Research Article
BibTex RIS Cite

Prediction of Potential Radioactive Dispersion from Iranian Nuclear Facilities Bombed by Israel Using Meteorological Data

Year 2025, Volume: 15 Issue: 4, 1696 - 1712, 15.12.2025
https://doi.org/10.31466/kfbd.1729780

Abstract

Nuclear accidents can lead to severe environmental disasters and critical threats to human life. As of June 2025, the most recent major nuclear incident remains the Fukushima Daiichi Nuclear Power Plant disaster that occurred on March 11, 2011, in Japan. This incident is historically regarded as one of the most significant nuclear accidents. In such cases, atmospheric conditions play a crucial role in the transport of radioactive materials, and modeling studies are commonly employed to estimate the dispersion zones of radioactive fallout based on meteorological factors. On the other hand, the bombing of Iranian nuclear facilities by Israel, which began on June 13, 2025, has been a source of concern for the Turkish public. This concern stems from the geographical proximity between Turkey and Iran, and the fact that some Iranian nuclear facilities are located relatively close to the Turkish border. In this study, based on meteorological data, the atmospheric movement over the one-week period following the bombing incidents was analyzed and discussed to estimate potential radiation dispersion zones. This study provides a preliminary model for assessing cross-border nuclear contamination risks in the Middle East.

Project Number

FBA-2025-16011

References

  • ApSimon, H.M., Wilson, J.J.N., (1987). Modelling atmospheric dispersal of the Chernobyl release across Europe. Boundary-Layer Meteorol, 41, 123–133.
  • Bayram, T., Zayachuk, Y. ve Gupta, D. K. (2020). Environmental Radioactivity in Turkish Environment. Sivas: Sivas Cumhuriyet Üniversitesi.
  • Cao, B., Zheng, J., Chen, Y., (2016). Radiation Dose Calculations for a Hypothetical Accident in Xianning Nuclear Power Plant. Science and Technology of Nuclear Installations, 3105878.
  • Christoudias, T. ve Lelieveld, J. (2013). Modelling the global atmospheric transport and deposition of radionuclides from the Fukushima Dai-ichi nuclear accident. Atmos. Chem. Phys., 13, 1425–1438.
  • Draxler, R., Arnold, D., Chino, M., Galmarini, S., Hort, M., Jones, A., Leadbetter, S., Malo, A., Maurer, C., Rolph, G., Saito, K., Servranckx, R., Shimbori, T., Solazzo, E., Wotawa, G., (2015) World Meteorological Organization's model simulations of the radionuclide dispersion and deposition from the Fukushima Daiichi nuclear power plant accident. J Environ Radioact. 139, 172-184.
  • Draxler, R.R., ve Hess, G.D., (1998). An overview of the HYSPLIT_4 modeling system of trajectories, dispersion, and deposition. Aust. Meteor. Mag., 47, 295-308.
  • Feyzinejad, M., Malakooti, H., Sadrinasab, M., Ghader, S., Yagi, D., (2018). Simulation of atmospheric dispersion and dose assessment by a coupled WRF-HYSPLIT model for Bushehr power plant. Iranian Journal of Geophysics, 12, 19-50.
  • Katata, G., Chino, M., Kobayashi, T. vd., (2014). Detailed source term estimation of the atmospheric release for the Fukushima Daiichi Nuclear Power Station accident by coupling simulations of atmospheric dispersion model with improved deposition scheme and oceanic dispersion model. Atmos. Chem. Phys. Discuss., 14, 14725-14832.
  • Kusumi, T., Miura, A., Ogura, K., Nishikawa, K., (2023). Attitudes toward possible food radiation contamination following the Fukushima nuclear accident: a nine-year, ten-wave panel survey. Journal of Risk Research, 26, 502-523.
  • Murray, R. ve Holbert, K. E. (2015). An introduction to the concepts, systems, and applications of nuclear processes. New York: Butterworth-Heinemann.
  • Musauddin, A. ve Kim, J. (2019). Offsite Radiological Consequence Analysis of Hypothetical Accidents for APR1400. Journal of Radiation Industry, 13(2), 147-155.
  • Nakajima, T., Ohara, T., Uematsu, M., Onda Y., (2019). Diffusion in the Atmosphere. In: Environmental Contamination from the Fukushima Nuclear Disaster: Dispersion, Monitoring, Mitigation and Lessons Learned. Cambridge: Cambridge Environmental Chemistry Series.
  • Stein, A.F., Draxler, R.R, Rolph, G.D., Stunder, B.J.B., Cohen, M.D., ve Ngan, F., (2015). NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull. Amer. Meteor. Soc., 96, 2059-2077.
  • TAEK, (2012). Ermenistan'daki Metsamor nükleer santralinde meydana gelebilecek kaza sonrası doz seviyeleri için acil koruyucu önlemlerin belirlenmesi. Ankara: TAEK.
  • URL-1: https://ceobs.org/the-emerging-environmental-consequences-of-the-israel-iran-war/?utm_source=chatgpt.com (Erişim Tarihi: 5 Ağustos 2025).
  • URL-2: https://www.noaa.gov/ (Erişim Tarihi: 5 Ağustos 2025).
  • Vali, R., Adelikhah, M. E., Feghhi, S. A. H., Noorikalkhoran, O., Ahangari, R,. (2019). Simulation of radionuclide atmospheric dispersion and dose assessment for inhabitants of Tehran province after a hypothetical accident of the Tehran Research Reactor. Radiat. Environ. Biophys. 58(1), 119-128.
  • WHO, (2011). Nuclear accidents and radioactive contamination of foods. https://www.who.int/publications/m/item/nuclear-accidents-and-radioactive-contamination-of-foods (Erişim Tarihi: 2 Ağustos 2025).

İsrail Tarafından Bombalanan İran Nükleer Tesislerinden Olası Sızıntıların Meteorolojik Verilere Göre Yayılım Bölgelerinin Tahmini

Year 2025, Volume: 15 Issue: 4, 1696 - 1712, 15.12.2025
https://doi.org/10.31466/kfbd.1729780

Abstract

Nükleer kazalar beraberinde çok ciddi çevresel felaketlere ve yaşamsal sorunlara yol açabilmektedir. Haziran 2025 tarihine kadar bilinen güncel nükleer kaza 11 Mart 2011'de Japonya'nın Fukuşima Daiichi Nükleer Santralinde meydana gelen kazadır. Bu kaza tarihsel olarak en büyük nükleer kazalardan biri olarak kabul edilir. Bu tip kazalarda atmosferik hava olayları ile radyoaktif taşınım söz konusu olduğundan modelleme çalışmaları ile hava olaylarına bağlı olarak radyoaktif serpintinin yayılım bölgelerinin belirlenmesi yaygındır. Bir diğer taraftan 13 Haziran 2025 tarihinde başlayan İsrail’in İran nükleer tesislerine yönelik bombalama olayları Türkiye kamuoyunda kaygı ile izlenmiştir. Bunun sebebi ise Türkiye ve İran’ın komşu ülkeler olması ve bazı İran nükleer tesislerinin ise Türkiye sınırını yakın sayılabilecek uzaklıkta olmasıdır. Bu çalışmada meteorolojik verilere dayalı olarak bombalama eyleminin gerçekleştiği tarihten itibaren 6 günlük sürede hava hareketleri incelenerek olası radyasyon yayılım bölgelerinin tahmini gerçekleştirilmiş ve detaylıca tartışılmıştır. Bu çalışma, Orta Doğu'da sınır ötesi nükleer kirlenme risklerinin değerlendirilmesi için ön bir model sunmaktadır.

Supporting Institution

Karadeniz Teknik Üniversitesi

Project Number

FBA-2025-16011

Thanks

Bu çalışma Karadeniz Teknik Üniversitesi Bilimsel Araştırma Projeleri Birimi tarafından desteklenmiştir. Proje numarası: FBA-2025-16011

References

  • ApSimon, H.M., Wilson, J.J.N., (1987). Modelling atmospheric dispersal of the Chernobyl release across Europe. Boundary-Layer Meteorol, 41, 123–133.
  • Bayram, T., Zayachuk, Y. ve Gupta, D. K. (2020). Environmental Radioactivity in Turkish Environment. Sivas: Sivas Cumhuriyet Üniversitesi.
  • Cao, B., Zheng, J., Chen, Y., (2016). Radiation Dose Calculations for a Hypothetical Accident in Xianning Nuclear Power Plant. Science and Technology of Nuclear Installations, 3105878.
  • Christoudias, T. ve Lelieveld, J. (2013). Modelling the global atmospheric transport and deposition of radionuclides from the Fukushima Dai-ichi nuclear accident. Atmos. Chem. Phys., 13, 1425–1438.
  • Draxler, R., Arnold, D., Chino, M., Galmarini, S., Hort, M., Jones, A., Leadbetter, S., Malo, A., Maurer, C., Rolph, G., Saito, K., Servranckx, R., Shimbori, T., Solazzo, E., Wotawa, G., (2015) World Meteorological Organization's model simulations of the radionuclide dispersion and deposition from the Fukushima Daiichi nuclear power plant accident. J Environ Radioact. 139, 172-184.
  • Draxler, R.R., ve Hess, G.D., (1998). An overview of the HYSPLIT_4 modeling system of trajectories, dispersion, and deposition. Aust. Meteor. Mag., 47, 295-308.
  • Feyzinejad, M., Malakooti, H., Sadrinasab, M., Ghader, S., Yagi, D., (2018). Simulation of atmospheric dispersion and dose assessment by a coupled WRF-HYSPLIT model for Bushehr power plant. Iranian Journal of Geophysics, 12, 19-50.
  • Katata, G., Chino, M., Kobayashi, T. vd., (2014). Detailed source term estimation of the atmospheric release for the Fukushima Daiichi Nuclear Power Station accident by coupling simulations of atmospheric dispersion model with improved deposition scheme and oceanic dispersion model. Atmos. Chem. Phys. Discuss., 14, 14725-14832.
  • Kusumi, T., Miura, A., Ogura, K., Nishikawa, K., (2023). Attitudes toward possible food radiation contamination following the Fukushima nuclear accident: a nine-year, ten-wave panel survey. Journal of Risk Research, 26, 502-523.
  • Murray, R. ve Holbert, K. E. (2015). An introduction to the concepts, systems, and applications of nuclear processes. New York: Butterworth-Heinemann.
  • Musauddin, A. ve Kim, J. (2019). Offsite Radiological Consequence Analysis of Hypothetical Accidents for APR1400. Journal of Radiation Industry, 13(2), 147-155.
  • Nakajima, T., Ohara, T., Uematsu, M., Onda Y., (2019). Diffusion in the Atmosphere. In: Environmental Contamination from the Fukushima Nuclear Disaster: Dispersion, Monitoring, Mitigation and Lessons Learned. Cambridge: Cambridge Environmental Chemistry Series.
  • Stein, A.F., Draxler, R.R, Rolph, G.D., Stunder, B.J.B., Cohen, M.D., ve Ngan, F., (2015). NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull. Amer. Meteor. Soc., 96, 2059-2077.
  • TAEK, (2012). Ermenistan'daki Metsamor nükleer santralinde meydana gelebilecek kaza sonrası doz seviyeleri için acil koruyucu önlemlerin belirlenmesi. Ankara: TAEK.
  • URL-1: https://ceobs.org/the-emerging-environmental-consequences-of-the-israel-iran-war/?utm_source=chatgpt.com (Erişim Tarihi: 5 Ağustos 2025).
  • URL-2: https://www.noaa.gov/ (Erişim Tarihi: 5 Ağustos 2025).
  • Vali, R., Adelikhah, M. E., Feghhi, S. A. H., Noorikalkhoran, O., Ahangari, R,. (2019). Simulation of radionuclide atmospheric dispersion and dose assessment for inhabitants of Tehran province after a hypothetical accident of the Tehran Research Reactor. Radiat. Environ. Biophys. 58(1), 119-128.
  • WHO, (2011). Nuclear accidents and radioactive contamination of foods. https://www.who.int/publications/m/item/nuclear-accidents-and-radioactive-contamination-of-foods (Erişim Tarihi: 2 Ağustos 2025).
There are 18 citations in total.

Details

Primary Language Turkish
Subjects Classical Physics (Other), Environmental Pollution and Prevention
Journal Section Research Article
Authors

Rumeysa Zengin 0009-0007-6384-1308

Tuncay Bayram 0000-0003-3704-0818

Belgin Küçükömeroğlu 0000-0003-3963-3764

Project Number FBA-2025-16011
Submission Date June 30, 2025
Acceptance Date December 5, 2025
Publication Date December 15, 2025
Published in Issue Year 2025 Volume: 15 Issue: 4

Cite

APA Zengin, R., Bayram, T., & Küçükömeroğlu, B. (2025). İsrail Tarafından Bombalanan İran Nükleer Tesislerinden Olası Sızıntıların Meteorolojik Verilere Göre Yayılım Bölgelerinin Tahmini. Karadeniz Fen Bilimleri Dergisi, 15(4), 1696-1712. https://doi.org/10.31466/kfbd.1729780