Research Article
BibTex RIS Cite

Anaerobik Sindirimdeki Demir, Nikel ve Krom İz Elementlerin En İyi Konsantrasyonunun Cevap Yüzey Yöntemi ile Belirlenmesi

Year 2024, , 281 - 294, 15.03.2024
https://doi.org/10.31466/kfbd.1402300

Abstract

Anaerobik sindirim (AS) süreci, karmaşık endüstriyel organik atıkların enerji açısından zengin metana dönüştürülmesi ve bunun standartlaşması için güncel çalışmalar ilgi çekicidir. Tavuk gübresinin AS’i ile metan üretimi bu standartta uygun bir alternatiftir. Ancak, esas olarak organik tavuk gübresinin tekli metan verimi oldukça düşük olabiliyor. Bu nedenle, tavuk gübresinin AS verimini arttırmak için küçük ölçekli kesikli tipte metan potansiyel analizlerinde Cr, Fe ve Co ilavesinin (sırasıyla 0-5, 0-150 ve 0-30 mg/l konsantrasyonlarında) etkisini tartışıldı. En uygun optimizasyon değerinin bulunması için Cevap Yüzey Yönteminin Box Behnken Tasarımı uygulanmıştır. Optimizasyon ve model denklemi yüksek doğrulukta ve uygun performansta başarılı bir şekilde elde edilmiştir. Ön işlemsiz tavuk gübresinin metan verimi 235 ml/g uçucu katı (UK) iken optimum koşullardaki (Fe: 28,6 mg/l, Co:16,2 mg/l ve Cr: 3,66 mg/l) metan verimi 267,5 ml/g UK değerinde bulunmuştur ve bu koşullardaki metan verimi ön işlemsiz metan verimine göre %13,6 kadar artırılmıştır. Bu çalışma kesikli sistemlerde ve laboratuvar ölçekte Cr, Fe ve Co iz elementlerinin anaerobik ortama eklenmesi ile substratın metan verimini başarılı bir şekilde artırdığını gösterdi. Bu nedenle gelecek çalışmaların pilot ölçekte Cr, Fe ve Co iz elementlerinin anaerobik ortama eklenmesi ile metan veriminin test edilmesi gereklidir.

Supporting Institution

Cumhuriyet Üniversitesi

Project Number

M-2022-842

Thanks

Bu çalışma Sivas cumhuriyet üniversitesi bilimsel araştırmalar birimi (CÜBAP) tarafından M-2022-842 nolu proje kapsamında desteklenmiştir. İlgili kuruma yazarlar tarafından teşekkür etmeyi bir borç biliriz.

References

  • Açıkel, Ü., Erşan, M., Açıkel, Y.S. 2010. Optimization of critical medium components using response surface methodology for lipase production by Rhizopus delemar. Food and Bioproducts Processing, 88(1), 31-39.
  • Apha, A. 1985. Standard methods for the examination of water and wastewater. Apha Washington.
  • Can, O., Ersan, M. 2013. Response surface methodology for optimizing the marination conditions during the processing of rainbow trout fillets. J. Anim. Plant Sci, 23(6), 1595-1602.
  • Choong, Y.Y., Norli, I., Abdullah, A.Z., Yhaya, M.F. 2016. Impacts of trace element supplementation on the performance of anaerobic digestion process: A critical review. Bioresource technology, 209, 369-379.
  • Demirel, B., Scherer, P. 2011. Trace element requirements of agricultural biogas digesters during biological conversion of renewable biomass to methane. Biomass and bioenergy, 35(3), 992-998.
  • Glass, J.B., Orphan, V.J. 2012. Trace metal requirements for microbial enzymes involved in the production and consumption of methane and nitrous oxide. Frontiers in microbiology, 3, 61.
  • Hansen, K.H., Angelidaki, I., Ahring, B.K. 1999. Improving thermophilic anaerobic digestion of swine manure. Water research, 33(8), 1805-1810.
  • Jose, P., Madhu, G. 2014. Optimization of process parameters affecting biogas production from organic fraction of municipal solid waste via anaerobic digestion. International Journal of Bioengineering and Life Sciences, 8(1), 43-48.
  • Karaalp, D., Doruk, N., Dizge, N., Keskinler, B., Azbar, N. 2015. A novel solution for biogas applications in poultry industry: CLAMBS approach. Journal of Bioprocessing & Biotechniques, 5(2), 1.
  • Keskin, T., Arslan, K., Karaalp, D., Azbar, N. 2019. The determination of the trace element effects on basal medium by using the statistical optimization approach for biogas production from chicken manure. Waste and Biomass Valorization, 10(9), 2497-2506.
  • Lin, J.-T., Zhang, J.-S., Su, N., Xu, J.-G., Wang, N., Chen, J.-T., Chen, X., Liu, Y.-X., Gao, H., Jia, Y.-P. 2007. Safety and immunogenicity from a phase I trial of inactivated severe acute respiratory syndrome coronavirus vaccine. Antiviral therapy, 12(7), 1107-1114.
  • Mancini, G., Papirio, S., Lens, P.N., Esposito, G. 2019. A preliminary study of the effect of bioavailable Fe and Co on the anaerobic digestion of rice straw. Energies, 12(4), 577.
  • Mancini, G., Papirio, S., Riccardelli, G., Lens, P.N., Esposito, G. 2018. Trace elements dosing and alkaline pretreatment in the anaerobic digestion of rice straw. Bioresource Technology, 247, 897-903.
  • Moestedt, J., Nordell, E., Yekta, S.S., Lundgren, J., Martí, M., Sundberg, C., Ejlertsson, J., Svensson, B.H., Björn, A. 2016. Effects of trace element addition on process stability during anaerobic co-digestion of OFMSW and slaughterhouse waste. Waste management, 47, 11-20.
  • Molaey, R., Bayrakdar, A., Sürmeli, R.Ö., Çalli, B. 2018. Influence of trace element supplementation on anaerobic digestion of chicken manure: Linking process stability to methanogenic population dynamics. Journal of Cleaner Production, 181, 794-800.
  • Mustafa, A.M., Li, H., Radwan, A.A., Sheng, K., Chen, X. 2018. Effect of hydrothermal and Ca (OH) 2 pretreatments on anaerobic digestion of sugarcane bagasse for biogas production. Bioresource technology, 259, 54-60.
  • Papirio, S. 2020. Coupling acid pretreatment and dosing of Ni and Se enhances the biomethane potential of hazelnut skin. Journal of Cleaner Production, 262, 121407.
  • Pastor-Poquet, V., Papirio, S., Trably, E., Rintala, J., Escudié, R., Esposito, G. 2019. Semi-continuous mono-digestion of OFMSW and co-digestion of OFMSW with beech sawdust: Assessment of the maximum operational total solid content. Journal of environmental management, 231, 1293-1302.
  • Preeti Rao, P., Seenayya, G. 1994. Improvement of methanogenesis from cow dung and poultry litter waste digesters by addition of iron. World Journal of microbiology and Biotechnology, 10(2), 211-214.
  • Preeti Rao, P., Seenayya, G. 1994b. Improvement of methanogenesis from cow dung and poultry litter waste digesters by addition of iron. World Journal of microbiology and Biotechnology, 10, 211-214.
  • Qi, N., Zhao, X., Zhang, L., Gao, M., Yu, N., Liu, Y. 2021. Performance assessment on anaerobic co-digestion of Cannabis ruderalis and blackwater: Ultrasonic pretreatment and kinetic analysis. Resources, Conservation and Recycling, 169, 105506.
  • Romero-Güiza, M., Vila, J., Mata-Alvarez, J., Chimenos, J., Astals, S. 2016. The role of additives on anaerobic digestion: a review. Renewable and Sustainable Energy Reviews, 58, 1486-1499.
  • Safari, M., Abdi, R., Adl, M., Kafashan, J. 2018. Optimization of biogas productivity in lab-scale by response surface methodology. Renewable Energy, 118, 368-375.
  • Schattauer, A., Abdoun, E., Weiland, P., Plöchl, M., Heiermann, M. 2011. Abundance of trace elements in demonstration biogas plants. Biosystems engineering, 108(1), 57-65.
  • Şenol, H. 2020. Anaerobic digestion of hazelnut (Corylus colurna) husks after alkaline pretreatment and determination of new important points in Logistic model curves. Bioresource technology, 300, 122660.
  • Şenol, H. 2020. Identification of new critical points for logistics model in cumulative methane yield curves after co‐digestion of apple pulp and chicken manure with sulphuric acid pretreatment and a new modelling study. International Journal of Energy Research, 44(7), 6078-6087.
  • Şenol, H., Erşan, M., Görgün, E. 2020. Optimization of temperature and pretreatments for methane yield of hazelnut shells using the response surface methodology. Fuel, 271, 117585.
  • Takashima, M., Speece, R., Parkin, G.F. 1990. Mineral requirements for methane fermentation. Critical Reviews in Environmental Science and Technology, 19(5), 465-479.
  • Wang, X., Yang, G., Li, F., Feng, Y., Ren, G. 2013. Response surface optimization of methane potentials in anaerobic co-digestion of multiple substrates: dairy, chicken manure and wheat straw. Waste management & research, 31(1), 60-66.
  • Zandvoort, M., Van Hullebusch, E., Fermoso, F.G., Lens, P. 2006. Trace metals in anaerobic granular sludge reactors: bioavailability and dosing strategies. Engineering in life sciences, 6(3), 293-301.
  • Zhang, C., Su, H., Tan, T. 2013. Batch and semi-continuous anaerobic digestion of food waste in a dual solid–liquid system. Bioresource Technology, 145, 10-16.
  • Zhang, R., El-Mashad, H.M., Hartman, K., Wang, F., Liu, G., Choate, C., Gamble, P. 2007. Characterization of food waste as feedstock for anaerobic digestion. Bioresource technology, 98(4), 929-935.
  • Zheng, Y., Zhao, J., Xu, F., Li, Y. 2014. Pretreatment of lignocellulosic biomass for enhanced biogas production. Progress in energy and combustion science, 42, 35-53.

Determination of the Optimal Concentration of Iron, Nickel and Chromium Trace Elements in Anaerobic Digestion by Response Surface Method

Year 2024, , 281 - 294, 15.03.2024
https://doi.org/10.31466/kfbd.1402300

Abstract

Current studies for the anaerobic digestion (AD) process, the conversion of complex industrial organic wastes into energy-rich biomethane, and its standardization are of interest. Biomethane production by AD of chicken manure is an alternative that complies with this standard. However, mainly the monobiomethane yield of organic chicken manure can be quite low. Therefore, the effect of Cr, Fe and Co addition (at concentrations of 0-5, 0-150 and 0-30 mg/l, respectively) in small-scale batch-type biomethane potential analyzes to increase the AD of chicken manure was discussed. Box Behnken Design of the Response Surface Method was applied to find the most appropriate optimization value. The optimization and model equation were successfully achieved with high accuracy and favorable performance. While the methane yield of untreated chicken manure was 235 ml/g volatile solids (VS), the biomethane yield under optimum conditions (Fe: 28,6 mg/L, Co:16,2 mg/L ve Cr: 3,66 mg/L) was found to be 267.5 ml/g VS. Methane yield under these conditions was increased by 13.6% compared to the methane yield untreated. This study showed that the addition of trace elements Cr, Fe and Co to the anaerobic environment in batch systems and on a laboratory scale successfully increased the methane yield of the substrate. For this reason, future studies need to test the methane yield by adding Cr, Fe and Co trace elements to the anaerobic environment on a pilot scale.

Project Number

M-2022-842

References

  • Açıkel, Ü., Erşan, M., Açıkel, Y.S. 2010. Optimization of critical medium components using response surface methodology for lipase production by Rhizopus delemar. Food and Bioproducts Processing, 88(1), 31-39.
  • Apha, A. 1985. Standard methods for the examination of water and wastewater. Apha Washington.
  • Can, O., Ersan, M. 2013. Response surface methodology for optimizing the marination conditions during the processing of rainbow trout fillets. J. Anim. Plant Sci, 23(6), 1595-1602.
  • Choong, Y.Y., Norli, I., Abdullah, A.Z., Yhaya, M.F. 2016. Impacts of trace element supplementation on the performance of anaerobic digestion process: A critical review. Bioresource technology, 209, 369-379.
  • Demirel, B., Scherer, P. 2011. Trace element requirements of agricultural biogas digesters during biological conversion of renewable biomass to methane. Biomass and bioenergy, 35(3), 992-998.
  • Glass, J.B., Orphan, V.J. 2012. Trace metal requirements for microbial enzymes involved in the production and consumption of methane and nitrous oxide. Frontiers in microbiology, 3, 61.
  • Hansen, K.H., Angelidaki, I., Ahring, B.K. 1999. Improving thermophilic anaerobic digestion of swine manure. Water research, 33(8), 1805-1810.
  • Jose, P., Madhu, G. 2014. Optimization of process parameters affecting biogas production from organic fraction of municipal solid waste via anaerobic digestion. International Journal of Bioengineering and Life Sciences, 8(1), 43-48.
  • Karaalp, D., Doruk, N., Dizge, N., Keskinler, B., Azbar, N. 2015. A novel solution for biogas applications in poultry industry: CLAMBS approach. Journal of Bioprocessing & Biotechniques, 5(2), 1.
  • Keskin, T., Arslan, K., Karaalp, D., Azbar, N. 2019. The determination of the trace element effects on basal medium by using the statistical optimization approach for biogas production from chicken manure. Waste and Biomass Valorization, 10(9), 2497-2506.
  • Lin, J.-T., Zhang, J.-S., Su, N., Xu, J.-G., Wang, N., Chen, J.-T., Chen, X., Liu, Y.-X., Gao, H., Jia, Y.-P. 2007. Safety and immunogenicity from a phase I trial of inactivated severe acute respiratory syndrome coronavirus vaccine. Antiviral therapy, 12(7), 1107-1114.
  • Mancini, G., Papirio, S., Lens, P.N., Esposito, G. 2019. A preliminary study of the effect of bioavailable Fe and Co on the anaerobic digestion of rice straw. Energies, 12(4), 577.
  • Mancini, G., Papirio, S., Riccardelli, G., Lens, P.N., Esposito, G. 2018. Trace elements dosing and alkaline pretreatment in the anaerobic digestion of rice straw. Bioresource Technology, 247, 897-903.
  • Moestedt, J., Nordell, E., Yekta, S.S., Lundgren, J., Martí, M., Sundberg, C., Ejlertsson, J., Svensson, B.H., Björn, A. 2016. Effects of trace element addition on process stability during anaerobic co-digestion of OFMSW and slaughterhouse waste. Waste management, 47, 11-20.
  • Molaey, R., Bayrakdar, A., Sürmeli, R.Ö., Çalli, B. 2018. Influence of trace element supplementation on anaerobic digestion of chicken manure: Linking process stability to methanogenic population dynamics. Journal of Cleaner Production, 181, 794-800.
  • Mustafa, A.M., Li, H., Radwan, A.A., Sheng, K., Chen, X. 2018. Effect of hydrothermal and Ca (OH) 2 pretreatments on anaerobic digestion of sugarcane bagasse for biogas production. Bioresource technology, 259, 54-60.
  • Papirio, S. 2020. Coupling acid pretreatment and dosing of Ni and Se enhances the biomethane potential of hazelnut skin. Journal of Cleaner Production, 262, 121407.
  • Pastor-Poquet, V., Papirio, S., Trably, E., Rintala, J., Escudié, R., Esposito, G. 2019. Semi-continuous mono-digestion of OFMSW and co-digestion of OFMSW with beech sawdust: Assessment of the maximum operational total solid content. Journal of environmental management, 231, 1293-1302.
  • Preeti Rao, P., Seenayya, G. 1994. Improvement of methanogenesis from cow dung and poultry litter waste digesters by addition of iron. World Journal of microbiology and Biotechnology, 10(2), 211-214.
  • Preeti Rao, P., Seenayya, G. 1994b. Improvement of methanogenesis from cow dung and poultry litter waste digesters by addition of iron. World Journal of microbiology and Biotechnology, 10, 211-214.
  • Qi, N., Zhao, X., Zhang, L., Gao, M., Yu, N., Liu, Y. 2021. Performance assessment on anaerobic co-digestion of Cannabis ruderalis and blackwater: Ultrasonic pretreatment and kinetic analysis. Resources, Conservation and Recycling, 169, 105506.
  • Romero-Güiza, M., Vila, J., Mata-Alvarez, J., Chimenos, J., Astals, S. 2016. The role of additives on anaerobic digestion: a review. Renewable and Sustainable Energy Reviews, 58, 1486-1499.
  • Safari, M., Abdi, R., Adl, M., Kafashan, J. 2018. Optimization of biogas productivity in lab-scale by response surface methodology. Renewable Energy, 118, 368-375.
  • Schattauer, A., Abdoun, E., Weiland, P., Plöchl, M., Heiermann, M. 2011. Abundance of trace elements in demonstration biogas plants. Biosystems engineering, 108(1), 57-65.
  • Şenol, H. 2020. Anaerobic digestion of hazelnut (Corylus colurna) husks after alkaline pretreatment and determination of new important points in Logistic model curves. Bioresource technology, 300, 122660.
  • Şenol, H. 2020. Identification of new critical points for logistics model in cumulative methane yield curves after co‐digestion of apple pulp and chicken manure with sulphuric acid pretreatment and a new modelling study. International Journal of Energy Research, 44(7), 6078-6087.
  • Şenol, H., Erşan, M., Görgün, E. 2020. Optimization of temperature and pretreatments for methane yield of hazelnut shells using the response surface methodology. Fuel, 271, 117585.
  • Takashima, M., Speece, R., Parkin, G.F. 1990. Mineral requirements for methane fermentation. Critical Reviews in Environmental Science and Technology, 19(5), 465-479.
  • Wang, X., Yang, G., Li, F., Feng, Y., Ren, G. 2013. Response surface optimization of methane potentials in anaerobic co-digestion of multiple substrates: dairy, chicken manure and wheat straw. Waste management & research, 31(1), 60-66.
  • Zandvoort, M., Van Hullebusch, E., Fermoso, F.G., Lens, P. 2006. Trace metals in anaerobic granular sludge reactors: bioavailability and dosing strategies. Engineering in life sciences, 6(3), 293-301.
  • Zhang, C., Su, H., Tan, T. 2013. Batch and semi-continuous anaerobic digestion of food waste in a dual solid–liquid system. Bioresource Technology, 145, 10-16.
  • Zhang, R., El-Mashad, H.M., Hartman, K., Wang, F., Liu, G., Choate, C., Gamble, P. 2007. Characterization of food waste as feedstock for anaerobic digestion. Bioresource technology, 98(4), 929-935.
  • Zheng, Y., Zhao, J., Xu, F., Li, Y. 2014. Pretreatment of lignocellulosic biomass for enhanced biogas production. Progress in energy and combustion science, 42, 35-53.
There are 33 citations in total.

Details

Primary Language Turkish
Subjects Chemical Engineering (Other)
Journal Section Articles
Authors

Mehtap Erşan 0000-0002-5429-4468

Halil Şenol 0000-0003-3056-5013

Project Number M-2022-842
Publication Date March 15, 2024
Submission Date December 8, 2023
Acceptance Date March 14, 2024
Published in Issue Year 2024

Cite

APA Erşan, M., & Şenol, H. (2024). Anaerobik Sindirimdeki Demir, Nikel ve Krom İz Elementlerin En İyi Konsantrasyonunun Cevap Yüzey Yöntemi ile Belirlenmesi. Karadeniz Fen Bilimleri Dergisi, 14(1), 281-294. https://doi.org/10.31466/kfbd.1402300