Research Article
BibTex RIS Cite

A Response Surface Modeling Study on Effects of Powder Rate and Machining Parameters on Surface Quality of CoCrMo Processed by Powder Mixed Electrical Discharge Machining

Year 2023, , 415 - 433, 15.06.2023
https://doi.org/10.31466/kfbd.1216109

Abstract

Due to the high mechanical strength of the metals used in implant manufacture, which makes them difficult to work with using other machining techniques, electrical discharge machining (EDM) is frequently employed in the production of implants. In this study, the effect of powder ratio and other EDM parameters used in the machining of CoCrMo alloy, which used in implant production widely, with powder-mixed EDM on the surface roughness of the machined part was investigated through the response surface methodology. AISI 316L stainless steel was chosen as the electrode material, and Ti6V4Al was chosen as the additive powder, taking into account their biocompatibility properties. Using a Taguchi L16 array, an experimental design was created by selecting 4 levels for each parameter of additive ratio, discharge current, pulse on time (Ton), and pulse off time (Toff). The response surface method was used, along with the experimental data, to estimate how the parameters affected the arithmetic average roughness (Ra) and mean roughness depth (Rz).

Thanks

We would like to thank the Payas Vocational and Technical Anatolian High School Directorate for their support.

References

  • Abdel-Fattah, T. M., Loftis, D., & Mahapatro, A. (2011). Nanosized Controlled Surface Pretreatment of Biometallic Alloy 316L Stainless Steel. Journal of Biomedical Nanotechnology, 7(6), 794–800. https://doi.org/10.1166/jbn.2011.1346
  • Al-Amin, M., Abdul-Rani, A.-M., Aliyu, A. A., Bryant, M., Danish, M., & Ahmad, A. (2020). Bio-ceramic coatings adhesion and roughness of biomaterials through PM-EDM: a comprehensive review. Materials and Manufacturing Processes. https://doi.org/10.1080/10426914.2020.1772483
  • Ali, S., Rani, A. M. A., Mufti, R. A., Azam, F. I., Hastuty, S., Baig, Z., Hussain, M., & Shehzad, N. (2019). The Influence of Nitrogen Absorption on Microstructure, Properties and Cytotoxicity Assessment of 316L Stainless Steel Alloy Reinforced with Boron and Niobium. Processes.
  • Augustyn-Pieniążek, J., Lukaszczyk, A., & Zapala, R. (2013). Microstructure and Corrosion Resistance Characteristics of Cr-Co-Mo Alloys Designed for Prosthetic Materials. Archives of Metallurgy and Materials, 58(4), 1281–1285. https://doi.org/10.2478/amm-2013-0148
  • Cakir, M. v, Eyercioglu, O., Gov, K., Sahin, M., & Cakir, S. H. (2013). Comparison of Soft Computing Techniques for Modelling of the EDM Performance Parameters. Advances in Mechanical Engineering, 5, 392531. https://doi.org/10.1155/2013/392531
  • Chakmakchi, M., Ntasi, A., Mueller, W. D., & Zinelis, S. (2021). Effect of Cu and Ti electrodes on surface and electrochemical properties of Electro Discharge Machined (EDMed) structures made of Co-Cr and Ti dental alloys. Dental Materials, 37(4), 588–596. https://doi.org/https://doi.org/10.1016/j.dental.2021.01.012
  • David Whitehouse. (2002). Surfaces and Their Measurement. Hermes Penton Ltd.
  • Dinov, I. (2020). F distribution Tables. http://www.socr.ucla.edu/applets.dir/f_table.html
  • Elsiti, N. M., & Noordin, M. Y. (2017). Experimental Investigations into the Effect of Process Parameters and Nano-Powder (Fe2O3) on Material Removal Rate during Micro-EDM of Co-Cr-Mo. Key Engineering Materials, 740, 125–132. https://doi.org/10.4028/www.scientific.net/KEM.740.125
  • Elsiti, N., Mohd Yusof, N., & Idris, A. (2017). Effect of maghemite (γ-Fe2O3) nano-powder mixed dielectric medium on tool wear rate (TWR) during micro-EDM of CO-Cr-MO. Pertanika Journal of Science and Technology, 25, 847–858.
  • ERDEM, O., & KILIÇ, S. (2020). TiO2 Katkılı Çevre Dostu Dielektrik Sıvının Elektro Erozyon Delik Delme Performanslarının Araştırılması. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi. https://doi.org/10.35193/bseufbd.713620
  • Fazira, M. F., Mohammad, M., Roslani, N., Saleh, M. H., & Ahmad, M. A. (2013). Low Strain Rate Upset Forging of Preformed CoCrMo Powder Alloy for Load Bearing Application: A Review. Procedia Engineering, 68, 405–410. https://doi.org/https://doi.org/10.1016/j.proeng.2013.12.199
  • Ho, K. H., & Newman, S. T. (2003). State of the art electrical discharge machining (EDM). International Journal of Machine Tools and Manufacture, 43(13), 1287–1300. https://doi.org/https://doi.org/10.1016/S0890-6955(03)00162-7
  • Iacono, F., Pirani, C., Generali, L., Sassatelli, P., Nucci, C., Gandolfi, M. G., & Prati, C. (2016). Wear analysis and cyclic fatigue resistance of electro discharge machined NiTi rotary instruments. Giornale Italiano Di Endodonzia, 30(1), 64–68. https://doi.org/https://doi.org/10.1016/j.gien.2016.04.006
  • Iranmanesh, S., Esmaeilzadeh, A., & Razavykia, A. (2017). Optimization of Electrical Discharge Machining Parameters of Co-Cr-Mo Using Central Composite Design. https://doi.org/10.1007/978-3-319-57078-5_5
  • Ho, K. H., & Newman, S. T. (2003). State of the art electrical discharge machining (EDM). International Journal of Machine Tools and Manufacture, 43(13), 1287–1300. https://doi.org/https://doi.org/10.1016/S0890-6955(03)00162-7
  • Jawahar, M., Sridhar Reddy, Ch., & Srinivas, Ch. (2019). A review of performance optimization and current research in PMEDM. Materials Today: Proceedings, 19, 742–747. https://doi.org/https://doi.org/10.1016/j.matpr.2019.08.122
  • Kumar, S. S., Erdemir, F., Varol, T., Kumaran, S. T., Uthayakumar, M., & Canakci, A. (2020). Investigation of WEDM process parameters of Al–SiC–B4C composites using response surface methodology. International Journal of Lightweight Materials and Manufacture, 3(2), 127–135. https://doi.org/https://doi.org/10.1016/j.ijlmm.2019.09.003
  • Mahajan, A., & Sidhu, S. S. (2019a). In vitro corrosion and hemocompatibility evaluation of electrical discharge treated cobalt–chromium implant. Journal of Materials Research, 34(8), 1363–1370. https://doi.org/10.1557/jmr.2019.73
  • Mahajan, A., & Sidhu, S. S. (2019b). Potential of electrical discharge treatment to enhance the in vitro cytocompatibility and tribological performance of Co–Cr implant. Journal of Materials Research, 34(16), 2837–2847. https://doi.org/DOI: 10.1557/jmr.2019.240
  • Mahajan, A., Sidhu, S. S., & Ablyaz, T. (2019). EDM Surface Treatment: An Enhanced Biocompatible Interface. In P. S. Bains, S. S. Sidhu, M. Bahraminasab, & C. Prakash (Eds.), Biomaterials in Orthopaedics and Bone Regeneration : Design and Synthesis (pp. 33–40). Springer Singapore. https://doi.org/10.1007/978-981-13-9977-0_3
  • Mahajan Amit and Sidhu, S. S. and A. T. (2019). EDM Surface Treatment: An Enhanced Biocompatible Interface. In S. S. and B. M. and P. C. Bains Preetkanwal Singh and Sidhu (Ed.), Biomaterials in Orthopaedics and Bone Regeneration : Design and Synthesis (pp. 33–40). Springer Singapore. https://doi.org/10.1007/978-981-13-9977-0_3
  • Mesalamy, A. S. El, & Youssef, A. (2020). Enhancement of cutting quality of abrasive waterjet by using multipass cutting strategy. Journal of Manufacturing Processes, 60, 530–543. https://doi.org/https://doi.org/10.1016/j.jmapro.2020.10.036
  • Myers, R. H., Montgomery, D. C., & Anderson-cook, C. M. (2016). Response Surface Methodology. In Wiley & Sons (Issue 4). https://doi.org/10.1007/s13398-014-0173-7.2
  • Ntasi, A., Mueller, W. D., Eliades, G., & Zinelis, S. (2010). The effect of Electro Discharge Machining (EDM) on the corrosion resistance of dental alloys. Dental Materials, 26(12), e237–e245. https://doi.org/10.1016/j.dental.2010.08.001
  • ÖPÖZ, T. T., YAŞAR, H, MURPHY, M. F, EKMEKCİ, N., and EKMEKCİ, B. (2019). Ti6Al4V Surface Modification by Hydroxyapatite Powder Mixed Electrical Discharge Machining for Medical Applications. International Journal of Advances in Engineering and Pure Sciences, 31, 1–10.
  • Prakash, C., Kansal, H. K., Pabla, B. S., & Puri, S. (2015). To optimize the surface roughness and microhardness of β-Ti alloy in PMEDM process using Non-dominated Sorting Genetic Algorithm-II. 2015 2nd International Conference on Recent Advances in Engineering & Computational Sciences (RAECS), 1–6. https://doi.org/10.1109/RAECS.2015.7453288
  • Rajkumar, H., & Vishwakamra, M. (2018). Performance Parameters Characteristics of PMEDM: A Review. In International Journal of Applied Engineering Research (Vol. 13, Issue 7). http://www.ripublication.com
  • Sales, W. F., Oliveira, A. R. F., & Raslan, A. A. (2016). Titanium perovskite (CaTiO3) formation in Ti6Al4V alloy using the electrical discharge machining process for biomedical applications. Surface and Coatings Technology, 307, 1011–1015. https://doi.org/10.1016/j.surfcoat.2016.10.028
  • Sharma, R., & Singh, J. (2014). Effect of Powder Mixed Electrical Discharge Machining (PMEDM) on Difficult-to-machine Materials – a Systematic Literature Review. 14(4), 233–255. https://doi.org/doi:10.1515/jmsp-2014-0016

Toz Oranı ve İşleme Parametrelerinin Toz Katkılı Elektro Erozyonla İşlenen CoCrMo’nin Yüzey Kalitesine Etkileri Üzerine Bir Cevap Yüzeyi Çalışması

Year 2023, , 415 - 433, 15.06.2023
https://doi.org/10.31466/kfbd.1216109

Abstract

İmplant imalatında kullanılan metallerin yüksek mekanik mukavemetleri nedeniyle diğer işleme teknikleri kullanılarak işlenmesi oldukça zor olduğundan elektro erozyonla işleme (EDM), implant üretiminde sıklıkla kullanılmaktadır. Bu çalışmada, implant üretiminde yaygın olarak kullanılan CoCrMo alaşımının toz katkılı EDM ile işlenmesinde kullanılan toz oranı ve diğer EDM parametrelerinin işlenen parçanın yüzey pürüzlülüğüne etkisi yanıt yüzey metodolojisi ile incelenmiştir. Elektrot malzemesi olarak AISI 316L paslanmaz çelik, katkı tozu olarak da biyo-uyumluluk özellikleri dikkate alınarak Ti6V4Al seçilmiştir. Bir Taguchi L16 dizisi kullanılarak, katkı oranı, deşarj akımı, ark süresi (Ton) ve bekleme süresi (Toff) parametreleri için 4’er seviye seçilerek bir deney tasarımı oluşturulmuştur. Parametrelerin aritmetik ortalama pürüzlülük (Ra) ve ortalama pürüzlülük derinliğini (Rz) nasıl etkilediğini tahmin etmek için deneysel verilerle birlikte yanıt yüzeyi yöntemi kullanılmıştır.

References

  • Abdel-Fattah, T. M., Loftis, D., & Mahapatro, A. (2011). Nanosized Controlled Surface Pretreatment of Biometallic Alloy 316L Stainless Steel. Journal of Biomedical Nanotechnology, 7(6), 794–800. https://doi.org/10.1166/jbn.2011.1346
  • Al-Amin, M., Abdul-Rani, A.-M., Aliyu, A. A., Bryant, M., Danish, M., & Ahmad, A. (2020). Bio-ceramic coatings adhesion and roughness of biomaterials through PM-EDM: a comprehensive review. Materials and Manufacturing Processes. https://doi.org/10.1080/10426914.2020.1772483
  • Ali, S., Rani, A. M. A., Mufti, R. A., Azam, F. I., Hastuty, S., Baig, Z., Hussain, M., & Shehzad, N. (2019). The Influence of Nitrogen Absorption on Microstructure, Properties and Cytotoxicity Assessment of 316L Stainless Steel Alloy Reinforced with Boron and Niobium. Processes.
  • Augustyn-Pieniążek, J., Lukaszczyk, A., & Zapala, R. (2013). Microstructure and Corrosion Resistance Characteristics of Cr-Co-Mo Alloys Designed for Prosthetic Materials. Archives of Metallurgy and Materials, 58(4), 1281–1285. https://doi.org/10.2478/amm-2013-0148
  • Cakir, M. v, Eyercioglu, O., Gov, K., Sahin, M., & Cakir, S. H. (2013). Comparison of Soft Computing Techniques for Modelling of the EDM Performance Parameters. Advances in Mechanical Engineering, 5, 392531. https://doi.org/10.1155/2013/392531
  • Chakmakchi, M., Ntasi, A., Mueller, W. D., & Zinelis, S. (2021). Effect of Cu and Ti electrodes on surface and electrochemical properties of Electro Discharge Machined (EDMed) structures made of Co-Cr and Ti dental alloys. Dental Materials, 37(4), 588–596. https://doi.org/https://doi.org/10.1016/j.dental.2021.01.012
  • David Whitehouse. (2002). Surfaces and Their Measurement. Hermes Penton Ltd.
  • Dinov, I. (2020). F distribution Tables. http://www.socr.ucla.edu/applets.dir/f_table.html
  • Elsiti, N. M., & Noordin, M. Y. (2017). Experimental Investigations into the Effect of Process Parameters and Nano-Powder (Fe2O3) on Material Removal Rate during Micro-EDM of Co-Cr-Mo. Key Engineering Materials, 740, 125–132. https://doi.org/10.4028/www.scientific.net/KEM.740.125
  • Elsiti, N., Mohd Yusof, N., & Idris, A. (2017). Effect of maghemite (γ-Fe2O3) nano-powder mixed dielectric medium on tool wear rate (TWR) during micro-EDM of CO-Cr-MO. Pertanika Journal of Science and Technology, 25, 847–858.
  • ERDEM, O., & KILIÇ, S. (2020). TiO2 Katkılı Çevre Dostu Dielektrik Sıvının Elektro Erozyon Delik Delme Performanslarının Araştırılması. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi. https://doi.org/10.35193/bseufbd.713620
  • Fazira, M. F., Mohammad, M., Roslani, N., Saleh, M. H., & Ahmad, M. A. (2013). Low Strain Rate Upset Forging of Preformed CoCrMo Powder Alloy for Load Bearing Application: A Review. Procedia Engineering, 68, 405–410. https://doi.org/https://doi.org/10.1016/j.proeng.2013.12.199
  • Ho, K. H., & Newman, S. T. (2003). State of the art electrical discharge machining (EDM). International Journal of Machine Tools and Manufacture, 43(13), 1287–1300. https://doi.org/https://doi.org/10.1016/S0890-6955(03)00162-7
  • Iacono, F., Pirani, C., Generali, L., Sassatelli, P., Nucci, C., Gandolfi, M. G., & Prati, C. (2016). Wear analysis and cyclic fatigue resistance of electro discharge machined NiTi rotary instruments. Giornale Italiano Di Endodonzia, 30(1), 64–68. https://doi.org/https://doi.org/10.1016/j.gien.2016.04.006
  • Iranmanesh, S., Esmaeilzadeh, A., & Razavykia, A. (2017). Optimization of Electrical Discharge Machining Parameters of Co-Cr-Mo Using Central Composite Design. https://doi.org/10.1007/978-3-319-57078-5_5
  • Ho, K. H., & Newman, S. T. (2003). State of the art electrical discharge machining (EDM). International Journal of Machine Tools and Manufacture, 43(13), 1287–1300. https://doi.org/https://doi.org/10.1016/S0890-6955(03)00162-7
  • Jawahar, M., Sridhar Reddy, Ch., & Srinivas, Ch. (2019). A review of performance optimization and current research in PMEDM. Materials Today: Proceedings, 19, 742–747. https://doi.org/https://doi.org/10.1016/j.matpr.2019.08.122
  • Kumar, S. S., Erdemir, F., Varol, T., Kumaran, S. T., Uthayakumar, M., & Canakci, A. (2020). Investigation of WEDM process parameters of Al–SiC–B4C composites using response surface methodology. International Journal of Lightweight Materials and Manufacture, 3(2), 127–135. https://doi.org/https://doi.org/10.1016/j.ijlmm.2019.09.003
  • Mahajan, A., & Sidhu, S. S. (2019a). In vitro corrosion and hemocompatibility evaluation of electrical discharge treated cobalt–chromium implant. Journal of Materials Research, 34(8), 1363–1370. https://doi.org/10.1557/jmr.2019.73
  • Mahajan, A., & Sidhu, S. S. (2019b). Potential of electrical discharge treatment to enhance the in vitro cytocompatibility and tribological performance of Co–Cr implant. Journal of Materials Research, 34(16), 2837–2847. https://doi.org/DOI: 10.1557/jmr.2019.240
  • Mahajan, A., Sidhu, S. S., & Ablyaz, T. (2019). EDM Surface Treatment: An Enhanced Biocompatible Interface. In P. S. Bains, S. S. Sidhu, M. Bahraminasab, & C. Prakash (Eds.), Biomaterials in Orthopaedics and Bone Regeneration : Design and Synthesis (pp. 33–40). Springer Singapore. https://doi.org/10.1007/978-981-13-9977-0_3
  • Mahajan Amit and Sidhu, S. S. and A. T. (2019). EDM Surface Treatment: An Enhanced Biocompatible Interface. In S. S. and B. M. and P. C. Bains Preetkanwal Singh and Sidhu (Ed.), Biomaterials in Orthopaedics and Bone Regeneration : Design and Synthesis (pp. 33–40). Springer Singapore. https://doi.org/10.1007/978-981-13-9977-0_3
  • Mesalamy, A. S. El, & Youssef, A. (2020). Enhancement of cutting quality of abrasive waterjet by using multipass cutting strategy. Journal of Manufacturing Processes, 60, 530–543. https://doi.org/https://doi.org/10.1016/j.jmapro.2020.10.036
  • Myers, R. H., Montgomery, D. C., & Anderson-cook, C. M. (2016). Response Surface Methodology. In Wiley & Sons (Issue 4). https://doi.org/10.1007/s13398-014-0173-7.2
  • Ntasi, A., Mueller, W. D., Eliades, G., & Zinelis, S. (2010). The effect of Electro Discharge Machining (EDM) on the corrosion resistance of dental alloys. Dental Materials, 26(12), e237–e245. https://doi.org/10.1016/j.dental.2010.08.001
  • ÖPÖZ, T. T., YAŞAR, H, MURPHY, M. F, EKMEKCİ, N., and EKMEKCİ, B. (2019). Ti6Al4V Surface Modification by Hydroxyapatite Powder Mixed Electrical Discharge Machining for Medical Applications. International Journal of Advances in Engineering and Pure Sciences, 31, 1–10.
  • Prakash, C., Kansal, H. K., Pabla, B. S., & Puri, S. (2015). To optimize the surface roughness and microhardness of β-Ti alloy in PMEDM process using Non-dominated Sorting Genetic Algorithm-II. 2015 2nd International Conference on Recent Advances in Engineering & Computational Sciences (RAECS), 1–6. https://doi.org/10.1109/RAECS.2015.7453288
  • Rajkumar, H., & Vishwakamra, M. (2018). Performance Parameters Characteristics of PMEDM: A Review. In International Journal of Applied Engineering Research (Vol. 13, Issue 7). http://www.ripublication.com
  • Sales, W. F., Oliveira, A. R. F., & Raslan, A. A. (2016). Titanium perovskite (CaTiO3) formation in Ti6Al4V alloy using the electrical discharge machining process for biomedical applications. Surface and Coatings Technology, 307, 1011–1015. https://doi.org/10.1016/j.surfcoat.2016.10.028
  • Sharma, R., & Singh, J. (2014). Effect of Powder Mixed Electrical Discharge Machining (PMEDM) on Difficult-to-machine Materials – a Systematic Literature Review. 14(4), 233–255. https://doi.org/doi:10.1515/jmsp-2014-0016
There are 30 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Can Yıldız 0000-0001-5289-2520

Faruk Çavdar 0000-0002-4981-6428

Erdoğan Kanca 0000-0002-7997-9631

Early Pub Date June 15, 2023
Publication Date June 15, 2023
Published in Issue Year 2023

Cite

APA Yıldız, C., Çavdar, F., & Kanca, E. (2023). A Response Surface Modeling Study on Effects of Powder Rate and Machining Parameters on Surface Quality of CoCrMo Processed by Powder Mixed Electrical Discharge Machining. Karadeniz Fen Bilimleri Dergisi, 13(2), 415-433. https://doi.org/10.31466/kfbd.1216109