Research Article
BibTex RIS Cite

Co-Digestion of Orange Pulp and Cattle Manure with Different C/N Ratios and A New Modeling of Biogas Production

Year 2021, Volume: 11 Issue: 2, 557 - 569, 15.12.2021
https://doi.org/10.31466/kfbd.937269

Abstract

In this study, the co-digestion of orange pulp (OP) and cattle manure (CM) were investigated. The anaerobic process (40 d) of five reactors prepared according to different carbon to nitrogen (C/N) ratios (17, 26, 29, 35, 43.76) was completed. Anaerobic digestion (AD) was investigated in batch reactors (1000 mL) and both biogas production measured every five days and soluble chemical oxygen demand (SCOD) value % removals were determined. The highest biogas production was observed as 373.9 mL/g TS in the reactor in which the (C/N) ratio was 29. Compatibility of biogas production measured every five days of all reactors was investigated by Wood model and Wilmink model. Model evaluation criteria were interpreted on the basis of coefficient of determination (R2), sum of remaining squares (RSS), Akaike information criterion (AIC) and Bayesian information criterion (BIC) tests. As a result, except for other studies, biogas production measured in anaerobic processes (every 5 days) was successfully completed according to Wood and Wilmink models.

References

  • Ağdağ, O.N., Sponza, D.T. 2007. Co-digestion of mixed industrial sludge with municipal solid wastes in anaerobic simulated landfilling bioreactors. J. Hazard. Mat., 140(1-2), 75-85.
  • Akaike, H. 1974. A new look at the statistical model identification. in: Selected Papers of Hirotugu Akaike, Springer, pp. 215-222.
  • Ali, M., Eyduran, E., Tariq, M.M., Tirink, C., Abbas, F., Bajwa, M.A., Baloch, M.H., Nizamani, A.H., Waheed, A., Awan, M.A. 2015. Comparison of artificial neural network and decision tree algorithms used for predicting live weight at post weaning period from some biometrical characteristics in Harnai sheep. Pakistan J. Zool.
  • Alonso, R.M., del Río, R.S., García, M.P. 2016. Thermophilic and mesophilic temperature phase anaerobic co-digestion (TPAcD) compared with single-stage co-digestion of sewage sludge and sugar beet pulp lixiviation. Biomass Bioenergy, 93, 107-115.
  • Ángel Siles López, J., Li, Q., Thompson, I. 2010. Biorefinery of waste orange peel. Crit. Rev. Biotechnol, 30(1), 63-69.
  • Anjum, M., Khalid, A., Qadeer, S., Miandad, R. 2017. Synergistic effect of co-digestion to enhance anaerobic degradation of catering waste and orange peel for biogas production. Waste Management & Research, 35(9), 967-977.
  • APhA, A. 1988. WPCF, 1992 Standard Methods for the Examination of Water and Wastewater, Washington.
  • Astm, A. 2002. Standard test methods for chemical oxygen demand (dichromate oxygen demand) of water.
  • Atelge, M.R., Atabani, A.E., Banu, J.R., Krisa, D., Kaya, M., Eskicioglu, C., Kumar, G., Lee, C., Yildiz, Y.Ş., Unalan, S., Mohanasundaram, R., Duman, F. 2020a. A critical review of pretreatment technologies to enhance anaerobic digestion and energy recovery. Fuel, 270(January), 117494-117494.
  • Atelge, M.R., Krisa, D., Kumar, G., Eskicioglu, C., Nguyen, D.D., Chang, S.W., Atabani, A.E., Al-Muhtaseb, A.H., Unalan, S. 2020b. Biogas production from organic waste: recent progress and perspectives. Waste and Biomass Valorization, 11(3), 1019-1040.
  • Atelge, M.R., Senol, H., Djaafri, M., Hansu, T.A., Krisa, D., Atabani, A., Eskicioglu, C., Muratçobanoğlu, H., Unalan, S., Kalloum, S., Azbar, N., Kıvrak, H.D. 2021. A Critical Overview of the State-of-the-Art Methods for Biogas Purification and Utilization Processes. Sustainability, 13(20), 11515-11515.
  • Atelge, R. 2021. Türkiye'de Sığır Gübresinden Biyoyakıt Olarak Biyogaz Üretiminin Potansiyeli ve 2030 ve 2053 Yıllarında Karbon Emisyonlarının Azaltılmasına Öngörülen Etkisi. International Journal of Innovative Engineering Applications, 5(1).
  • Calabrò, P., Paone, E., Komilis, D. 2018. Strategies for the sustainable management of orange peel waste through anaerobic digestion. j. Environ. Manage., 212, 462-468.
  • Crawshaw, R. 2003. Co-product feeds: animal feeds from the food and drinks industries R Crawshaw Nottingham University Press, Nottingham, 2001 pp 285, price£ 30.00 (paperback) ISBN 1-897676-35-2. J. Sci. Food Agric., 83(4), 362-362.
  • Draper, N.R., Smith, H. 2014. Applied regression analysis. John Wiley & Sons.
  • EBA. 2020. European Biogas Association Annual Report 2020.
  • Elaiyaraju, P., Partha, N. 2012. Biogas production from co-digestion of orange peel waste and jatropha de-oiled cake in an anaerobic batch reactor. Afr. J. Biotechnol., 11(14), 3339-3345.
  • Erdogan, E., Atila, B., Mumme, J., Reza, M.T., Toptas, A., Elibol, M., Yanik, J. 2015. Characterization of products from hydrothermal carbonization of orange pomace including anaerobic digestibility of process liquor. Bioresour. Technol., 196, 35-42.
  • Ferrari, A., Morone, P., Tartiu, V. 2016. Tackling Uncertainty through Business Plan Analysis—A Case Study on Citrus Waste Valorisation in the South of Italy. Agriculture, 6(1), 5.
  • Janković, M., Leko, A., Šuvak, N. 2016. Application of lactation models on dairy cow farms. Croat. Oper. Res. Rev., 7(2), 217-227.
  • Kaparaju, P.L.-N., Rintala, J. 2006. Thermophilic anaerobic digestion of industrial orange waste. Environ. Technol., 27(6), 623-633.
  • Lami, M., Chimdessa, M. 2017. Biogas Production from Co-Digestion of Poultry Manure and Orange Peel through Thermal Pre-Treatments in Batch Fermentation. American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS), 38(2), 226-246.
  • Negro, V., Ruggeri, B., Fino, D., Tonini, D. 2017. Life cycle assessment of orange peel waste management. Resour. Conserv. Recycl., 127, 148-158.
  • Nguyen, D.D., Jeon, B.-H., Jeung, J.H., Rene, E.R., Banu, J.R., Ravindran, B., Vu, M.C., Ngo, H.H., Guo, W., Chang, S.W. 2019a. Thermophilic anaerobic digestion of model organic wastes: Evaluation of biomethane production and multiple kinetic models analysis. Bioresour. Technol.
  • Nguyen, M.-L.T., Lin, C.-Y., Lay, C.-H. 2019b. Microalgae cultivation using biogas and digestate carbon sources. Biomass Bioenergy, 122, 426-432.
  • Ning, J., Zhou, M., Pan, X., Li, C., Lv, N., Wang, T., Cai, G., Wang, R., Li, J., Zhu, G. 2019. Simultaneous biogas and biogas slurry production from co-digestion of pig manure and corn straw: performance optimization and microbial community shift. Bioresour. Technol.
  • Ortiz-Sanchez, M., Solarte-Toro, J.-C., González-Aguirre, J.-A., Peltonen, K.E., Richard, P., Cardona Alzate, C.A. 2020. Pre-feasibility analysis of the production of mucic acid from orange peel waste under the biorefinery concept. Biochemical Engineering Journal, 161, 107680.
  • Özarslan, S., Abut, S., Atelge, M.R., Kaya, M., Unalan, S. 2021. Modeling and simulation of co-digestion performance with artificial neural network for prediction of methane production from tea factory waste with co-substrate of spent tea waste. Fuel, 306, 121715.
  • Passos, F., Ortega, V., Donoso-Bravo, A. 2017. Thermochemical pretreatment and anaerobic digestion of dairy cow manure: Experimental and economic evaluation. Bioresource Technology, 227, 239-246.
  • Schwarz, G. 1978. Estimating the dimension of a model. The Annals of Statistics, 6(2), 461-464.
  • Şenol, H. 2020a. Anaerobic digestion of hazelnut (Corylus colurna) husks after alkaline pretreatment and determination of new important points in Logistic model curves. Bioresource Technology, 300, 122660.
  • Şenol, H. 2021. Effects of NaOH, thermal, and combined NaOH-thermal pretreatments on the biomethane yields from the anaerobic digestion of walnut shells. Environmental Science and Pollution Research, 1-13.
  • Şenol, H. 2020b. Enhancement in methane yield from anaerobic co‐digestion of walnut shells and cattle manure. Environmental Progress & Sustainable Energy, 39(6), e13524.
  • Şenol, H., Erşan, M., Görgün, E. 2020. Optimization of temperature and pretreatments for methane yield of hazelnut shells using the response surface methodology. Fuel, 271, 117585.
  • Sherchand, L., McNew, R., Kellogg, D., Johnson, Z. 1995. Selection of a mathematical model to generate lactation curves using daily milk yields of Holstein cows. J. Dairy Sci., 78(11), 2507-2513.
  • Silvestre, A., Petim-Batista, F., Colaco, J. 2006. The accuracy of seven mathematical functions in modeling dairy cattle lactation curves based on test-day records from varying sample schemes. J. Dairy Sci., 89(5), 1813-1821.
  • Valenti, F., Zhong, Y., Sun, M., Porto, S.M., Toscano, A., Dale, B.E., Sibilla, F., Liao, W. 2018. Anaerobic co-digestion of multiple agricultural residues to enhance biogas production in southern Italy. Waste Manage., 78, 151-157.
  • Van Soest, P.v., Robertson, J., Lewis, B.J.J.o.d.s. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. 74(10), 3583-3597.
  • Vargas, B., Koops, W., Herrero, M., Van Arendonk, J.A. 2000. Modeling extended lactations of dairy cows. J. Dairy Sci., 83(6), 1371-1380.
  • Wagenmakers, E.-J., Farrell, S. 2004. AIC model selection using Akaike weights. Psychon. Bull. Rev., 11(1), 192-196.
  • Wang, D., Yang, X., Tian, C., Lei, Z., Kobayashi, N., Kobayashi, M., Adachi, Y., Shimizu, K., Zhang, Z. 2019. Characteristics of ultra-fine bubble water and its trials on enhanced methane production from waste activated sludge. Bioresour. Technol., 273, 63-69.
  • Wikandari, R., Nguyen, H., Millati, R., Niklasson, C., Taherzadeh, M. 2015. Improvement of biogas production from orange peel waste by leaching of limonene. BioMed Research International, 2015.
  • Yang, H., Deng, L., Liu, G., Yang, D., Liu, Y., Chen, Z. 2016. A model for methane production in anaerobic digestion of swine wastewater. Water res., 102, 464-474.

Portakal Posasının ve Sığır Gübresi Farklı C/N Oranlarına ile Birlikte Parçalanması ve Biyogaz Üretiminde Yeni Bir Modelleme

Year 2021, Volume: 11 Issue: 2, 557 - 569, 15.12.2021
https://doi.org/10.31466/kfbd.937269

Abstract

Bu çalışmada, portakal posası (OP) ve sığır gübresinin (CM) birlikte sindirimi incelenmiştir. Farklı karbon azot (C/N) oranlarına (17, 26, 29, 35, 44) göre hazırlanmış beş reaktörün anaerobik süreci (40 d) tamamlanmıştır. Anaerobik parçalama (AP) kesikli reaktörlerde (1000 mL) incelenmiş ve her iki biyogaz üretimi her beş günde bir ölçülmüş ve %SCOD değeri giderimi belirlenmiştir. C/N oranının 29 olduğu reaktörde en yüksek biyogaz üretimi 373.9 mL / g TS olarak gözlemlendi. Tüm reaktörlerin beş günde bir ölçülen biyogaz üretiminin Wood modeline ve Wilmink modeline uyumu araştırılmıştır. Belirleme katsayısı (R2), kalan kareler toplamı (RSS), Akaike bilgi kriteri (AIC) ve Bayesian bilgi kriteri (BIC) testleri baz alınrak model değerlendirme kriterleri yorumlanmıştır. Sonuç olarak, diğer çalışmalar haricinde anaerobik proseslerde ölçülen biyogaz üretimi (5 günde bir ) Wood ve Wilmink modellerine göre başarıyla tamamlanmıştır.

References

  • Ağdağ, O.N., Sponza, D.T. 2007. Co-digestion of mixed industrial sludge with municipal solid wastes in anaerobic simulated landfilling bioreactors. J. Hazard. Mat., 140(1-2), 75-85.
  • Akaike, H. 1974. A new look at the statistical model identification. in: Selected Papers of Hirotugu Akaike, Springer, pp. 215-222.
  • Ali, M., Eyduran, E., Tariq, M.M., Tirink, C., Abbas, F., Bajwa, M.A., Baloch, M.H., Nizamani, A.H., Waheed, A., Awan, M.A. 2015. Comparison of artificial neural network and decision tree algorithms used for predicting live weight at post weaning period from some biometrical characteristics in Harnai sheep. Pakistan J. Zool.
  • Alonso, R.M., del Río, R.S., García, M.P. 2016. Thermophilic and mesophilic temperature phase anaerobic co-digestion (TPAcD) compared with single-stage co-digestion of sewage sludge and sugar beet pulp lixiviation. Biomass Bioenergy, 93, 107-115.
  • Ángel Siles López, J., Li, Q., Thompson, I. 2010. Biorefinery of waste orange peel. Crit. Rev. Biotechnol, 30(1), 63-69.
  • Anjum, M., Khalid, A., Qadeer, S., Miandad, R. 2017. Synergistic effect of co-digestion to enhance anaerobic degradation of catering waste and orange peel for biogas production. Waste Management & Research, 35(9), 967-977.
  • APhA, A. 1988. WPCF, 1992 Standard Methods for the Examination of Water and Wastewater, Washington.
  • Astm, A. 2002. Standard test methods for chemical oxygen demand (dichromate oxygen demand) of water.
  • Atelge, M.R., Atabani, A.E., Banu, J.R., Krisa, D., Kaya, M., Eskicioglu, C., Kumar, G., Lee, C., Yildiz, Y.Ş., Unalan, S., Mohanasundaram, R., Duman, F. 2020a. A critical review of pretreatment technologies to enhance anaerobic digestion and energy recovery. Fuel, 270(January), 117494-117494.
  • Atelge, M.R., Krisa, D., Kumar, G., Eskicioglu, C., Nguyen, D.D., Chang, S.W., Atabani, A.E., Al-Muhtaseb, A.H., Unalan, S. 2020b. Biogas production from organic waste: recent progress and perspectives. Waste and Biomass Valorization, 11(3), 1019-1040.
  • Atelge, M.R., Senol, H., Djaafri, M., Hansu, T.A., Krisa, D., Atabani, A., Eskicioglu, C., Muratçobanoğlu, H., Unalan, S., Kalloum, S., Azbar, N., Kıvrak, H.D. 2021. A Critical Overview of the State-of-the-Art Methods for Biogas Purification and Utilization Processes. Sustainability, 13(20), 11515-11515.
  • Atelge, R. 2021. Türkiye'de Sığır Gübresinden Biyoyakıt Olarak Biyogaz Üretiminin Potansiyeli ve 2030 ve 2053 Yıllarında Karbon Emisyonlarının Azaltılmasına Öngörülen Etkisi. International Journal of Innovative Engineering Applications, 5(1).
  • Calabrò, P., Paone, E., Komilis, D. 2018. Strategies for the sustainable management of orange peel waste through anaerobic digestion. j. Environ. Manage., 212, 462-468.
  • Crawshaw, R. 2003. Co-product feeds: animal feeds from the food and drinks industries R Crawshaw Nottingham University Press, Nottingham, 2001 pp 285, price£ 30.00 (paperback) ISBN 1-897676-35-2. J. Sci. Food Agric., 83(4), 362-362.
  • Draper, N.R., Smith, H. 2014. Applied regression analysis. John Wiley & Sons.
  • EBA. 2020. European Biogas Association Annual Report 2020.
  • Elaiyaraju, P., Partha, N. 2012. Biogas production from co-digestion of orange peel waste and jatropha de-oiled cake in an anaerobic batch reactor. Afr. J. Biotechnol., 11(14), 3339-3345.
  • Erdogan, E., Atila, B., Mumme, J., Reza, M.T., Toptas, A., Elibol, M., Yanik, J. 2015. Characterization of products from hydrothermal carbonization of orange pomace including anaerobic digestibility of process liquor. Bioresour. Technol., 196, 35-42.
  • Ferrari, A., Morone, P., Tartiu, V. 2016. Tackling Uncertainty through Business Plan Analysis—A Case Study on Citrus Waste Valorisation in the South of Italy. Agriculture, 6(1), 5.
  • Janković, M., Leko, A., Šuvak, N. 2016. Application of lactation models on dairy cow farms. Croat. Oper. Res. Rev., 7(2), 217-227.
  • Kaparaju, P.L.-N., Rintala, J. 2006. Thermophilic anaerobic digestion of industrial orange waste. Environ. Technol., 27(6), 623-633.
  • Lami, M., Chimdessa, M. 2017. Biogas Production from Co-Digestion of Poultry Manure and Orange Peel through Thermal Pre-Treatments in Batch Fermentation. American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS), 38(2), 226-246.
  • Negro, V., Ruggeri, B., Fino, D., Tonini, D. 2017. Life cycle assessment of orange peel waste management. Resour. Conserv. Recycl., 127, 148-158.
  • Nguyen, D.D., Jeon, B.-H., Jeung, J.H., Rene, E.R., Banu, J.R., Ravindran, B., Vu, M.C., Ngo, H.H., Guo, W., Chang, S.W. 2019a. Thermophilic anaerobic digestion of model organic wastes: Evaluation of biomethane production and multiple kinetic models analysis. Bioresour. Technol.
  • Nguyen, M.-L.T., Lin, C.-Y., Lay, C.-H. 2019b. Microalgae cultivation using biogas and digestate carbon sources. Biomass Bioenergy, 122, 426-432.
  • Ning, J., Zhou, M., Pan, X., Li, C., Lv, N., Wang, T., Cai, G., Wang, R., Li, J., Zhu, G. 2019. Simultaneous biogas and biogas slurry production from co-digestion of pig manure and corn straw: performance optimization and microbial community shift. Bioresour. Technol.
  • Ortiz-Sanchez, M., Solarte-Toro, J.-C., González-Aguirre, J.-A., Peltonen, K.E., Richard, P., Cardona Alzate, C.A. 2020. Pre-feasibility analysis of the production of mucic acid from orange peel waste under the biorefinery concept. Biochemical Engineering Journal, 161, 107680.
  • Özarslan, S., Abut, S., Atelge, M.R., Kaya, M., Unalan, S. 2021. Modeling and simulation of co-digestion performance with artificial neural network for prediction of methane production from tea factory waste with co-substrate of spent tea waste. Fuel, 306, 121715.
  • Passos, F., Ortega, V., Donoso-Bravo, A. 2017. Thermochemical pretreatment and anaerobic digestion of dairy cow manure: Experimental and economic evaluation. Bioresource Technology, 227, 239-246.
  • Schwarz, G. 1978. Estimating the dimension of a model. The Annals of Statistics, 6(2), 461-464.
  • Şenol, H. 2020a. Anaerobic digestion of hazelnut (Corylus colurna) husks after alkaline pretreatment and determination of new important points in Logistic model curves. Bioresource Technology, 300, 122660.
  • Şenol, H. 2021. Effects of NaOH, thermal, and combined NaOH-thermal pretreatments on the biomethane yields from the anaerobic digestion of walnut shells. Environmental Science and Pollution Research, 1-13.
  • Şenol, H. 2020b. Enhancement in methane yield from anaerobic co‐digestion of walnut shells and cattle manure. Environmental Progress & Sustainable Energy, 39(6), e13524.
  • Şenol, H., Erşan, M., Görgün, E. 2020. Optimization of temperature and pretreatments for methane yield of hazelnut shells using the response surface methodology. Fuel, 271, 117585.
  • Sherchand, L., McNew, R., Kellogg, D., Johnson, Z. 1995. Selection of a mathematical model to generate lactation curves using daily milk yields of Holstein cows. J. Dairy Sci., 78(11), 2507-2513.
  • Silvestre, A., Petim-Batista, F., Colaco, J. 2006. The accuracy of seven mathematical functions in modeling dairy cattle lactation curves based on test-day records from varying sample schemes. J. Dairy Sci., 89(5), 1813-1821.
  • Valenti, F., Zhong, Y., Sun, M., Porto, S.M., Toscano, A., Dale, B.E., Sibilla, F., Liao, W. 2018. Anaerobic co-digestion of multiple agricultural residues to enhance biogas production in southern Italy. Waste Manage., 78, 151-157.
  • Van Soest, P.v., Robertson, J., Lewis, B.J.J.o.d.s. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. 74(10), 3583-3597.
  • Vargas, B., Koops, W., Herrero, M., Van Arendonk, J.A. 2000. Modeling extended lactations of dairy cows. J. Dairy Sci., 83(6), 1371-1380.
  • Wagenmakers, E.-J., Farrell, S. 2004. AIC model selection using Akaike weights. Psychon. Bull. Rev., 11(1), 192-196.
  • Wang, D., Yang, X., Tian, C., Lei, Z., Kobayashi, N., Kobayashi, M., Adachi, Y., Shimizu, K., Zhang, Z. 2019. Characteristics of ultra-fine bubble water and its trials on enhanced methane production from waste activated sludge. Bioresour. Technol., 273, 63-69.
  • Wikandari, R., Nguyen, H., Millati, R., Niklasson, C., Taherzadeh, M. 2015. Improvement of biogas production from orange peel waste by leaching of limonene. BioMed Research International, 2015.
  • Yang, H., Deng, L., Liu, G., Yang, D., Liu, Y., Chen, Z. 2016. A model for methane production in anaerobic digestion of swine wastewater. Water res., 102, 464-474.
There are 43 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Raşit Atelge 0000-0002-0613-2501

Publication Date December 15, 2021
Published in Issue Year 2021 Volume: 11 Issue: 2

Cite

APA Atelge, R. (2021). Co-Digestion of Orange Pulp and Cattle Manure with Different C/N Ratios and A New Modeling of Biogas Production. Karadeniz Fen Bilimleri Dergisi, 11(2), 557-569. https://doi.org/10.31466/kfbd.937269