Research Article
BibTex RIS Cite

Comparison of Some Functional Features of Casein and Gluten Isolates

Year 2023, , 1055 - 1069, 15.09.2023
https://doi.org/10.31466/kfbd.1287902

Abstract

In this study, casein and gluten that have an important place in the food industry, were compared in terms of their functional properties. Viscosity, conductivity, bulk density, Hausner ratio and Carr index, wetting ability, water-holding capacity, fat-binding capacity, foam formation capacity and stability, color, emulsion activity and stability, and finally solubility analyses were performed on protein samples. It was found that the water-holding capacity of casein (2.05±0.16 g water/g protein) was higher than gluten (1.64±0.10 g water/g protein). It was determined that foam formation capacity of gluten was higher and the foam stability remained almost the same after 60 minutes in gluten. It was determined that the emulsion stability of gluten was higher than that of casein. As expected, protein samples showed the lowest solubility at the isoelectric points and showed very high solubility at high pH values. In addition, it was observed that casein formed more viscous solutions than gluten, and gluten dissolved more than casein at high pH values. The good flow properties of both proteins were determined by the Hausner ratio and Carr index. The Hausner ratio was determined to be 1.69±0.02 in casein and 1.86±0.10 in gluten, while the Carr index was determined to be 40.84±0.85 in casein and 46.24±1.80 in gluten. According to the color measurements, it was found that gluten had a brighter and lighter color, while casein had higher a* and b* values. It is thought that the results obtained can contribute to the use of these proteins in food and pharmaceutical applications.

References

  • Acosta-Domínguez, L., Cocotle-Ronzón, Y., Alamilla-Beltrán, L., Hernandez-Martinez, E. 2021. Effect of a cryogenic treatment in the microstructure, functional and flow properties of soy protein isolate. Food Hydrocolloids, 119: 106871.
  • Akharume, F.U., Aluko, R.E., Adedeji, A.A. 2020. Modification of plant proteins for improved functionality: A review. Comprehensive Review in Food Science and Food Safety, 20:198–224.
  • Aksun-Tümerkan, E. T., Cansu, Ü., Boran, G., Regenstein, J. M., Özoğul, F. (2019). Physiochemical and functional properties of gelatin obtained from tuna, frog and chicken skins. Food Chemistry, 287, 273–279.
  • Alshami, A.S., Tang, J., Rasco, B. (2017). Contribution of proteins to the dielectric properties of dielectrically heated biomaterials. Food Bioprocess Technol, 10:1548–1561.
  • AOAC, 1990. Official methods of analysis. Fifteenth edition. Association of Official Analysis Chemists, Washington, DC.
  • Aryee, A.N.A., Agyei, D., Udenigwe, C.C. 2018. Impact of processing on the chemistry and functionality of food proteins. Proteins in Food Processing, 27-45.
  • Aslan-Türker, D., Göksel-Saraç, M., Doğan, M. 2022. Glütensiz unların tekno-fonksiyonel özellikleri ile toz akış davranışlarının belirlenmesi. Harran Tarım ve Gıda Bilimleri Dergisi, 26(4): 528-537.
  • Atamer, Z., Post, A. E., Schubert, T., Holder, A., Boom, R. M., & Hinrichs, J. 2017. Bovine β-casein: Isolation, properties and functionality. A review. International dairy journal, 66, 115-125.
  • Barać, M.B., Pešić, M.B., Stanojević, S.P., Kostić, A.Z., Čabrilo, S.B. 2015. Techno-functional properties of pea (Pisum sativum) protein isolates- a Rewiev. BIBLID, 1450-7188 46: 1-18.
  • Biesiekierski, J.R. 2017. What is gluten? Journal of Gastroenterology and Hepatology, 32 (Suppl. 1): 78–81.
  • Cho, S. M., Kwak, K. S., Park, D. C., Gu, Y. S., Ji, C. I., Jang, D. H. 2004. Processing optimization and functional properties of gelatin from shark (Isurus oxyrinchus) cartilage. Food Hydrocolloids, 18: 573-579.
  • Cortez, R., Vital, D.A.L., Margulis, D., Mejia, E.G. 2016. Natural Pigments: Stabilization Methods of Anthocyanins for Food Applications. Comprehensive Review in Food Science and Food Safety, 00:1-19.
  • Day, L., Augustin, M. A., Batey, I. L., & Wrigley, C. W. 2006. Wheat-gluten uses and industry needs. Trends in food science & technology, 17(2), 82-90.
  • Deng, L., Wang, Z., Yang, S., Song, J., Que, F., Zhang, H., Feng, F. 2016. Improvement of functional properties of wheat gluten using acid protease from Aspergillus usamii. Plos One, 11(7): e0160101.
  • Du, S.K., Jiang, H., Yu, X., Jane, J.L. 2013. Physicochemical and functional properties of whole legume flour. LWT - Food Science and Technology, 2013: 1-6.
  • Gaiani, C., Banon, S., Scher, J., Schuck, P., Hardy, J. 2005. Use of a turbidity sensor to characterize micellar casein powder rehydration: Influence of some technical effects. Journal of Dairy Science, 88:2700–2706.
  • Gornall, A. G., Bardawill, C. J., David, M. M. 1949. Determination of serum proteins by means of the biuret reaction. Journal of Biological Chemistry, 177: 751-66.
  • Han, T., Wang, M., Wang, Y., Tang, L. 2020. Effects of high-pressure homogenization and ultrasonic treatment on the structure and characteristics of casein. LWT - Food Science and Technology, 130, 109560.
  • Hao, T. 2015. Understanding empirical powder flowability criteria scaled by Hausner ratio or Carr index with the analogous viscosity concept. RSC Advances, 5: 57212.
  • Jinapong, N., Suphantharika, M., Jamnong, P. 2008. Production of instant soy milk powders by ultrafiltration, spray drying and fluidized bed agglomeration. Journal of Food Engineering, 84(2): 194–205.
  • Karami, Z., Akbari-edergani, B. 2019. Bioactive food derived peptides: a review on correlation between structure of bioactive peptides and their functional properties. Food Science Techonology, 56(2):535–547.
  • Lara-Castellanos, M.J., Azuara, E., Jimenez-Fernandez, V.M., Luna-Solano, G., Jimenez, G. 2021. Effect of casein replacement by modified casein on physicochemical, textural, sensorial properties and microbiological stability of fresh cheese. International Dairy Journal, 112, 104864.
  • Lee, J., Chai, C., Park, D.J., Lim, K., Imm, J.Y. 2014. Novel convenient method to determine wettability and dispersibility of dairy powders. Korean Journal for Food Science of Animal, 34(6): 852–857.
  • Lee, S.W., Shimiz, M., Kaminogawa, S., Yamauchi, K. 1987. Emulsifying properties of a mixture of peptides derived from the enzymatic hydrolyzates of bovine caseins., Agricultural and Biological Chemistry, 51: 1535–1540.
  • Liang, H.N, Tang, C.H. 2013. pH-dependent emulsifying properties of pea [Pisum sativum (L.)] proteins. Food Hydrocolloids, 33: 309-319.
  • Lu, Y., McMahon, D. J., Metzger, L. E., Kommineni, A., Vollmer, A. H. 2015. Solubilization of rehydrated frozen highly concentrated micellar casein for use in liquid food applications. Journal of Dairy Science, 98 (9): 5917–5930.
  • Majzoobi, M., Abedi, E. 2014. Effects of pH changes on functional properties of native and acetylated wheat glüten. International Food Research Journal, 21(3): 1219-1224.
  • Martins, N., Roriz, C.L., Morales, P., Barros, L., Ferreira, I.C.F.R. 2016. Food colorants: Challenges, opportunities and current desires of agroindustries to ensure consumer expectations and regulatory practices. Trends in Food Science & Technology, 52: 1-15.
  • Mirmoghtadaie, L., Aliabadi, S.S., Hosseini, S.M. 2016. Recent approaches in physical modification of protein functionality. Food Chemistry, 199, 619-627.
  • Mwasaru, A. M., Muhammad, K., Bakar, J., Cheman, Y. B. 1999. Effect of isolation technique and conditions on the extractability, physiochemical and functional properties of pigeon pea (Cajanus cajan) and cow pea (Vigna unguiculata) protein isolates. II. Functional properties. Food Chemistry, 67: 445–452.
  • Nesterenko, A., Alric, I., Violleau, F., Silvestre, F., Durrieu, V. 2014. The effect of vegetable protein modifications on the microencapsulation process. Food Hydrocolloids, 41, 95-102.
  • Ömeroğlu, L. 2018. Kazein hidrolizatlarının işlevsel özellikleri. Yüksek Lisans Tezi. Niğde Ömer Halisdemir Üniversitesi. Oplatowska-Stachowiak, M., Elliott, C.T. 2015. Food colours: Existing and emerging food safety concerns. Critical Reviews in Food Science and Nutrition, 57(3), 524-548.
  • Ranadheera, C.S., Liyanaarachchi, W.S., Chandrapala, J., Dissanayake, M., Vasiljevic, T. 2016. Utilizing unique properties of caseins and the casein micelle for delivery of sensitive food ingredients and bioactives. Trends in Food Science & Technology, 57(A): 178-187.
  • Rehan, F., Ahemad, N., Gupta, M. 2019. Casein nanomicelle as an emerging biomaterial—A comprehensive review. Colloids and Surfaces B: Biointerfaces, 179: 280–292.
  • Ren, X., Li, C., Yang, F., Huang, Y., Huang, C., Zhang, K. 2020. Comparison of hydrodynamic and ultrasonic cavitation effects on soy protein isolate functionality. Journal of Food Engineering, 265: 109697.
  • Sadahira, M,S., Rodrigues, M.I., Akhtar, M., Murray, B.S., Netto, F.M. 2016. Effect of egg white protein-pectin electrostatic interactions in a high sugar content system on foaming and foam rheological properties. Food Hydrocolloids, 58: 1-10.
  • Schmidt, I., Novales, B., Boué, F., Axelos, M.A.V. 2010. Foaming properties of protein/pectin electrostatic complexes and foam structure at nanoscale. Journal of Colloid and Interface Science, 345: 316–324.
  • Silva, D.F., Ipsen, L.A.R., Hougaard, A.B. 2018. Casein-based powders: Characteristics and rehydration properties. Comprehensive Review in Food Science and Food Safety, 17(1): 240-254.
  • Tatar, F., Tugçe, M., Dervisoglu, T.M., Cekmecelioglu, D., Kahyaoglu, T. 2014. Evaluation of hemicellulose as a coating material with gum arabic for food microencapsulation. Food Research International, 57 (2014): 168–175.
  • Turchiuli, C., Eloualia, Z., El Mansouri, N., Dumoulin, E. 2005. Fluidised bed agglomeration: Agglomerates shape and end-use properties. Powder Technology, 157(1-3), 168-175.
  • Van Hekken, D.L., Strange, E.D. 1993. Functional properties of dephosphorylated bovine whole casein. Journal of Dairy Science, 76(11): 3384-3391.
  • Wu, D., Tu, M., Wang, Z., Wu, C., Yu, C., Battino, M., El Seedi, H. R., Du, M. 2019. Biological and conventional food processing modifications on food proteins: Structure, functionality, and bioactivity. Biotechnology Advances, 40, 107491.
  • Yusoff, A., Murray, B.S. 2011. Modified starch granules as particle-stabilizers of oil-in-water emulsions. Food Hydrocolloids, 25: 42-55.
  • Zhang, C., Yang, Y.H., Zhao, X.D., Zhang, L., Li, Q., Wu, C., Ding, X., Qian, J.Y. 2021. Assessment of impact of pulsed electric field on functional, rheological and structural properties of vital wheat gluten. LWT - Food Science and Technology, 147, 111536.

Kazein ve Glüten İzolatlarının Bazı Fonksiyonel Özelliklerinin Karşılaştırılması

Year 2023, , 1055 - 1069, 15.09.2023
https://doi.org/10.31466/kfbd.1287902

Abstract

Bu çalışmada, gıda endüstrisinde önemli bir yere sahip olan kazein ve glüten fonksiyonel özellikleri bakımından karşılaştırılmıştır. Protein örneklerinde viskozite, iletkenlik, kitle yoğunluğu, Hausner oranı ve Carr indeksi, ıslanabilirlik, su tutma kapasitesi, yağ bağlama kapasitesi, köpük oluşturma kapasitesi ve stabilitesi, renk, emülsiyon aktivitesi ve stabilitesi ve son olarak çözünürlük analizleri gerçekleştirilmiştir. Kazeinin (2.05±0.16 g su/g protein) su tutma kapasitesi glütene (1.64±0.10 g su/g protein) göre daha yüksek bulunmuştur. Glütenin köpük oluşturma kapasitesi kazeinden daha yüksek olduğu, köpük stabilitesin ise glütende 60. dakika sonunda bile aynı düzeyde kaldığı gözlenmiştir. Glütenin emülsiyon stabilitesinin kazeinden daha yüksek olduğu belirlenmiştir. Protein örneklerinin, beklendiği gibi, izoelektronik noktalarda en düşük çözünürlük gösterdiği, yüksek pH değerlerinde ise oldukça yüksek çözünürlük gösterdiği belirlenmiştir. Ayrıca, kazeinin glütene göre daha viskoz çözeltiler oluşturduğu, glütenin ise yüksek pH değerlerinde kazeine göre daha fazla çözündüğü gözlenmiştir. Her iki proteinin de iyi akış özelliği gösterdiği Hausner oranı ve Carr indeksi ile belirlenmiştir. Hausner oranı kazeinde 1.69±0.02 ve glütende 1.86±0.10; Carr indeksi ise kazeinde 40.84±0.85 ve glütende 46.24±1.80 olarak belirlenmiştir. Renk ölçümlerine göre glütenin daha parlak ve açık renk olduğu, kazeinin ise daha yüksek a* ve b* değerlerine sahip olduğu tespit edilmiştir. Elde edilen sonuçların, çalışılan proteinlerin gıda ve farmasötik uygulamalarda kullanımına katkı sağlayabileceği düşünülmektedir.

References

  • Acosta-Domínguez, L., Cocotle-Ronzón, Y., Alamilla-Beltrán, L., Hernandez-Martinez, E. 2021. Effect of a cryogenic treatment in the microstructure, functional and flow properties of soy protein isolate. Food Hydrocolloids, 119: 106871.
  • Akharume, F.U., Aluko, R.E., Adedeji, A.A. 2020. Modification of plant proteins for improved functionality: A review. Comprehensive Review in Food Science and Food Safety, 20:198–224.
  • Aksun-Tümerkan, E. T., Cansu, Ü., Boran, G., Regenstein, J. M., Özoğul, F. (2019). Physiochemical and functional properties of gelatin obtained from tuna, frog and chicken skins. Food Chemistry, 287, 273–279.
  • Alshami, A.S., Tang, J., Rasco, B. (2017). Contribution of proteins to the dielectric properties of dielectrically heated biomaterials. Food Bioprocess Technol, 10:1548–1561.
  • AOAC, 1990. Official methods of analysis. Fifteenth edition. Association of Official Analysis Chemists, Washington, DC.
  • Aryee, A.N.A., Agyei, D., Udenigwe, C.C. 2018. Impact of processing on the chemistry and functionality of food proteins. Proteins in Food Processing, 27-45.
  • Aslan-Türker, D., Göksel-Saraç, M., Doğan, M. 2022. Glütensiz unların tekno-fonksiyonel özellikleri ile toz akış davranışlarının belirlenmesi. Harran Tarım ve Gıda Bilimleri Dergisi, 26(4): 528-537.
  • Atamer, Z., Post, A. E., Schubert, T., Holder, A., Boom, R. M., & Hinrichs, J. 2017. Bovine β-casein: Isolation, properties and functionality. A review. International dairy journal, 66, 115-125.
  • Barać, M.B., Pešić, M.B., Stanojević, S.P., Kostić, A.Z., Čabrilo, S.B. 2015. Techno-functional properties of pea (Pisum sativum) protein isolates- a Rewiev. BIBLID, 1450-7188 46: 1-18.
  • Biesiekierski, J.R. 2017. What is gluten? Journal of Gastroenterology and Hepatology, 32 (Suppl. 1): 78–81.
  • Cho, S. M., Kwak, K. S., Park, D. C., Gu, Y. S., Ji, C. I., Jang, D. H. 2004. Processing optimization and functional properties of gelatin from shark (Isurus oxyrinchus) cartilage. Food Hydrocolloids, 18: 573-579.
  • Cortez, R., Vital, D.A.L., Margulis, D., Mejia, E.G. 2016. Natural Pigments: Stabilization Methods of Anthocyanins for Food Applications. Comprehensive Review in Food Science and Food Safety, 00:1-19.
  • Day, L., Augustin, M. A., Batey, I. L., & Wrigley, C. W. 2006. Wheat-gluten uses and industry needs. Trends in food science & technology, 17(2), 82-90.
  • Deng, L., Wang, Z., Yang, S., Song, J., Que, F., Zhang, H., Feng, F. 2016. Improvement of functional properties of wheat gluten using acid protease from Aspergillus usamii. Plos One, 11(7): e0160101.
  • Du, S.K., Jiang, H., Yu, X., Jane, J.L. 2013. Physicochemical and functional properties of whole legume flour. LWT - Food Science and Technology, 2013: 1-6.
  • Gaiani, C., Banon, S., Scher, J., Schuck, P., Hardy, J. 2005. Use of a turbidity sensor to characterize micellar casein powder rehydration: Influence of some technical effects. Journal of Dairy Science, 88:2700–2706.
  • Gornall, A. G., Bardawill, C. J., David, M. M. 1949. Determination of serum proteins by means of the biuret reaction. Journal of Biological Chemistry, 177: 751-66.
  • Han, T., Wang, M., Wang, Y., Tang, L. 2020. Effects of high-pressure homogenization and ultrasonic treatment on the structure and characteristics of casein. LWT - Food Science and Technology, 130, 109560.
  • Hao, T. 2015. Understanding empirical powder flowability criteria scaled by Hausner ratio or Carr index with the analogous viscosity concept. RSC Advances, 5: 57212.
  • Jinapong, N., Suphantharika, M., Jamnong, P. 2008. Production of instant soy milk powders by ultrafiltration, spray drying and fluidized bed agglomeration. Journal of Food Engineering, 84(2): 194–205.
  • Karami, Z., Akbari-edergani, B. 2019. Bioactive food derived peptides: a review on correlation between structure of bioactive peptides and their functional properties. Food Science Techonology, 56(2):535–547.
  • Lara-Castellanos, M.J., Azuara, E., Jimenez-Fernandez, V.M., Luna-Solano, G., Jimenez, G. 2021. Effect of casein replacement by modified casein on physicochemical, textural, sensorial properties and microbiological stability of fresh cheese. International Dairy Journal, 112, 104864.
  • Lee, J., Chai, C., Park, D.J., Lim, K., Imm, J.Y. 2014. Novel convenient method to determine wettability and dispersibility of dairy powders. Korean Journal for Food Science of Animal, 34(6): 852–857.
  • Lee, S.W., Shimiz, M., Kaminogawa, S., Yamauchi, K. 1987. Emulsifying properties of a mixture of peptides derived from the enzymatic hydrolyzates of bovine caseins., Agricultural and Biological Chemistry, 51: 1535–1540.
  • Liang, H.N, Tang, C.H. 2013. pH-dependent emulsifying properties of pea [Pisum sativum (L.)] proteins. Food Hydrocolloids, 33: 309-319.
  • Lu, Y., McMahon, D. J., Metzger, L. E., Kommineni, A., Vollmer, A. H. 2015. Solubilization of rehydrated frozen highly concentrated micellar casein for use in liquid food applications. Journal of Dairy Science, 98 (9): 5917–5930.
  • Majzoobi, M., Abedi, E. 2014. Effects of pH changes on functional properties of native and acetylated wheat glüten. International Food Research Journal, 21(3): 1219-1224.
  • Martins, N., Roriz, C.L., Morales, P., Barros, L., Ferreira, I.C.F.R. 2016. Food colorants: Challenges, opportunities and current desires of agroindustries to ensure consumer expectations and regulatory practices. Trends in Food Science & Technology, 52: 1-15.
  • Mirmoghtadaie, L., Aliabadi, S.S., Hosseini, S.M. 2016. Recent approaches in physical modification of protein functionality. Food Chemistry, 199, 619-627.
  • Mwasaru, A. M., Muhammad, K., Bakar, J., Cheman, Y. B. 1999. Effect of isolation technique and conditions on the extractability, physiochemical and functional properties of pigeon pea (Cajanus cajan) and cow pea (Vigna unguiculata) protein isolates. II. Functional properties. Food Chemistry, 67: 445–452.
  • Nesterenko, A., Alric, I., Violleau, F., Silvestre, F., Durrieu, V. 2014. The effect of vegetable protein modifications on the microencapsulation process. Food Hydrocolloids, 41, 95-102.
  • Ömeroğlu, L. 2018. Kazein hidrolizatlarının işlevsel özellikleri. Yüksek Lisans Tezi. Niğde Ömer Halisdemir Üniversitesi. Oplatowska-Stachowiak, M., Elliott, C.T. 2015. Food colours: Existing and emerging food safety concerns. Critical Reviews in Food Science and Nutrition, 57(3), 524-548.
  • Ranadheera, C.S., Liyanaarachchi, W.S., Chandrapala, J., Dissanayake, M., Vasiljevic, T. 2016. Utilizing unique properties of caseins and the casein micelle for delivery of sensitive food ingredients and bioactives. Trends in Food Science & Technology, 57(A): 178-187.
  • Rehan, F., Ahemad, N., Gupta, M. 2019. Casein nanomicelle as an emerging biomaterial—A comprehensive review. Colloids and Surfaces B: Biointerfaces, 179: 280–292.
  • Ren, X., Li, C., Yang, F., Huang, Y., Huang, C., Zhang, K. 2020. Comparison of hydrodynamic and ultrasonic cavitation effects on soy protein isolate functionality. Journal of Food Engineering, 265: 109697.
  • Sadahira, M,S., Rodrigues, M.I., Akhtar, M., Murray, B.S., Netto, F.M. 2016. Effect of egg white protein-pectin electrostatic interactions in a high sugar content system on foaming and foam rheological properties. Food Hydrocolloids, 58: 1-10.
  • Schmidt, I., Novales, B., Boué, F., Axelos, M.A.V. 2010. Foaming properties of protein/pectin electrostatic complexes and foam structure at nanoscale. Journal of Colloid and Interface Science, 345: 316–324.
  • Silva, D.F., Ipsen, L.A.R., Hougaard, A.B. 2018. Casein-based powders: Characteristics and rehydration properties. Comprehensive Review in Food Science and Food Safety, 17(1): 240-254.
  • Tatar, F., Tugçe, M., Dervisoglu, T.M., Cekmecelioglu, D., Kahyaoglu, T. 2014. Evaluation of hemicellulose as a coating material with gum arabic for food microencapsulation. Food Research International, 57 (2014): 168–175.
  • Turchiuli, C., Eloualia, Z., El Mansouri, N., Dumoulin, E. 2005. Fluidised bed agglomeration: Agglomerates shape and end-use properties. Powder Technology, 157(1-3), 168-175.
  • Van Hekken, D.L., Strange, E.D. 1993. Functional properties of dephosphorylated bovine whole casein. Journal of Dairy Science, 76(11): 3384-3391.
  • Wu, D., Tu, M., Wang, Z., Wu, C., Yu, C., Battino, M., El Seedi, H. R., Du, M. 2019. Biological and conventional food processing modifications on food proteins: Structure, functionality, and bioactivity. Biotechnology Advances, 40, 107491.
  • Yusoff, A., Murray, B.S. 2011. Modified starch granules as particle-stabilizers of oil-in-water emulsions. Food Hydrocolloids, 25: 42-55.
  • Zhang, C., Yang, Y.H., Zhao, X.D., Zhang, L., Li, Q., Wu, C., Ding, X., Qian, J.Y. 2021. Assessment of impact of pulsed electric field on functional, rheological and structural properties of vital wheat gluten. LWT - Food Science and Technology, 147, 111536.
There are 44 citations in total.

Details

Primary Language Turkish
Subjects Food Engineering
Journal Section Articles
Authors

Ümran Cansu 0000-0002-0504-8308

Gülistan Okutan 0000-0002-1936-7633

Gökhan Boran 0000-0002-8871-8433

Publication Date September 15, 2023
Published in Issue Year 2023

Cite

APA Cansu, Ü., Okutan, G., & Boran, G. (2023). Kazein ve Glüten İzolatlarının Bazı Fonksiyonel Özelliklerinin Karşılaştırılması. Karadeniz Fen Bilimleri Dergisi, 13(3), 1055-1069. https://doi.org/10.31466/kfbd.1287902