Research Article
BibTex RIS Cite

Eklemeli İmalatta Üretim Yönünün Parça Üretimine Etkileri

Year 2022, Volume: 12 Issue: 1, 193 - 203, 15.06.2022
https://doi.org/10.31466/kfbd.1011338

Abstract

Eklemeli imalat, geleneksel imalat yöntemleri ile üretimi mümkün olmayan ya da çok zor ve maliyetli tasarımların üretimi için son on yılda giderek yaygınlaşmıştır. Eklemeli imalat parçanın üretim yönü doğrultusunda katman katman eklenmesi ile edilir. Parçaların üretiminde kullanılan destek yapılar, eklemeli imalatın bir bileşenidir. Bu yapılar parçanın taban plakasını oluşturmakta, termal deformasyonları azaltmakta ve yüzeylerde oluşabilecek sarkmalara destek sağlamaktadır. Bu nedenle bir parçanın üretim yönü nesnenin kalitesini, maliyetini ve diğer özelliklerini etkilemektedir. Bu çalışmada düz, eğri ve açısal yüzeylerden oluşacak şekilde tasarlanan bir parça üzerinde üretim yönünün parça bütünlüğü, geometrik hassasiyeti ve yüzey pürüzlülüğü üzerine etkileri araştırılmıştır. Bu doğrultuda üretilen numunelerin üst yüzeyinden pürüzlülük ölçümleri yapılmış ve hassas terazi ile destek yapılarının ağırlık üzerine etkileri incelenmiştir. Ayrıca üretilen numunelerin görüntüleri CAD ortamına aktarılarak geometrik doğruluğu araştırılmıştır. Taban plakasının dengeli ve katmanların yeterli sürede soğuması parçanın yüzey kalitesini ve geometrik doğruluğun elde edilmesini sağlamıştır. Taban plakada homojen olmayan termal gerilme ise parçanın nominal ölçüden sapmasını artırmaktadır.

Supporting Institution

-

Project Number

-

Thanks

-

References

  • Arslan, E., Haskul, M. (2015). Generalized plane strain solution of a thick-walled cylindrical panel subjected to radial heating. Acta Mech 226, 1213–1225. https://doi.org/10.1007/s00707-014-1248-4
  • Calignano, F. (2014). Design optimization of supports for overhanging structures in aluminum and titanium alloys by selective laser melting. Materials and Design, 64, 203–213. https://doi.org/10.1016/j.matdes.2014.07.043
  • Cheng, L., Liang, X., Bai, J., Chen, Q., Lemon, J., & To, A. (2019). On utilizing topology optimization to design support structure to prevent residual stress induced build failure in laser powder bed metal additive manufacturing. Additive Manufacturing, 27, 290–304. https://doi.org/10.1016/j.addma.2019.03.001
  • di Angelo, L., di Stefano, P., & Guardiani, E. (2020). Search for the optimal build direction in additive manufacturing technologies: A review. In Journal of Manufacturing and Materials Processing (Vol. 4, Issue 3). https://doi.org/10.3390/JMMP4030071
  • Gao, W., Zhang, Y., Nazzetta, D. C., Ramani, K., & Cipra, R. J. (2015). RevoMaker: Enabling multi directional and functionally-embedded 3D printing using a rotational cuboidal platform. UIST 2015 - Proceedings of the 28th Annual ACM Symposium on User Interface Software and Technology, 437–
  • Haskul,M.(2020). Yielding of functionally graded curved beam subjected to temperature. Pamukkale Univ Muh Bilim Derg. 26(4): 587-593.
  • Hopkinson, N., & Dickens, P. (2003). Analysis of rapid manufacturing - Using layer manufacturing processes for production. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 217(1). https://doi.org/10.1243/095440603762554596
  • Huang, X., Ye, C., Wu, S., Guo, K., & Mo, J. (2009). Sloping wall structure support generation for fused deposition modeling. International Journal of Advanced Manufacturing Technology, 42(11–12), 1074–1081. https://doi.org/10.1007/s00170-008-1675-2
  • Hussein, A., Hao, L., Yan, C., Everson, R., & Young, P. (2013). Advanced lattice support structures for metal additive manufacturing. Journal of Materials Processing Technology, 213(7), 1019–1026. https://doi.org/10.1016/j.jmatprotec.2013.01.020
  • Jiang, J., Xu, X., & Stringer, J. (2018). Support Structures for Additive Manufacturing: A Review. Journal of Manufacturing and Materials Processing, 2(4). https://doi.org/10.3390/jmmp2040064
  • Leuders, S., Thöne, M., Riemer, A., Niendorf, T., Tröster, T., Richard, H. A., & Maier, H. J. (2013). On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: Fatigue resistance and crack growth performance. International Journal of Fatigue, 48. https://doi.org/10.1016/j.ijfatigue.2012.11.011
  • Mercelis, P., & Kruth, J. P. (2006). Residual stresses in selective laser sintering and selective laser melting. Rapid Prototyping Journal, 12(5), 254–265. https://doi.org/10.1108/13552540610707013
  • Olakanmi, E. O., Cochrane, R. F., & Dalgarno, K. W. (2015). A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: Processing, microstructure, and properties. In Progress in Materials Science (Vol. 74). https://doi.org/10.1016/j.pmatsci.2015.03.002
  • Patterson, A. E., Messimer, S. L., & Farrington, P. A. (2017). Overhanging Features and the SLM/DMLS Residual Stresses Problem: Review and Future Research Need. Technologies, 5(4). https://doi.org/10.3390/technologies5020015
  • Strano, G., Hao, L., Everson, R. M., & Evans, K. E. (2013). A new approach to the design and optimisation of support structures in additive manufacturing. International Journal of Advanced Manufacturing Technology, 66(9–12), 1247–1254. https://doi.org/10.1007/s00170-012-4403-x
  • Tatar, N., Tuzlalı, M., & Bahçe, E. (2021). Investigation of the Lattice Production of Removable Dental Prostheses with CoCr Alloy Using Additive Manufacturing. Journal of Materials Engineering and Performance, 30(9). https://doi.org/10.1007/s11665-021-05972-1
  • Vaidya, R., & Anand, S. (2016). Optimum Support Structure Generation for Additive Manufacturing Using Unit Cell Structures and Support Removal Constraint. Procedia Manufacturing, 5, 1043–1059. https://doi.org/10.1016/j.promfg.2016.08.072
  • Yang, Y., Fuh, J. Y. H., Loh, H. T., & Wong, Y. S. (2003). Multi-Orientational Deposition to Minimize Support in the Layered Manufacturing Process. In Journal of Manufacturing Systems h m (Vol. 22, Issue 2).

The Effects of the Production Direction on the Part in Additive Manufacturing

Year 2022, Volume: 12 Issue: 1, 193 - 203, 15.06.2022
https://doi.org/10.31466/kfbd.1011338

Abstract

Additive manufacturing has become increasingly common in the last ten years for the production of designs that cannot be produced with traditional manufacturing methods or are very difficult and costly. Additive manufacturing is done by adding layer by layer in line with the production direction of the part. Support structures used in the manufacture of parts are a component of additive manufacturing. These structures form the base plate of the part, reduce thermal deformations and provide support for sagging that may occur on the surfaces. Therefore, the production direction of a part affects the quality, cost and other properties of the object. In this study, the effects of production direction on part integrity, geometric precision and surface roughness were investigated on a part designed to consist of flat, curved and angular surfaces. In this direction, roughness measurements were made from the upper surface of the samples produced and the effects of precision balance and support structures on the weight were examined. In addition, the images of the produced samples were transferred to the CAD environment and their geometric accuracy was investigated. The stability of the base plate and the sufficient cooling of the layers ensured the surface quality and geometric accuracy of the part. Inhomogeneous thermal stress on the base plate increases the deviation of the part from the nominal size.

Project Number

-

References

  • Arslan, E., Haskul, M. (2015). Generalized plane strain solution of a thick-walled cylindrical panel subjected to radial heating. Acta Mech 226, 1213–1225. https://doi.org/10.1007/s00707-014-1248-4
  • Calignano, F. (2014). Design optimization of supports for overhanging structures in aluminum and titanium alloys by selective laser melting. Materials and Design, 64, 203–213. https://doi.org/10.1016/j.matdes.2014.07.043
  • Cheng, L., Liang, X., Bai, J., Chen, Q., Lemon, J., & To, A. (2019). On utilizing topology optimization to design support structure to prevent residual stress induced build failure in laser powder bed metal additive manufacturing. Additive Manufacturing, 27, 290–304. https://doi.org/10.1016/j.addma.2019.03.001
  • di Angelo, L., di Stefano, P., & Guardiani, E. (2020). Search for the optimal build direction in additive manufacturing technologies: A review. In Journal of Manufacturing and Materials Processing (Vol. 4, Issue 3). https://doi.org/10.3390/JMMP4030071
  • Gao, W., Zhang, Y., Nazzetta, D. C., Ramani, K., & Cipra, R. J. (2015). RevoMaker: Enabling multi directional and functionally-embedded 3D printing using a rotational cuboidal platform. UIST 2015 - Proceedings of the 28th Annual ACM Symposium on User Interface Software and Technology, 437–
  • Haskul,M.(2020). Yielding of functionally graded curved beam subjected to temperature. Pamukkale Univ Muh Bilim Derg. 26(4): 587-593.
  • Hopkinson, N., & Dickens, P. (2003). Analysis of rapid manufacturing - Using layer manufacturing processes for production. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 217(1). https://doi.org/10.1243/095440603762554596
  • Huang, X., Ye, C., Wu, S., Guo, K., & Mo, J. (2009). Sloping wall structure support generation for fused deposition modeling. International Journal of Advanced Manufacturing Technology, 42(11–12), 1074–1081. https://doi.org/10.1007/s00170-008-1675-2
  • Hussein, A., Hao, L., Yan, C., Everson, R., & Young, P. (2013). Advanced lattice support structures for metal additive manufacturing. Journal of Materials Processing Technology, 213(7), 1019–1026. https://doi.org/10.1016/j.jmatprotec.2013.01.020
  • Jiang, J., Xu, X., & Stringer, J. (2018). Support Structures for Additive Manufacturing: A Review. Journal of Manufacturing and Materials Processing, 2(4). https://doi.org/10.3390/jmmp2040064
  • Leuders, S., Thöne, M., Riemer, A., Niendorf, T., Tröster, T., Richard, H. A., & Maier, H. J. (2013). On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: Fatigue resistance and crack growth performance. International Journal of Fatigue, 48. https://doi.org/10.1016/j.ijfatigue.2012.11.011
  • Mercelis, P., & Kruth, J. P. (2006). Residual stresses in selective laser sintering and selective laser melting. Rapid Prototyping Journal, 12(5), 254–265. https://doi.org/10.1108/13552540610707013
  • Olakanmi, E. O., Cochrane, R. F., & Dalgarno, K. W. (2015). A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: Processing, microstructure, and properties. In Progress in Materials Science (Vol. 74). https://doi.org/10.1016/j.pmatsci.2015.03.002
  • Patterson, A. E., Messimer, S. L., & Farrington, P. A. (2017). Overhanging Features and the SLM/DMLS Residual Stresses Problem: Review and Future Research Need. Technologies, 5(4). https://doi.org/10.3390/technologies5020015
  • Strano, G., Hao, L., Everson, R. M., & Evans, K. E. (2013). A new approach to the design and optimisation of support structures in additive manufacturing. International Journal of Advanced Manufacturing Technology, 66(9–12), 1247–1254. https://doi.org/10.1007/s00170-012-4403-x
  • Tatar, N., Tuzlalı, M., & Bahçe, E. (2021). Investigation of the Lattice Production of Removable Dental Prostheses with CoCr Alloy Using Additive Manufacturing. Journal of Materials Engineering and Performance, 30(9). https://doi.org/10.1007/s11665-021-05972-1
  • Vaidya, R., & Anand, S. (2016). Optimum Support Structure Generation for Additive Manufacturing Using Unit Cell Structures and Support Removal Constraint. Procedia Manufacturing, 5, 1043–1059. https://doi.org/10.1016/j.promfg.2016.08.072
  • Yang, Y., Fuh, J. Y. H., Loh, H. T., & Wong, Y. S. (2003). Multi-Orientational Deposition to Minimize Support in the Layered Manufacturing Process. In Journal of Manufacturing Systems h m (Vol. 22, Issue 2).
There are 18 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Erkan Bahçe 0000-0001-5389-5571

Sarkis Boyacı This is me 0000-0002-8373-7889

Mehmet Sami Güler 0000-0003-0414-7707

Project Number -
Early Pub Date June 15, 2022
Publication Date June 15, 2022
Published in Issue Year 2022 Volume: 12 Issue: 1

Cite

APA Bahçe, E., Boyacı, S., & Güler, M. S. (2022). Eklemeli İmalatta Üretim Yönünün Parça Üretimine Etkileri. Karadeniz Fen Bilimleri Dergisi, 12(1), 193-203. https://doi.org/10.31466/kfbd.1011338