Research Article
BibTex RIS Cite

〖FI〗_ss-Lifting Modules

Year 2024, , 391 - 402, 18.06.2024
https://doi.org/10.31466/kfbd.1223520

Abstract

The purpose of this note is to show some key features of 〖FI〗_ss-lifting and strongly 〖FI〗_ss-lifting modules. We examine that under whose condition for direct summands, direct sums and submodules of (strongly) 〖FI〗_ss-lifting modules are (strongly) 〖FI〗_ss-lifting. We give an example to exhibit that an FI-lifting module needs not to be 〖FI〗_ss-lifting. We provide that the property of being strongly 〖FI〗_ss-lifting module is inherited by direct summands.

References

  • Birkenmeier, G. F., Müller, B. J., Rizvi, S. T., (2002). Modules in Which Every Fully Invariant Submodule is Essential in a Direct Summand. Communications in Algebra, 30(3), 1395-1415.
  • Clark, J., Lomp, C., Vanaja, N., Wisbauer, R., (2006). Lifting modules. Birkhauser, Verlag-Basel: Frontiers In Mathematics.
  • Eryılmaz, F., (2021). ss-Lifting Modules and Rings. Miskolc Mathematical Notes, 22(2), 655-662.
  • Garcia, J. L., (1989). Properties of Direct Summands of Modules. Communications in Algebra, 17(1), 73-92.
  • Kasch, F., (1982). Modules and rings. Teubner: Published for the London Mathematical Society by Academic Press.
  • Kaynar, E., Çalışıcı, H., Türkmen, E., (2020). ss-Supplemented Modules. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 69 (1), 473-485.
  • Koşan, M. T., (2005). The Lifting Condition and Fully Invariant Submodules. East-West Journal of Mathematics, 7(1), 99-106.
  • Nişancı Türkmen, B., (2020). Weak ss-Lifting Modules. American Scientific Research Journal for Engineering, Technology and Sciences, 74(1), 232-236.
  • Özcan, A. Ç., Harmancı, A., Smith, P. F., (2006). Duo Modules. Glasgow Mathematical Journal, 48(3), 533-545.
  • Öztürk Sözen, E. (2020). Bol e-Tümlenmiş Modüllere ve e-Yükseltilebilir Modüllere Torsiyon-Teorik Bir Yaklaşım. Erzincan University Journal of Science and Technology, 13(2), 592-599.
  • Rizvi, S. T., Cosmin, S. R., (2004). Baer and Quasi-Baer Modules. Communications in Algebra, 32, 103-123.
  • Talebi, Y., Vanaja, N., (2002). The Torsion Theory Cogenerated by M-Small Modules. Communications in Algebra, 30(3), 1449-1460.
  • Talebi, Y., Amoozegar, T., (2008). Strongly FI-Lifting Modules. International Electronic Journal of Algebra, 3, 75-82.
  • Tian, J., Öztürk Sözen, E., Moniri Hamzekolaee, A. R. (2023). Some Variations of 𝛿-Supplemented Modules with Regard to a Hereditary Torsion Theory. Journal of Mathematics, Article ID 9968793, 7p.
  • Wisbauer, R., (1991). Foundations of module and ring theory. Gordon and Breach, Philedelphia: Gordon and Breach Science Publishers.
  • Zhou, D. X., Zhang, X. R., (2011). Small-Essential Submodules and Morita Duality. Southeast Asian Bulletin of Mathematics, 35(6), 1051–1062.

〖FI〗_ss-Yükseltilebilir Modüller

Year 2024, , 391 - 402, 18.06.2024
https://doi.org/10.31466/kfbd.1223520

Abstract

Bu çalışmanın amacı 〖FI〗_ss-yükseltilebilir ve güçlü 〖FI〗_ss-yükseltilebilir modüllerin bazı temel özelliklerini göstermektir. (Güçlü) 〖FI〗_ss-yükseltilebilir modüllerin direkt toplam terimlerinin, direkt toplamlarının ve alt modüllerinin hangi koşullar altında altında (güçlü) 〖FI〗_ss-yükseltilebilir modül olduğunu inceliyoruz. FI-yükseltilebilir bir modülün 〖FI〗_ss-yükseltilebilir olmak zorunda olmadığını gösteren bir örnek veriyoruz. Güçlü 〖FI〗_ss-yükseltilebilir modül olma özelliğinin direkt toplam terimleri tarafından aktarıldığını ispatlıyoruz.

References

  • Birkenmeier, G. F., Müller, B. J., Rizvi, S. T., (2002). Modules in Which Every Fully Invariant Submodule is Essential in a Direct Summand. Communications in Algebra, 30(3), 1395-1415.
  • Clark, J., Lomp, C., Vanaja, N., Wisbauer, R., (2006). Lifting modules. Birkhauser, Verlag-Basel: Frontiers In Mathematics.
  • Eryılmaz, F., (2021). ss-Lifting Modules and Rings. Miskolc Mathematical Notes, 22(2), 655-662.
  • Garcia, J. L., (1989). Properties of Direct Summands of Modules. Communications in Algebra, 17(1), 73-92.
  • Kasch, F., (1982). Modules and rings. Teubner: Published for the London Mathematical Society by Academic Press.
  • Kaynar, E., Çalışıcı, H., Türkmen, E., (2020). ss-Supplemented Modules. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 69 (1), 473-485.
  • Koşan, M. T., (2005). The Lifting Condition and Fully Invariant Submodules. East-West Journal of Mathematics, 7(1), 99-106.
  • Nişancı Türkmen, B., (2020). Weak ss-Lifting Modules. American Scientific Research Journal for Engineering, Technology and Sciences, 74(1), 232-236.
  • Özcan, A. Ç., Harmancı, A., Smith, P. F., (2006). Duo Modules. Glasgow Mathematical Journal, 48(3), 533-545.
  • Öztürk Sözen, E. (2020). Bol e-Tümlenmiş Modüllere ve e-Yükseltilebilir Modüllere Torsiyon-Teorik Bir Yaklaşım. Erzincan University Journal of Science and Technology, 13(2), 592-599.
  • Rizvi, S. T., Cosmin, S. R., (2004). Baer and Quasi-Baer Modules. Communications in Algebra, 32, 103-123.
  • Talebi, Y., Vanaja, N., (2002). The Torsion Theory Cogenerated by M-Small Modules. Communications in Algebra, 30(3), 1449-1460.
  • Talebi, Y., Amoozegar, T., (2008). Strongly FI-Lifting Modules. International Electronic Journal of Algebra, 3, 75-82.
  • Tian, J., Öztürk Sözen, E., Moniri Hamzekolaee, A. R. (2023). Some Variations of 𝛿-Supplemented Modules with Regard to a Hereditary Torsion Theory. Journal of Mathematics, Article ID 9968793, 7p.
  • Wisbauer, R., (1991). Foundations of module and ring theory. Gordon and Breach, Philedelphia: Gordon and Breach Science Publishers.
  • Zhou, D. X., Zhang, X. R., (2011). Small-Essential Submodules and Morita Duality. Southeast Asian Bulletin of Mathematics, 35(6), 1051–1062.
There are 16 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Emine Önal Kır 0000-0002-3025-3290

Publication Date June 18, 2024
Published in Issue Year 2024

Cite

APA Önal Kır, E. (2024). 〖FI〗_ss-Lifting Modules. Karadeniz Fen Bilimleri Dergisi, 14(2), 391-402. https://doi.org/10.31466/kfbd.1223520