F., Süzük, E. ve Gürel, C. (2014). Fizik laboratuvar derslerinin araştırma-sorgulama açısından incelenmesi ve öğretmen adaylarının görüşlerinin belirlenmesi. Türk Fen Eğitimi Dergisi, 11(2), 3-37.
  • Batı, A. H., Tetik, C. ve Gürpınar, E. (2010). Öğrenme yaklaşımları ölçeği yeni şeklini Türkçeye uyarlama ve geçerlilik güvenirlilik çalışması. Türkiye Klinikleri Tıp Bilimleri Dergisi, 30(5), 1639- 1646.
  • Bayram, Z. (2015). Öğretmen adaylarının rehberli sorgulamaya dayalı fen etkinlikleri tasarlarken karşılaştıkları zorlukların incelenmesi. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 30(2), 15-29.
  • Biggs, J., Kember, D., & Leung, D. Y. (2001). The revised two‐ factor study process questionnaire: R‐ SPQ‐ 2F. British Journal of Educational Psychology, 71(1), 133- 149.
  • Borich, G. D. (2013). Effective Teaching Methods: Research-Based Practice (8th ed.). Upper Saddle River, NJ: Pearson Merrill Prentice Hall.
  • Bybee, R.W., Taylor, J.A., Gardner, A., Van Scotter, P., Powell, J.C., Westbrook, A., & Landes, N.(2006). The BSCS 5E instructional model: Origins, effectiveness and applications. Colorado Springs, CO: BSCS.
  • Carey, S., Evans, R., Honda, M., Jay, E., & Unger, C. (1989). ‘An experiment is when you try it and see if it works’: a study of grade 7 students’ understanding of the construction of scientific knowledge. International Journal of Science Education, 11(5), 514-529.
  • Cavallo, A. M. L., & Schafer, L. E. (1994). Relationships between students' meaningful learning orientation and their understanding of genetics topics. Journal of Research in Science Teaching, 31(4), 393-418.
  • Cheung, D. (2008). Facilitating chemistry teachers to implement inquiry-based laboratory work. International Journal of Science and Mathematics Education,6(1), 107-130.
  • Cheung, D. (2011). Teacher beliefs about implementing guided-inquiry laboratory experiments for secondary school chemistry. Journal of Chemical Education, 88(11), 1462-1468.
  • Chiappetta, E. L., & Adams, A. D. (2004). Inquiry-based instruction: Understanding how content and process go hand-in-hand with school science. The Science Teacher, 71(2), 46-50.
  • Chin, C., & Brown, D. E. (2000). Learning in science: A comparison of deep and surface approaches. Journal of research in science teaching, 37(2), 109-138.
  • Conley, A. M., Pintrich, P. R., Wekiri, I., & Harrison, D. (2004). Changes in epistemological beliefs in elementary science students. Contemporary Educational Psychology, 29, 186-204.
  • Çalışkan, İ.S. (2004). The effect of inquiry-based chemistry course on students' understanding of atom concept, learning approaches, motivation, self-efficacy and epistemological beliefs. Unpublished master’s thesis, Middle East Technical University, Ankara.
  • Deryakulu, D. (2004). Epistemolojik inançlar. Y.Kuzgun ve D. Deryakulu (Ed.), Eğitimde Bireysel Farklılıklar (s.259-288). Ankara: Nobel Yayınevi.
  • Deryakulu, D. ve Büyüköztürk, S. (2002). Epistemolojik inanç ölçeğinin geçerlik ve güvenirlik çalışması. Eurasian Journal of Educational Research, 2(8),111-125.
  • Deryakulu, D. ve Büyüköztürk, Ş. (2005). Epistemolojik inanç ölçeğinin faktör yapısının yeniden incelenmesi: Cinsiyet ve öğrenim görülen program türüne göre epistemolojik inançların karşılaştırılması. Eurasian Journal of Educational Research, 18, 57-70.
  • Deters, K. M. (2005). Student opinions regarding inquiry-based labs. Journal of Chemical Education, 82(8), 1178-1180.
  • Domin, D. S. (1999). A review of laboratory instruction styles. Journal of Chemical Education, 76(4), 543-547.
  • Fraenkel, J., Wallen, N., & Hyun, H.H. (2012). How to design and evaluate research in education (8th ed.). Boston: McGraw Hill.
  • Gibson, H. L., & Chase, C. (2002). Longitudinal impact of an inquiry‐ based science program on middle school students' attitudes toward science. Science Education, 86(5), 693-705.
  • Hackling, M.W., Goodrum, D., & Rennie, L.J. (2001). The state of science in Australian secondary schools. Australian Science Teachers Journal, 47(4), 6-17.
  • Hmelo-Silver, C. E., Duncan, R. G., & Chinn, C. A. (2007). Scaffolding and achievement in problem-based and inquiry learning: A response to Kirschner, Sweller, & Clark (2006). Educational Psychologist, 42(2), 99-107.
  • Hofstein, A., & Lunetta, V. N. (2004). The laboratory in science education: Foundations for the twenty‐ first century. Science education, 88(1), 28-54.
  • Kang, N. H., & Wallace, C. S. (2005). Secondary science teachers' use of laboratory activities: Linking epistemological beliefs, goals, and practices. Science Education, 89(1), 140-165.
  • Kızılgüneş, B., Tekkaya, C. ve Sungur, S. (2009). Modeling the relations among students' epistemological beliefs, motivation, learning approach, and achievement. The Journal of Educational Research, 102(4), 243-256.
  • Kidd, T. T., & Keengwe, J. (2010). Technology integration and urban schools: Implications for instructional practices. International Journal of Information and Communication Technology Education, 6(3), 51-63.
  • Köseoğlu, F. ve Tümay, H. (2015). Fen eğitiminde yapılandırmacılık ve yeni öğretim yöntemleri. Ankara: Palme Yayıncılık.
  • Lea, S., Stephenson, D., & Troy, J. (2003). Higher education students’ attitudes to student-centred learning: Beyond educational bulimia? Studies in Higher Education, 28(3), 321–334.
  • Linn, M. C., & Songer, N. B. (1993). How do students make sense of science? Merrill- Palmer Quarterly, 39(1),47–73.
  • Lord, T., & Orkwiszewski, T. (2006). Moving from didactic to inquiry-based instruction in a science laboratory. The American Biology Teacher, 68(6), 342-345.
  • Meyer, D. Z., Meyer, A. A., Nabb, K. A., Connell, M. G., & Avery, L. M. (2013). A theoretical and empirical exploration of intrinsic problems in designing inquiry activities. Research in Science Education, 43(1), 57-76.
  • Millar, R., & Abrahams, I. (2009). Practical work: Making it more effective. School Science Review, 91(334), 59-64.
  • National Research Council.(1996). National science education standards. Washington, DC: National Academy Press.
  • Oliver, R. (2007). Exploring an inquiry-based learning approach with first- year students in large undergraduate class. Innovations in Education and Teaching International, 44(1), 3-15.
  • Pedaste, M., Mäeots, M., Siiman, L. A., de Jong, T., van Riesen, S. A., Kamp, E. T., & Tsourlidaki, E. (2015). Phases of inquiry-based learning: Definitions and the inquiry cycle. Educational research review, 14, 47-61.
  • Phelps, A. J., & Lee, C. (2003). The power of practice: What students learn from how we teach. Journal o f Chemical Education, 80(7), 829-832.
  • Sandoval, W. A., & Morrison, K. (2003). High school students’ ideas about theories and theory change after a biological inquiry unit. Journal of Research in Science Teaching, 40(4), 369–392.
  • Sanger M. J. (2008). How does inquiry-based instruction affect teaching majors' views about teaching and learning science? Journal of Chemical Education, 85(2), 297- 302.
  • Sarı, U. ve Güven, G. B. (2013). Etkileşimli tahta destekli sorgulamaya dayalı fizik öğretiminin başarı ve motivasyona etkisi ve öğretmen adaylarının öğretime yönelik görüşleri. Necatibey Eğitim Fakültesi Elektronik Fen ve Matematik Eğitimi Dergisi, 7(2), 110-143.
  • Saunders, G. L. (1998). Relationships among epistemological beliefs, implementation of instruction, and approaches to learning in college chemistry (Order No. 9839804). Available from ProQuest Dissertations & Theses Global. (304458971). Retrieved from http://search.proquest.com/docview/304458971?accountid=11248.
  • Saunders, G. L., Cavallo, A. L., & Abraham, M. R. (1999). Relationships among epistemological beliefs, gender, approaches to learning, and implementation of instruction in chemistry laboratory. Paper presented at the Annual Meeting of the National Association for Research in Science Teaching, Boston, MA, March 28- 31, 1999, Retrieved from http://files.eric.ed.gov/fulltext/ED444835.pdf
  • Schommer, M. (1990). Effects of beliefs about the nature of knowledge on comprehension. Journal of Educational Psychology, 82(3), 498-504.
  • Stuart, C., & Thurlow, D. (2000). Making it their own: Preservice teachers’ experiences, beliefs, and classroom practices. Journal o f Teacher Education, 51(2), 113-121.
  • Supasorn, S. (2015). Grade 12 students’ conceptual understanding and mental models of galvanic cells before and after learning by using small-scale experiments in conjunction with a model kit. Chemistry Education Research and Practice,16(2), 393-407.
  • Şen, Ş. ve Erdoğan, Ü. I. (2016). The effect of inquiry-based laboratory applications on students’ motivation and learning strategies. International Online Journal of Educational Science, 8 (2), 163-177.
  • Şen, Ş., Yılmaz, A. ve Erdoğan, Ü. I. (2016). Sorgulamaya Dayalı Laboratuvarlara İlişkin Öğretmen doi:http://dx.doi.org/10.17051/io.2016.25448 .
  • Şeşen, B. A. ve Tarhan, L. (2013). Inquiry-based laboratory activities in electrochemistry: High school students’ achievements and attitudes. Research in Science Education, 43(1), 413-435.
  • Tsai, C.C. (2000). Relationships between student scientific epistemological beliefs and perceptions of constructivist learning environments. Educational Research, 42, 193–205.
  • Tural Dincer, G. ve Akdeniz, A. R. (2008). Examining Learning Approaches of Science Student Teachers According to the Class Level and Gender. Online Submission, 5(12), 54-59.
  • Vermetten, Y., Vermunt, J., & Lodewijks, H. (2002). Powerful learning environments? How university students differ in their response to instructional measures. Learning and Instruction, 12, 263–284.
  • Wilson, K. & Fowler, J. (2005). Assessing the impact of learning environments on students’ approaches to learning: comparing conventional and action learning designs. Assessment & Evaluation in Higher Education, 30 (1), 87-101.

KİMYA LABORATUVARINDA SORGULAMAYA DAYALI ÖĞRENMENİN ÖĞRENCİLERİN ÖĞRENME YAKLAŞIMLARINA VE EPİSTEMOLOJİK İNANÇLARINA ETKİSİ

Year 2017, Volume: 18 Special Issue, 125 - 144, 01.11.2017

Abstract

Bu çalışmanın amacı, kimya laboratuvarında sorgulamaya dayalı öğrenmenin öğrencilerin öğrenme yaklaşımlarına ve epistemolojik inançlarına etkisini belirlemek ve bu yöntem hakkında öğrencilerin görüşlerini tespit etmektir. Çalışmada, karma yöntem araştırma deseni kullanılmıştır. Çalışmaya toplam 24 öğrenci katılmıştır. Veri toplama aracı olarak öğrenme yaklaşımları ölçeği, epistemolojik inanç ölçeği ve açık uçlu sorular kullanılmıştır. Analizler sonucunda, öğrenmenin çabaya bağlı olduğuna inanç ve öğrenmenin yeteneğe bağlı olduğuna inanç öntest ve sontest puanları arasında anlamlı bir farklılık varken, tek bir doğrunun var olduğuna inanç öntest ve sontest puanları arasında anlamlı bir farklılık tespit edilmemiştir. Öğrencilerin öğrenme yaklaşımları incelendiğinde ise yüzeysel yaklaşım öntest ve sontest puanları arasında anlamlı bir farklılık tespit edilirken, derin yaklaşım öntest ve sontest puanları arasında anlamlı bir farklılık belirlenmemiştir. Nitel veriler incelendiğinde; aşamalardan hoşlanma durumu, zaman problemi, aşamaların öğrenme sürecine katkısı, aşamaların zorlukları ve aşamaların uygulanıp / uygulanmaması şeklinde beş tema oluşturulmuştur.

References

  • Abdal-Haqq, I. (1998). Constructivism in teacher education: Considerations for those who would link practice to theory. Washington, DC: ERIC Clearinghouse on Teaching and Teacher Education (ERIC Document Reproduction Service No. ED426986). http://www.eric.ed.gov/ERICWebPortal/contentdelivery/servlet/ERICServlet?acc no=ED426986. October 24, 2016 from ERIC database
  • Anderson, R. D. (2002). Reforming science teaching: What research says about inquiry. Journal of Science Teacher Education, 13(1), 1–12.
  • Arslan, A., Ogan Bekiroğlu, F., Süzük, E. ve Gürel, C. (2014). Fizik laboratuvar derslerinin araştırma-sorgulama açısından incelenmesi ve öğretmen adaylarının görüşlerinin belirlenmesi. Türk Fen Eğitimi Dergisi, 11(2), 3-37.
  • Batı, A. H., Tetik, C. ve Gürpınar, E. (2010). Öğrenme yaklaşımları ölçeği yeni şeklini Türkçeye uyarlama ve geçerlilik güvenirlilik çalışması. Türkiye Klinikleri Tıp Bilimleri Dergisi, 30(5), 1639- 1646.
  • Bayram, Z. (2015). Öğretmen adaylarının rehberli sorgulamaya dayalı fen etkinlikleri tasarlarken karşılaştıkları zorlukların incelenmesi. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 30(2), 15-29.
  • Biggs, J., Kember, D., & Leung, D. Y. (2001). The revised two‐ factor study process questionnaire: R‐ SPQ‐ 2F. British Journal of Educational Psychology, 71(1), 133- 149.
  • Borich, G. D. (2013). Effective Teaching Methods: Research-Based Practice (8th ed.). Upper Saddle River, NJ: Pearson Merrill Prentice Hall.
  • Bybee, R.W., Taylor, J.A., Gardner, A., Van Scotter, P., Powell, J.C., Westbrook, A., & Landes, N.(2006). The BSCS 5E instructional model: Origins, effectiveness and applications. Colorado Springs, CO: BSCS.
  • Carey, S., Evans, R., Honda, M., Jay, E., & Unger, C. (1989). ‘An experiment is when you try it and see if it works’: a study of grade 7 students’ understanding of the construction of scientific knowledge. International Journal of Science Education, 11(5), 514-529.
  • Cavallo, A. M. L., & Schafer, L. E. (1994). Relationships between students' meaningful learning orientation and their understanding of genetics topics. Journal of Research in Science Teaching, 31(4), 393-418.
  • Cheung, D. (2008). Facilitating chemistry teachers to implement inquiry-based laboratory work. International Journal of Science and Mathematics Education,6(1), 107-130.
  • Cheung, D. (2011). Teacher beliefs about implementing guided-inquiry laboratory experiments for secondary school chemistry. Journal of Chemical Education, 88(11), 1462-1468.
  • Chiappetta, E. L., & Adams, A. D. (2004). Inquiry-based instruction: Understanding how content and process go hand-in-hand with school science. The Science Teacher, 71(2), 46-50.
  • Chin, C., & Brown, D. E. (2000). Learning in science: A comparison of deep and surface approaches. Journal of research in science teaching, 37(2), 109-138.
  • Conley, A. M., Pintrich, P. R., Wekiri, I., & Harrison, D. (2004). Changes in epistemological beliefs in elementary science students. Contemporary Educational Psychology, 29, 186-204.
  • Çalışkan, İ.S. (2004). The effect of inquiry-based chemistry course on students' understanding of atom concept, learning approaches, motivation, self-efficacy and epistemological beliefs. Unpublished master’s thesis, Middle East Technical University, Ankara.
  • Deryakulu, D. (2004). Epistemolojik inançlar. Y.Kuzgun ve D. Deryakulu (Ed.), Eğitimde Bireysel Farklılıklar (s.259-288). Ankara: Nobel Yayınevi.
  • Deryakulu, D. ve Büyüköztürk, S. (2002). Epistemolojik inanç ölçeğinin geçerlik ve güvenirlik çalışması. Eurasian Journal of Educational Research, 2(8),111-125.
  • Deryakulu, D. ve Büyüköztürk, Ş. (2005). Epistemolojik inanç ölçeğinin faktör yapısının yeniden incelenmesi: Cinsiyet ve öğrenim görülen program türüne göre epistemolojik inançların karşılaştırılması. Eurasian Journal of Educational Research, 18, 57-70.
  • Deters, K. M. (2005). Student opinions regarding inquiry-based labs. Journal of Chemical Education, 82(8), 1178-1180.
  • Domin, D. S. (1999). A review of laboratory instruction styles. Journal of Chemical Education, 76(4), 543-547.
  • Fraenkel, J., Wallen, N., & Hyun, H.H. (2012). How to design and evaluate research in education (8th ed.). Boston: McGraw Hill.
  • Gibson, H. L., & Chase, C. (2002). Longitudinal impact of an inquiry‐ based science program on middle school students' attitudes toward science. Science Education, 86(5), 693-705.
  • Hackling, M.W., Goodrum, D., & Rennie, L.J. (2001). The state of science in Australian secondary schools. Australian Science Teachers Journal, 47(4), 6-17.
  • Hmelo-Silver, C. E., Duncan, R. G., & Chinn, C. A. (2007). Scaffolding and achievement in problem-based and inquiry learning: A response to Kirschner, Sweller, & Clark (2006). Educational Psychologist, 42(2), 99-107.
  • Hofstein, A., & Lunetta, V. N. (2004). The laboratory in science education: Foundations for the twenty‐ first century. Science education, 88(1), 28-54.
  • Kang, N. H., & Wallace, C. S. (2005). Secondary science teachers' use of laboratory activities: Linking epistemological beliefs, goals, and practices. Science Education, 89(1), 140-165.
  • Kızılgüneş, B., Tekkaya, C. ve Sungur, S. (2009). Modeling the relations among students' epistemological beliefs, motivation, learning approach, and achievement. The Journal of Educational Research, 102(4), 243-256.
  • Kidd, T. T., & Keengwe, J. (2010). Technology integration and urban schools: Implications for instructional practices. International Journal of Information and Communication Technology Education, 6(3), 51-63.
  • Köseoğlu, F. ve Tümay, H. (2015). Fen eğitiminde yapılandırmacılık ve yeni öğretim yöntemleri. Ankara: Palme Yayıncılık.
  • Lea, S., Stephenson, D., & Troy, J. (2003). Higher education students’ attitudes to student-centred learning: Beyond educational bulimia? Studies in Higher Education, 28(3), 321–334.
  • Linn, M. C., & Songer, N. B. (1993). How do students make sense of science? Merrill- Palmer Quarterly, 39(1),47–73.
  • Lord, T., & Orkwiszewski, T. (2006). Moving from didactic to inquiry-based instruction in a science laboratory. The American Biology Teacher, 68(6), 342-345.
  • Meyer, D. Z., Meyer, A. A., Nabb, K. A., Connell, M. G., & Avery, L. M. (2013). A theoretical and empirical exploration of intrinsic problems in designing inquiry activities. Research in Science Education, 43(1), 57-76.
  • Millar, R., & Abrahams, I. (2009). Practical work: Making it more effective. School Science Review, 91(334), 59-64.
  • National Research Council.(1996). National science education standards. Washington, DC: National Academy Press.
  • Oliver, R. (2007). Exploring an inquiry-based learning approach with first- year students in large undergraduate class. Innovations in Education and Teaching International, 44(1), 3-15.
  • Pedaste, M., Mäeots, M., Siiman, L. A., de Jong, T., van Riesen, S. A., Kamp, E. T., & Tsourlidaki, E. (2015). Phases of inquiry-based learning: Definitions and the inquiry cycle. Educational research review, 14, 47-61.
  • Phelps, A. J., & Lee, C. (2003). The power of practice: What students learn from how we teach. Journal o f Chemical Education, 80(7), 829-832.
  • Sandoval, W. A., & Morrison, K. (2003). High school students’ ideas about theories and theory change after a biological inquiry unit. Journal of Research in Science Teaching, 40(4), 369–392.
  • Sanger M. J. (2008). How does inquiry-based instruction affect teaching majors' views about teaching and learning science? Journal of Chemical Education, 85(2), 297- 302.
  • Sarı, U. ve Güven, G. B. (2013). Etkileşimli tahta destekli sorgulamaya dayalı fizik öğretiminin başarı ve motivasyona etkisi ve öğretmen adaylarının öğretime yönelik görüşleri. Necatibey Eğitim Fakültesi Elektronik Fen ve Matematik Eğitimi Dergisi, 7(2), 110-143.
  • Saunders, G. L. (1998). Relationships among epistemological beliefs, implementation of instruction, and approaches to learning in college chemistry (Order No. 9839804). Available from ProQuest Dissertations & Theses Global. (304458971). Retrieved from http://search.proquest.com/docview/304458971?accountid=11248.
  • Saunders, G. L., Cavallo, A. L., & Abraham, M. R. (1999). Relationships among epistemological beliefs, gender, approaches to learning, and implementation of instruction in chemistry laboratory. Paper presented at the Annual Meeting of the National Association for Research in Science Teaching, Boston, MA, March 28- 31, 1999, Retrieved from http://files.eric.ed.gov/fulltext/ED444835.pdf
  • Schommer, M. (1990). Effects of beliefs about the nature of knowledge on comprehension. Journal of Educational Psychology, 82(3), 498-504.
  • Stuart, C., & Thurlow, D. (2000). Making it their own: Preservice teachers’ experiences, beliefs, and classroom practices. Journal o f Teacher Education, 51(2), 113-121.
  • Supasorn, S. (2015). Grade 12 students’ conceptual understanding and mental models of galvanic cells before and after learning by using small-scale experiments in conjunction with a model kit. Chemistry Education Research and Practice,16(2), 393-407.
  • Şen, Ş. ve Erdoğan, Ü. I. (2016). The effect of inquiry-based laboratory applications on students’ motivation and learning strategies. International Online Journal of Educational Science, 8 (2), 163-177.
  • Şen, Ş., Yılmaz, A. ve Erdoğan, Ü. I. (2016). Sorgulamaya Dayalı Laboratuvarlara İlişkin Öğretmen doi:http://dx.doi.org/10.17051/io.2016.25448 .
  • Şeşen, B. A. ve Tarhan, L. (2013). Inquiry-based laboratory activities in electrochemistry: High school students’ achievements and attitudes. Research in Science Education, 43(1), 413-435.
  • Tsai, C.C. (2000). Relationships between student scientific epistemological beliefs and perceptions of constructivist learning environments. Educational Research, 42, 193–205.
  • Tural Dincer, G. ve Akdeniz, A. R. (2008). Examining Learning Approaches of Science Student Teachers According to the Class Level and Gender. Online Submission, 5(12), 54-59.
  • Vermetten, Y., Vermunt, J., & Lodewijks, H. (2002). Powerful learning environments? How university students differ in their response to instructional measures. Learning and Instruction, 12, 263–284.
  • Wilson, K. & Fowler, J. (2005). Assessing the impact of learning environments on students’ approaches to learning: comparing conventional and action learning designs. Assessment & Evaluation in Higher Education, 30 (1), 87-101.
There are 54 citations in total.

Details

Primary Language Turkish
Journal Section Research Article
Authors

Şenol Şen This is me

Ayhan Yılmaz This is me

Ümit Işık Erdoğan This is me

Publication Date November 1, 2017
Published in Issue Year 2017 Volume: 18 Special Issue

Cite

APA Şen, Ş., Yılmaz, A., & Erdoğan, Ü. I. (2017). KİMYA LABORATUVARINDA SORGULAMAYA DAYALI ÖĞRENMENİN ÖĞRENCİLERİN ÖĞRENME YAKLAŞIMLARINA VE EPİSTEMOLOJİK İNANÇLARINA ETKİSİ. Ahi Evran Üniversitesi Kırşehir Eğitim Fakültesi Dergisi, 18, 125-144.

2562219122   19121   19116   19117     19118       19119       19120     19124