Research Article
BibTex RIS Cite

Meyve Kabuklarının Gıdalar için Antimikrobiyal Madde ve Yenilebilir Film olarak Etkinliklerinin Belirlenmesi

Year 2018, , 144 - 157, 18.06.2018
https://doi.org/10.31466/kfbd.409052

Abstract

Meyve-sebze kabukları sağlığa çeşitli olumlu etkileri
bulunan polifenol, karotenoid gibi biyoaktif bileşenler açısından zengindir. Kabukların,
meyve-sebzelerin diğer fraksiyonlarından daha fazla biyolojik aktiviteye sahip
olmasından dolayı bunların değerlendirilmesi oldukça önemlidir.
Çalışmada meyve kabuk artıklarının gıdalarda antimikrobiyal
film üretiminde kaplama materyali olarak kullanılması hedeflenmiştir.
Bu amaçla limon,
portakal, kırmızı elma, yeşil elma
kabuk
artıklarından elde edilen ekstraktların antimikrobiyal aktivitelerinin
belirlenmesi ve en yüksek aktivite gösteren meyve kabuğu ekstrelerinden
yenilebilir filmlerin hazırlanması hedeflenmiştir. En yüksek aktivite gösteren portakal ve limon kabuklarından elde
edilen doğal antimikrobiyal ekstrakt karagenan, ksantan ve keçiboynuzu içeren
yenilebilir filmler oluşturularak antimikrobiyal etkileri incelenmiştir.

Çalışma sonuçlarına göre meyve kabuğu ekstraktlarının hepsinin antimikrobiyal
etkili olduğu fakat en yüksek aktivitenin limon ve portakal kabuğu
ekstrelerinde gözlemlenmiştir. Limon ve portakal kabuklarının ekstrelerinden
hazırlanan yenilebilir film sonuçlarına göre oluşturdukları zon çaplarına
bakıldığında filmlerden ksantan limon, karagenan portakal, karagenan limon ve
keçiboynuzu limonun daha fazla antimikrobiyal etkili olduğu bulunmuştur. Limon
ekstrelerinden hazırlanan filmler, portakal ekstrelerinden hazırlanan filmlere
göre daha fazla antimikrobiyal etki göstermiştir. Bu bulguların sonucu olarak;
gıda ürünleri meyve kabuklarından elde edilen antimikrobiyal yenibilir filmler
ile kaplanarak çeşitli fonksiyonel gıda ürünleri üretilebilir.

References

  • Akgül, A., and Kivanç, M. (1989). Sensitivity four foodborne moulds to essential oils from Turkish spices, herbs, and citrus Peel. Journal of the Science of Food and Agriculture. 47, 129-132. doi: 10.1002/jsfa.2740470115.
  • Altuğ, S.E., and Karapınar, M.E. (1988). Sensitivity of some common food poisining bacteria to thyme, mint and bay Leaves. Int. J. Food Microbiology. 3 (6), 349-354.
  • Al-Zoreky, N.S. (2009). Antimicrobial activity of pomegranate (Punica granatum L.) fruit peels. International Journal of Food Microbiology. 134, 244–248. doi: 10.1016/j.ijfoodmicro.2009.07.002
  • Arora, M., and Kaur, P. (2013). Antimicrobial & antioxidant activity of orange pulp and peel. International Journal of Science and Research. 2(11), 412-415.
  • Avila- Sosa, R., Palou, E., Munguia, M.T.J., Nevarez-Moorillonv G.V., Curuz, A.R.N., and Lopez-Malo, A. (2012). Antifungal activity by vapor contact of essential oils added to amaranth, chitosan, or starch edible films. International Journal of Food Microbiology. 153, 66-72. doi: 10.1016/j.ijfoodmicro.2011.10.017.
  • Baytop, T. (1999). Türkiye’de bitkiler ile tedavi, geçmişte ve bugün. İstanbul Üniversitesi, Eczacılık Fakültesi, İstanbul, 550 s.
  • Bonilla, J., and Sobral, P.J.A. (2016). Investigation of the physicochemical, antimicrobial and antioxidant properties of gelatin-chitosan edible film mixed with plant ethanolic extracts. Food Bioscience, 16, 17-25. doi: 10.1016/j.fbio.2016.07.003
  • Campo, J., Amiot, M.J., and Nguyen –The, C. (2000). Antimicrobial effect of rosemary extracts. Journal of Food Protection. 63, 1359-1368.
  • Cerit, L.S. (2008). Bazi Baharat Uçucu Yağlarının Antimikrobiyal Özellikleri, Yüksek Lisans Tezi, Pamukkale Üniversitesi, Gıda Mühendisliği Anabilim Dalı, 55s.
  • Collins, C.M., and Lyne, P.M. (1987). Microbiological methods”, Butterworths Co. (Publishhers) Ltd. London. 456s.
  • Dahham, S.S., Ali, M.N., Tabassum,H., and Khan, M. (2010). Studies on antibacterial and antifungal activity of pomegranate (Punica granatum L.). American-Eurasian J. Agric. & Environ. Sci., 9 (3), 273-281.
  • Dehghani, S., Hosseini, S.V., and Regenstein, J.M. (2018). Edible films and coatings in seafood preservation: A Review. Food Chemistry, 240, 505-513. doi: 10.1016/j.foodchem.2017.07.034
  • Ehiowemwenguan, G., Emoghene, A. O., and Inetianbor, J.E. (2014). Antibacterial and phytochemical analysis of banana fruit peel. IOSR Journal of Pharmacy, 4(8), 18-25.
  • Ekici, S., Diler, Ö., Didinen, B.I., and Kubilay, A. (2011). Balıklardan izole edilen bakteriyel patojenlere karşı bazı Bitkisel uçucu yağlarının antibakteriyel aktivitesi, Kafkas Üniversitesi Veterinerlik Fakültesi Dergisi, 17, 47-54.
  • Ertürk, R., Çelik, C., Kaygusuz, R., and Aydın, H. (2010). Ticari olarak satılan kekik ve nane uçucu yağlarının antimikrobiyal aktiviteleri, Cumhuriyet Tıp Dergisi. 32, 281-286.
  • Hashemi, S.M.B., and Khaneghah, A.M. (2017). Characterization of novel-basil-seed gum active edible films and coatings containing oregano essential oil. Process in Organic Coatings, 110, 35-41. doi: 10.1016/j.porgcoat.2017.04.041
  • Hassan, B., Chatha, S.A.S., Hussain, A.I., Zia, K.M., and Akhtar, N. (2018). Recent advantages on polysaccharides, lipid and protein based Edible filmsand Coatings: A review. International Journal of Biological Macromolecules. 109, 1095-1107. doi: 10.1016./j.ijbiomac.2017.11.097.
  • Kaya, M., Kavikumar, P., Ilk, S., Mujtaba, M., Akyuz, L., Labidi, J., Salaberria, A.M., Çakmak, Y.S., and Erkul, S.K. (2018). Production and characterization of chitosan based edible films from Berberis crataegina's fruit extract and seed oil. Innovative Food Science and Emerging Technologies, 45, 287-297. doi: 10.1016/j.ifset.2017.11.013.
  • Khan, J.A., and Hanee, S. (2011). Antibacterial properties of punica granatum peels. International Journal of Applied Biology and Pharmaceutical Technology. 2(3), 23-27.
  • Kongruang, S. (2011). Antibacterial activity of formulated fish snack from bacterial cellulose, International Conference on Bioscience, Biochemistry and Bioinformatics, 5, 239-243.
  • Lin, Z., Pan, Y., Li, Xiaoshuang, L., Jie, J., and Zeng, M. (2017). Chemical composition, antimicrobial and anti-quorum sensing activities of pummelo peel flavonoid extract. Industrial Crops & Products 109, 862-868. doi: 10.1016//j.indcrop.2017.09.054
  • Mathur, A., Verma S.K., Purohit, R., Gupta,V., Dua V.K., Prasad, GBKS., Mathur, D., Singh, S.K., and Singh, S. (2011). Evaluation of in vitro antimicrobial and antioxidant activities of peel and pulp of some citrus fruits. IJPI’s Journal of Biotechnolgoy and Biotherapeutics. 1(2), 1-17.
  • Mejlhom, O., and Dalgaard, P. (2002). Antimicrobial effect of essential oils on the seafood spoilage microorganisms Photobacterium phoshoreum in liquid media and fish products, Letters in Applied Microbiology. 34, 27-31.
  • CLSI (2009). Performance standards for antimicrobial susceptibility testing, nineteenth informational supplement. Approved Standard M100-S19. Clinical Laboratory Standards Institute, Wayne, PA.
  • Nisar, T., Wang, Z.C., Yang, X., Tian, Y., Iqbal, M., and Guo, Y. (2018). Characterization of citrus pectin films integrated with clove bud essential oil: Physical, thermal, barrier, antioxidant and antibacterial properties. International Journal of Biological Macromolecules, 106, 670-680. doi: 10.1016/j.ijbiomac.2017.08.068
  • Nuamsetti, T., Dechayuenyong, P., and Tantipaibulvut, S. (2013). Antibacterial activity of pomegranate fruit peels and arils. Science Asia. 38, 319–322. doi: 10.2306/scienceasia1513-1874.2012.38.319
  • Pandey, A., Kaushik, A., and Tiwari S.K. (2011). Evaluation of antimicrobial activity and phytochemical analysis of Citrus limon. Journal of Pharmaceutical And Biomedical Scıences, 13, 1-7.
  • Perez, C., Paul M., and Bazerque P. (1990). An antibiotic assay by the agar well diffusion method. Acta Biol. Med. Exp., 15, 113-115.
  • Roy, S., and Lingampeta, P. (2014). Solid wastes of fruits peels as source of low cost broad spectrum natural antimicrobial compounds- furanone, furfural and benezenetriol. International Journal of Research in Engineering and Technology. 273-279.
  • Sağdıç, O., Kuşçu, A., Özcan, M., and Özçelik, S. (2002). Effects of Turkish spice exracts at various concentrations on the growth E.coli O157:H7. Food Microbiology, 19, 473-480. doi: 10.1006/yfmic.494
  • Şahin, E. (2006). Bitkisel kaynaklı antimikrobiyallerin gıda kaynaklı bazı patojen mikroorganizmalar üzerine etkileri, Yüksek Lisans Tezi, İTÜ Gıda Mühendisliği, 69 s.
  • Schelz, Z., Molnar, J., and Hohmann, J. (2006). Antimicrobial and ANTİPLASMİD activities of essential oils. Fitoterapi, 77 (4), 279-285.
  • Torlak, E., and Nizamlıoğlu, M. (2009). Doğal antimikrobiyal maddeler ile hazırlanan yenilebilir filmlerin Listeria monocytogenes üzerine etkileri, Vet. Bil. Derg., 25 (1-2), 15-21.
  • Wan, J., Wilcock, A., and Coventry, M.J. (1998). The effect of essential oils of basil on growth of Aeromonas hydrophila, and Pseudomonas flourencens. Journal of Applied Microbiology. 84 (2), 152-158.
  • Ünlütürk, A., Turantaş, F., (2003). Gıda Mikrobiyolojisi. Temiz A., Gıdalarda Mikrobiyal Gelişimi Etkileyen Faktörler. 53-82.

Determination of the Efficiencies of Fruit Peels as Antimicrobial Agent and Edible Film for Foods

Year 2018, , 144 - 157, 18.06.2018
https://doi.org/10.31466/kfbd.409052

Abstract

Fruits and vegetable peels, which contain bioactive compounds including carotenoids and polyphenols, have positive effects on human health. Additionally, the biological activity in the peels is higher than that in other parts of vegetables and fruits, which makes their assessment of great importance. The current study aimed to produce antimicrobial films as coating materials from fruit crust residues. First, the extracts of peel residues obtained from lemon, orange, red apple, green apple were evaluated for their antimicrobial activity. Later, the peels whose extracts demonstrated the highest antimicrobial activity were used to prepare edible films. All extracts obtained from the fruit peels demonstrated antibiotic activity yet those of lemon and orange were the highest. Therefore, edible films, containing carrageenan, xanthan and carob, were produced from lemon and orange peels. Moreover, higher antimicrobial effect was recorded when orange was used to prepare karagenan film and lemon was used to prepare the xanthan, karajenan and carob edible films. Such results indicate that films prepared from lemon extracts showed more antimicrobial activity than films prepared from orange extracts. As a result these findings; antimicrobial agents which are produced from fruit peels, can be an alternative for using directly as antimicrobial agent and extending the shelf-life of food products.

References

  • Akgül, A., and Kivanç, M. (1989). Sensitivity four foodborne moulds to essential oils from Turkish spices, herbs, and citrus Peel. Journal of the Science of Food and Agriculture. 47, 129-132. doi: 10.1002/jsfa.2740470115.
  • Altuğ, S.E., and Karapınar, M.E. (1988). Sensitivity of some common food poisining bacteria to thyme, mint and bay Leaves. Int. J. Food Microbiology. 3 (6), 349-354.
  • Al-Zoreky, N.S. (2009). Antimicrobial activity of pomegranate (Punica granatum L.) fruit peels. International Journal of Food Microbiology. 134, 244–248. doi: 10.1016/j.ijfoodmicro.2009.07.002
  • Arora, M., and Kaur, P. (2013). Antimicrobial & antioxidant activity of orange pulp and peel. International Journal of Science and Research. 2(11), 412-415.
  • Avila- Sosa, R., Palou, E., Munguia, M.T.J., Nevarez-Moorillonv G.V., Curuz, A.R.N., and Lopez-Malo, A. (2012). Antifungal activity by vapor contact of essential oils added to amaranth, chitosan, or starch edible films. International Journal of Food Microbiology. 153, 66-72. doi: 10.1016/j.ijfoodmicro.2011.10.017.
  • Baytop, T. (1999). Türkiye’de bitkiler ile tedavi, geçmişte ve bugün. İstanbul Üniversitesi, Eczacılık Fakültesi, İstanbul, 550 s.
  • Bonilla, J., and Sobral, P.J.A. (2016). Investigation of the physicochemical, antimicrobial and antioxidant properties of gelatin-chitosan edible film mixed with plant ethanolic extracts. Food Bioscience, 16, 17-25. doi: 10.1016/j.fbio.2016.07.003
  • Campo, J., Amiot, M.J., and Nguyen –The, C. (2000). Antimicrobial effect of rosemary extracts. Journal of Food Protection. 63, 1359-1368.
  • Cerit, L.S. (2008). Bazi Baharat Uçucu Yağlarının Antimikrobiyal Özellikleri, Yüksek Lisans Tezi, Pamukkale Üniversitesi, Gıda Mühendisliği Anabilim Dalı, 55s.
  • Collins, C.M., and Lyne, P.M. (1987). Microbiological methods”, Butterworths Co. (Publishhers) Ltd. London. 456s.
  • Dahham, S.S., Ali, M.N., Tabassum,H., and Khan, M. (2010). Studies on antibacterial and antifungal activity of pomegranate (Punica granatum L.). American-Eurasian J. Agric. & Environ. Sci., 9 (3), 273-281.
  • Dehghani, S., Hosseini, S.V., and Regenstein, J.M. (2018). Edible films and coatings in seafood preservation: A Review. Food Chemistry, 240, 505-513. doi: 10.1016/j.foodchem.2017.07.034
  • Ehiowemwenguan, G., Emoghene, A. O., and Inetianbor, J.E. (2014). Antibacterial and phytochemical analysis of banana fruit peel. IOSR Journal of Pharmacy, 4(8), 18-25.
  • Ekici, S., Diler, Ö., Didinen, B.I., and Kubilay, A. (2011). Balıklardan izole edilen bakteriyel patojenlere karşı bazı Bitkisel uçucu yağlarının antibakteriyel aktivitesi, Kafkas Üniversitesi Veterinerlik Fakültesi Dergisi, 17, 47-54.
  • Ertürk, R., Çelik, C., Kaygusuz, R., and Aydın, H. (2010). Ticari olarak satılan kekik ve nane uçucu yağlarının antimikrobiyal aktiviteleri, Cumhuriyet Tıp Dergisi. 32, 281-286.
  • Hashemi, S.M.B., and Khaneghah, A.M. (2017). Characterization of novel-basil-seed gum active edible films and coatings containing oregano essential oil. Process in Organic Coatings, 110, 35-41. doi: 10.1016/j.porgcoat.2017.04.041
  • Hassan, B., Chatha, S.A.S., Hussain, A.I., Zia, K.M., and Akhtar, N. (2018). Recent advantages on polysaccharides, lipid and protein based Edible filmsand Coatings: A review. International Journal of Biological Macromolecules. 109, 1095-1107. doi: 10.1016./j.ijbiomac.2017.11.097.
  • Kaya, M., Kavikumar, P., Ilk, S., Mujtaba, M., Akyuz, L., Labidi, J., Salaberria, A.M., Çakmak, Y.S., and Erkul, S.K. (2018). Production and characterization of chitosan based edible films from Berberis crataegina's fruit extract and seed oil. Innovative Food Science and Emerging Technologies, 45, 287-297. doi: 10.1016/j.ifset.2017.11.013.
  • Khan, J.A., and Hanee, S. (2011). Antibacterial properties of punica granatum peels. International Journal of Applied Biology and Pharmaceutical Technology. 2(3), 23-27.
  • Kongruang, S. (2011). Antibacterial activity of formulated fish snack from bacterial cellulose, International Conference on Bioscience, Biochemistry and Bioinformatics, 5, 239-243.
  • Lin, Z., Pan, Y., Li, Xiaoshuang, L., Jie, J., and Zeng, M. (2017). Chemical composition, antimicrobial and anti-quorum sensing activities of pummelo peel flavonoid extract. Industrial Crops & Products 109, 862-868. doi: 10.1016//j.indcrop.2017.09.054
  • Mathur, A., Verma S.K., Purohit, R., Gupta,V., Dua V.K., Prasad, GBKS., Mathur, D., Singh, S.K., and Singh, S. (2011). Evaluation of in vitro antimicrobial and antioxidant activities of peel and pulp of some citrus fruits. IJPI’s Journal of Biotechnolgoy and Biotherapeutics. 1(2), 1-17.
  • Mejlhom, O., and Dalgaard, P. (2002). Antimicrobial effect of essential oils on the seafood spoilage microorganisms Photobacterium phoshoreum in liquid media and fish products, Letters in Applied Microbiology. 34, 27-31.
  • CLSI (2009). Performance standards for antimicrobial susceptibility testing, nineteenth informational supplement. Approved Standard M100-S19. Clinical Laboratory Standards Institute, Wayne, PA.
  • Nisar, T., Wang, Z.C., Yang, X., Tian, Y., Iqbal, M., and Guo, Y. (2018). Characterization of citrus pectin films integrated with clove bud essential oil: Physical, thermal, barrier, antioxidant and antibacterial properties. International Journal of Biological Macromolecules, 106, 670-680. doi: 10.1016/j.ijbiomac.2017.08.068
  • Nuamsetti, T., Dechayuenyong, P., and Tantipaibulvut, S. (2013). Antibacterial activity of pomegranate fruit peels and arils. Science Asia. 38, 319–322. doi: 10.2306/scienceasia1513-1874.2012.38.319
  • Pandey, A., Kaushik, A., and Tiwari S.K. (2011). Evaluation of antimicrobial activity and phytochemical analysis of Citrus limon. Journal of Pharmaceutical And Biomedical Scıences, 13, 1-7.
  • Perez, C., Paul M., and Bazerque P. (1990). An antibiotic assay by the agar well diffusion method. Acta Biol. Med. Exp., 15, 113-115.
  • Roy, S., and Lingampeta, P. (2014). Solid wastes of fruits peels as source of low cost broad spectrum natural antimicrobial compounds- furanone, furfural and benezenetriol. International Journal of Research in Engineering and Technology. 273-279.
  • Sağdıç, O., Kuşçu, A., Özcan, M., and Özçelik, S. (2002). Effects of Turkish spice exracts at various concentrations on the growth E.coli O157:H7. Food Microbiology, 19, 473-480. doi: 10.1006/yfmic.494
  • Şahin, E. (2006). Bitkisel kaynaklı antimikrobiyallerin gıda kaynaklı bazı patojen mikroorganizmalar üzerine etkileri, Yüksek Lisans Tezi, İTÜ Gıda Mühendisliği, 69 s.
  • Schelz, Z., Molnar, J., and Hohmann, J. (2006). Antimicrobial and ANTİPLASMİD activities of essential oils. Fitoterapi, 77 (4), 279-285.
  • Torlak, E., and Nizamlıoğlu, M. (2009). Doğal antimikrobiyal maddeler ile hazırlanan yenilebilir filmlerin Listeria monocytogenes üzerine etkileri, Vet. Bil. Derg., 25 (1-2), 15-21.
  • Wan, J., Wilcock, A., and Coventry, M.J. (1998). The effect of essential oils of basil on growth of Aeromonas hydrophila, and Pseudomonas flourencens. Journal of Applied Microbiology. 84 (2), 152-158.
  • Ünlütürk, A., Turantaş, F., (2003). Gıda Mikrobiyolojisi. Temiz A., Gıdalarda Mikrobiyal Gelişimi Etkileyen Faktörler. 53-82.
There are 35 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Berna Kılınç 0000-0002-4663-5082

Hüsniye Tansel Yalçın This is me 0000-0003-4870-6267

Göknur Sürengil This is me 0000-0002-4560-7856

Publication Date June 18, 2018
Published in Issue Year 2018

Cite

APA Kılınç, B., Yalçın, H. T., & Sürengil, G. (2018). Meyve Kabuklarının Gıdalar için Antimikrobiyal Madde ve Yenilebilir Film olarak Etkinliklerinin Belirlenmesi. Karadeniz Fen Bilimleri Dergisi, 8(1), 144-157. https://doi.org/10.31466/kfbd.409052