Research Article
BibTex RIS Cite

Belek Özel Çevre Koruma Bölgesi Su Kalitesinin Çok Değişkenli İstatistiksel Yöntemler ile Değerlendirilmesi

Year 2024, Volume: 14 Issue: 2, 719 - 741, 18.06.2024
https://doi.org/10.31466/kfbd.1433923

Abstract

Bu çalışmada, ülkemizde deniz kaplumbağalarının yuvalama alanı olarak koruma altında olan Belek Özel Çevre Koruma Bölgesindeki yüzey sularının uzun yıllar periyodundaki kalite değişimlerinin değerlendirilmesinde istatistiksel metotların kullanımı hedeflenmiştir. Çalışma kapsamında 2005-2020 yılları arasında (15 yıl) koruma alanı içinde yer alan yüzeysel su kaynaklarına ait su kalitesi analiz sonuçları değerlendirilmeye alınmıştır. Yüzeysel su kalitesinin sınıflandırılmasında ülkemizde yürürlükte olan Yerüstü Su Kalitesi Yönetmeliği standart değerleri çerçevesinde fiziko-kimyasal ve biyolojik parametre verileri analiz edilmiş ve su kalite sınıfları belirlenmiştir. Verilerin değerlendirilmesinde çok değişkenli istatistiki yöntemlerden Kümeleme Analizi metodolojisi kullanılmıştır. Kümeleme analizi sonucunda istatistiksel manada anlamlı üç küme tespit edilmiştir. Yerüstü Su Kalitesine göre yapılan kalite sınıflandırması ve Hiyerarşik Kümeleme Analizi benzerlik göstermiştir. Oluşan kümeler neticesinde genel su kalitesi durumunun; Acısu Deresi’nin II. Sınıf (İyi Kalite), Köprüçay Deresi’nin I. Sınıf (Çok İyi Kalite), Sarısu Deresi’nin I. Sınıf (Çok İyi Kalite), Kömürcüler Deresi’nin II. Sınıf (İyi Kalite) ve Ilıca Deresi’nin III. Sınıf (Orta Kalite) olduğu çalışmalar sonunda görülmüştür. İstatistiki değerlendirmede kullanılan Temel Bileşenler Analizine göre dört faktör belirlenmiş, toplam varyansın % 91,04’ünü açıklamıştır. Sadece birinci faktör toplam varyansın % 59’unu açıklamaktadır. Özdeğeri en fazla olan değişkenlerin; Toplam Koliform, Toplam Kjehldal Azotu, Fekal Koliform, Toplam Azot, Toplam Fosfor olduğu temel bileşenler analiz sonuçlarına göre açıklanmıştır. Genel manada kirleticilerin turizm tesisleri, evsel kaynaklı kirleticiler ve yoğun tarımsal faaliyetlerden kaynaklandığı öngörülmektedir. Çalışma sonucunda istatistiksel olarak belirlenen faktör parametrelerin sahadaki su kalitesi izleme çalışmalarında öncelikli olarak kullanılabilecek parametreler olduğu belirlenmiştir.

Supporting Institution

Çevre, Şehircilik ve İklim Değişikliği Bakanlığı - Tabiat Varlıklarını Koruma Genel Müdürlüğü

Thanks

Bu çalışma, Çevre, Şehircilik ve İklim Değişikliği Bakanlığı, Tabiat Varlıklarını Koruma Genel Müdürlüğü tarafından yürütülen “Özel Çevre Koruma Bölgelerinde Su Kalitesinin ve Atıksu Arıtma Tesislerinin Verimliliğinin İzlenmesi Projesi” kapsamında elde edilmiştir. Verilerin temin edildiği Çevre, Şehircilik ve İklim Değişikliği Bakanlığı’na teşekkürler.

References

  • Akin, B., and Kirmizigul, O. (2007). Heavy metal contamination in surface sediments of Gokçekaya Dam Lake, Eskişehir, Turkey. Environmental Earth Sciences, (76):402.
  • Akin, B., Atici. T., Katircioglu, H., and Keskin, F. (2011). Investigation of water quality on Gokcekaya dam lake using multivariate statistical analysis, in Eskisehir, Turkey. Environmental Earth Sciences, (63):1251–1261.
  • Alam, A., and Singh, A. (2023). Groundwater quality assessment using SPSS based on multivariate statistics and water quality index of Gaya, Bihar (India). Environmental Monitoring and Assessment, (195): 687.
  • Altunyüzük, A.İ. (2022). Coğrafi Özellikleri Yönüyle Belek’te (Antalya) Kongre Turizmi. Yüksek Lisans Tezi, Bursa Uludağ Üniversitesi, Sosyal Bilimler Enstitüsü, Coğrafya Anabilim Dalı, Bursa.
  • Álvarez-Rogel, J.0., Jiménez-Cárceles, F.J., and Nicolás, C.E. (2006). Phosphorus and nitrogen content in the water of a coastal wetland in the Mar Menor lagoon: relationships with effluents from urban and agricultural areas. Water Air and Soil Pollution, 173(1-4): 21-38.
  • Arıman, S., and Koyuncu, S. (2019). Su Kirliliği Açısından Hassas Alanların İzlenmesi: Kızılırmak Deltası-Balık Gölü. Journal of Engineering Sciences and Design, 7(4), 705 – 714.
  • Arslan, O. (2008). Su Kalitesi verilerinin CBS ile Çok Değişkenli İstatistik Analizi. HKM Jeodezi, Jeoinformasyon ve Arazi Yönetimi Dergisi, (2):99.
  • Aydın Uncumusaoğlu, A., and Mutlu, E. (2021). Water Quality Assessment in Karaboğaz Stream Basin (Turkey) from a Multi-Statistical Perspective. Polish Journal of Environmental Studies, 30(5), 4747-4759.
  • Bakır, S. (2019). Türkiye’de Küreselleşme Süreci ve Korunan Alanlar Üzerine Etkisi: Datça Bozburun Özel Çevre Koruma Bölgesi. Yüksek Lisans Tezi, Dokuz Eylül Üniversitesi, Fen Bilimleri Enstitüsü, İzmir.
  • Çevre ve Şehircilik Bakanlığı – Çevresel Etki Değerlendirmesi, İzin ve Denetim Genel Müdürlüğü, (2021). Çevresel Göstergeler (2020): 77, 155-156.
  • Çevre, Şehircilik ve İklim Değişikliği Bakanlığı, Çevresel Etki Değerlendirmesi, İzin ve Denetim Genel Müdürlüğü, (2021), Türkiye Çevre Durum Raporu, (6):228.
  • Chawishborwornworng, C., Luanwuthi, S., Umpuch C., and Puchongkawarin, C. (2024). Bootstrap approach for quantifying the uncertainty in modeling of the water quality index using principal component analysis and artificial intelligence. Journal of the Saudi Society of Agricultural Sciences, 23(1):17-33.
  • Cho, Y-C., Choi, H., Lee, M-G., Kim, S-H., and Im, J-K. (2022). Identification and Apportionment of Potential Pollution Sources Using Multivariate Statistical Techniques and APCS-MLR Model to Assess Surface Water Quality in Imjin River Watershed, South Korea. Water, 14(5):793.
  • Dalal, S.G., Shirodkar, P.V., Jagtap, T.G., Naik, B.G., and Rao, G.S. (2010). Evaluation of significant sources influencing the variation of water quality of Kandla Creek, Gulf of Katchchh, using PCA. Environmental Monitoring and Assessment, (16): 49–56.
  • Dalkıran, N., Karacaoğlu, D., Taş, D., Karabayırlı, G., Atak, S., Koşucu, T.N.A., Coşkun, F., ve Akay, E. (2020). Mustafakemalpaşa Çayı’nın (Bursa) Su Kalitesinin Faktör Analizi Kullanılarak Değerlendirilmesi, Acta Aquatica Turcica, 16(1), 124-137.
  • de Andrade Costa, D., Soares de Azevedo, J.P., dos Santos, M.A., and dos Santos Facchetti Vinhaes Assumpção, R. (2020). Water quality assessment based on multivariate statistics and water quality index of a strategic river in the Brazilian Atlantic Forest. Scientific Reports, 10.
  • Egbueri, J.C. (2022). Incorporation of information entropy theory, artificial neural network, and soft computing models in the development of integrated industrial water quality index. Environmental Monitoring and Assessment, (194): 693.
  • Einax, J.W., Zwanziger, H.W., and Geiss, S. (1997). Chemometrics in Environmental Analysis. Winheim: Wiley ISBN: 3-527-28772-8.
  • Ewaid, S.H., Abed, S.A., Al-Ansari, N., and Salih, R.M. (2020). Development and Evaluation of a Water Quality Index for the Iraqi Rivers, Hydrology, 7(3): 67.
  • Fan, X., Cui, B., Zhao, H., Zhang, Z., and Zhang, H. (2010). Assessment of river water quality in Pearl River Delta using multivariate statistical techniques. Procedia Environmental Sciences, (2): 1220-1234.
  • Gad, M., Saleh, A.H., Hussein, H., Farouk, H., and Elsayed, S. (2022). Appraisal of surface water quality of Nile river using water quality indices, spectral signature and multivariate modeling. Water, 14(7): 1131.
  • Gare, A. (2017). From Sustainable Development to Ecological Civilization: Winning the War for Survival. Cosmos and History. The Journal of Natural and Social Philosophy, 13(3), 130-153.
  • Haghnazar, H., Hudson-Edwards, K.A., Kumar, V., Pourakbar, M., Mahdavianpour, M., and Aghayani, E. (2021). Potentially toxic elements contamination in surface sediment and indigenous aquatic macrophytes of the Bahmanshir River, Iran: Appraisal of phytoremediation capability. Chemosphere, 285.
  • Ibrahim, A., Ismail, A., Juahir, H., Iliyasu, A.B., Wailare, B.T., Mukhtar, M., and Aminu, H. (2023). Water quality modelling using principal component analysis and artificial neural network. Marine Pollution Bulletin, (187):114493.
  • Ji, X., Dahlgren, R.A., and Zhang, M. (2016). Comparison of seven water quality assessment methods for the characterization and management of highly impaired river systems. Environmental Monitoring and Assessment, 188(15).
  • Kalaycı, Ş. (2016). SPSS Uygulamalı Çok Değişkenli İstatistik Teknikleri, 7. Baskı. Asil Yayın Dağıtım, Ankara.
  • Kazi, T.G., Arain, M.B., Jamali, M.K., Jalbani, N., Afridi, H.I., Sarfraz, R.A., Baig, J.A., and Shah, A.Q. (2009). Assessment of water quality of polluted lake using multivariate statistical techniques: a case study. Ecotoxicology and Environmental Safety, (72): 301–309.
  • Kılıç, E. (2017), Asi Havzasindaki Su Kalitesinin Çok Değişkenli Istatiksel Yöntemler Kullanilarak Değerlendirilmesi. Yüksek Lisans Tezi, İskenderun Teknik Üniversitesi, Mühendislik ve Fen Bilimleri Enstitüsü, Hatay.
  • Kim, J.O., and Mueller, C.W. (1987). Introduction to factor analysis: What it is and how to do it. Quantitative applications in the social sciences series, Newbury Park: Sage University Press.
  • Köse, E., Tokatlı, C., and Çiçek, A. (2014). Monitoring stream water quality: a statistical evaluation. Polish Journal of Environmental Studies, 23(5):1637–1647.
  • Köse, E., Emiroğlu, Ö., Çiçek, A., Tokatlı, C., Başkurt, S., and Aksu, S. (2018). Sediment quality assessment in Porsuk Stream Basin (Turkey) from a multi-statistical perspective. Polish Journal of Environmental Studies, 27(2): 747–752.
  • Kowalkovski, T., Zbytniewski, R., Szpejna, J., and Buszewski, B. (2006). Aplication of Chemometrics in River Water Clasification. Water Research, (40):744-752.
  • Kwon, H.G., and Jo, C.D. (2023). Water quality assessment of the Nam River, Korea, using multivariate statistical analysis and WQI. International Journal of Environmental Science and Technology, (20): 2487–2502.
  • Lattin, J., Carroll, D., and Green, P. (2003). Analyzing Multivariate Data. New York: Duxbury. Liu, C.W., Lin, K.H., and Kuo, Y.M. (2003). Application of factor analysis in the assessment of groundwater quality in a blackfoot disease area in Taiwan. Science of the Total Environment, 313(1): 77-89.
  • Mahloch, J.L.E. (1974). Multivarate Techniques fo Water Quality Analysis. Journal of The Enviromental Engineering Division, (100):1119-1132.
  • Mancini, L., Formichetti, P., Anselmo, A., Tancion, L., Marchini, S., and Sorace, A. (2005). Biological quality of running waters in protected areas: the influence of size and land use. Biodiversity and Conservation, (14): 351–364.
  • McKenna, J.E. (2003). An enhanced cluster analysis program with bootstrap significance testing for ecological community analysis. Environmental Modelling and Software, 18(3): 205-220.
  • Monica, N., and Choi, K. (2016). Temporal and spatial analysis of water quality in Saemangeum watershed using multivariate statistical techniques. Paddy and Water Environment, 14(1): 3-17.
  • Muangthong, S., and Shrestha, S. (2015). Assessment of surface water quality using multivariate statistical techniques: case study of the Nampong River and Songkhram River, Thailand. Environmental monitoring and assessment, 187(9): 1-12.
  • Mutlu, E., and Aydın Uncumusaoğlu, A. (2022). Assessment of spatial and temporal water pollution patterns in Aydos River Turkey by using water quality index and multivariate statistical methods. Desalination and Water Treatment, (246): 196–211.
  • Nguyen, T.G. (2020). Evaluating Current Water Quality Monitoring System on Hau River, Mekong Delta, Vietnam Using Multivariate Statistical Techniques. Applied Environmental Research, 42(1):2.
  • Oke, A.O., and Sangodoyin, A.Y. (2015). Evaluation of surface water quality characteristics in Ogun watershed of south western Nigeria using principal component analysis. Journal of Science and Technology (Ghana), 35(1): 89-101.
  • Otto, M. (1998). Multivariate methods. In: Kellner, R., Mermet, J. M., Otto, M., and Widmer, H.M. (Eds.), Analytical chemistry. Weinheim: Wiley-VCH.
  • Özdamar, K. (1999). Paket Programlar ile İstatiksel Veri Analizi-2. İkinci Baskı, Kaan Kitabevi, Eskişehir.
  • Pan, J. (2015). Ecological Civilization: A New Development Paradigm. China Economist, 10(4), 44.
  • Pejman, A.H., Bidhendi, G.N., Karbassi, A.R., Mehrdadi, N., and Bidhendi, M.E. (2009). Evaluation of spatial and seasonal variations in surface water quality using multivariate statistical techniques. International Journal of Environmental Science and Technology, 6(3): 467-476.
  • Prendergast, J.R., Quinn, R.M., Lawton, J.H., Eversham, B.C., and Gibbons, D.W. (1993). Rare species, the coincidence of diversity hotspots and conservation strategies. Nature, (365): 335–337.
  • Pressey, R.L., Humphries, C.J., Margules, C.R., Vane-Wright, R.I., and Williams, P.H. (1993). Beyond opportunism: key principles for systematic reserve selection. Trends in Ecology and Evolution, (8):124–128.
  • Reena, M.V., Amalraj, A., Ajitha, R., and Louis, C.N. (2022). Cluster analysis of water quality parameters of water samples from Colachel to Melmidalam in Kanyakumari district. International Journal of Science and Research Archive, 7(2), 269–285.
  • Santos, R.D.M., Warner, G.S., and Scateno, F. (2003). Multivariate Analysis of Water Quality and Physical Characteristics of Selected Watershed in Puerto Rico. Journal of The American Water Resources Association, 39(4):329-839.
  • Schmitt, E.A. (2016). The Atmosphere of an Ecological Civilization: A Study of Ideology, Perception and Action in Chengdu, China. A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Doctor of Philosophy in Anthropology, The Chinese University of Hong Kong.
  • Şener, Ş., ve Şener, E. (2020). Belek Özel Çevre Koruma Alanı Akarsularının Su Kalitelerinin ve Kirleticilerinin Değerlendirilmesi. Journal of Limnology and Freshwater Fisheries Research, 6(2): 100-110.
  • Shrestha, S., and Kazama, F. (2007). Assessment of surface water quality using multivariate statistical techniques: A case study of the Fuji river basin, Japan. Environmental Modelling and Software, 22(4): 464-475.
  • Simberloff, D.S., and Abele, L.G. (1982). Refuge design and island biogeographic theory. The American Naturalist, (120): 41–50.
  • Şimşek, A., Türkten, H., ve Bakan, G. (2022). Su Kalite İndeksi ve İstatistiksel Analiz Kullanılarak Orta Karadeniz Bölgesi Kızılırmak ve Yeşilırmak Nehirleri Su Kalitesinin Değerlendirilmesi. Karadeniz Fen Bilimleri Dergisi, 12(2), 645-662.
  • Singh, K.P., Malik, A,. Mohan, D., and Sinha, S. (2004). Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India)—a case study. Water research, 38(18): 3980-3992.
  • Soulé, M.E. (1991). Conservation: tactics for a constant crisis. Science, (253): 744–750. Tokatlı, C., ve Helvacıoğlu, İ.A. (2019). Tarımsal Kirliliğin Trakya Bölgesi Sucul Habitatları Üzerine Etkilerinin Temel Bileşen Analizi Kullanılarak Değerlendirilmesi: Makro ve Mikro Elementler – Ağır Metaller. Journal of Tekirdag Agricultural Faculty, 17(2): 143.
  • Tripathi M., and Singal S.K. (2019). Use of principal component analysis for parameter selection for development of a novel water quality index: a case study of river Ganga India. Ecological Indicators, (96):430–436.
  • Türkiye Bilimsel ve Teknolojik Araştırma Kurumu – Marmara Araştırma Merkezi – Çevre ve Temiz Üretim Enstitüsü, Havza Koruma Eylem Planlarının Hazırlanması Projesi Antalya Havzası, (2013): 55, 166-241.
  • TVKGM (2023), Çevre, Şehircilik ve İklim Değişikliği Bakanlığı, Tabiat Varlıklarını Koruma Genel Müdürlüğü, Belek Özel Çevre Koruma Bölgesi Yönetim Planı (2023-2027).
  • URL-1: Çevre, Şehircilik ve İklim Değişikliği Bakanlığı, Özel Çevre Koruma Bölgeleri, https://ockb.csb.gov.tr/ock-bolgeleri-harita-i-55 , (Erişim Tarihi: 06.02.2024).
  • URL-2 TÜİK 2023 yılı Adrese Dayalı Nüfus Kayıt Sistemi Sonuçları https://www.tuik.gov.tr/media/announcements/Favori_Tablolar.xlsx , (Erişim Tarihi: 13.02.2024)
  • URL-3: Belek Turizm Yatırımcıları Ortak Girişimi, Belek Ruhu https://www.visitbelek.com/tr/about-belek/the-spirit-of-belek/history , (Erişim Tarihi: 06.02.2024)
  • Ustaoğlu, F., Tepe, Y., ve Taş, B. (2019). Assessment of stream quality and health risk in a subtropical Turkey river system: A combined approach using statistical analysis and water quality index. Ecological Indicator, 113.
  • Üstün Odabaşi, S., Ceylan, Z., Şentürk, İ., Akbal, F., Bakan, G., and Büyükgüngör, H. (2022). Investigation of spatial and seasonal variation of water quality along the mid-Black Sea coast (from Sinop to Ordu) of Turkey, by multivariate statistical techniques. Regional Studies in Marine Science, 50.
  • Wu, J.Y. (2005). Assessing surface water quality of the Yangtze Estuary with genotoxicity data. Marine Pollution Bulletin, 50(12): 1661-1667.
  • Yang, H.J., Shen, Z.M., Zhang, J.P., and Wang, W.H. (2007). Water quality characteristics along the course of the Huangpu River (China). Journal of Environmental Sciences, 19(10): 1193-1198.
  • Yerel, S., and Ankara, H. (2011). Application of multivariate statistical techniques in the assessment of water quality in Sakarya River, Turkey. Journal of the Geological Society of India, 78(6): 1-5.
  • Yolcu, İ.D. (2012). Bursa Nilüfer Çayı Su Kalitesi Parametrelerinin İstatistiksel Yöntemlerle Değerlendirilmesi. Doktora Tezi, Uludağ Üniversitesi, Fen Bilimleri Enstitüsü, Çevre Mühendisliği Anabilim Dalı, Bursa.
  • YSKY (2021). Yerüstü Su Kalitesi Yönetmeliği Ek-2 Tablo-5. 16.06.2021 tarihli ve 31513 sayılı Resmi Gazete.
  • Zhang, D., Ni, G., Cong, Z., Chen, T., and Zhang, T. (2013). Statistical interpretation of the daily variation of urban water consumption in Beijing, China. Hydrological Sciences Journal, 59(1): 181-192.

Evaluation Of Water Quality in Belek Special Environmental Protection Zone with Multivariate Statistics

Year 2024, Volume: 14 Issue: 2, 719 - 741, 18.06.2024
https://doi.org/10.31466/kfbd.1433923

Abstract

In this study, the use of statistical methods is aimed at evaluating the long-term periodic changes in the quality of surface waters in the Belek Special Environmental Protection Area, designated as a nesting area for sea turtles in our country. Within the scope of the study, water quality analysis results for surface water sources within the protected area were considered for the years 2005-2020 (15 years). Physico-chemical and biological parameter data were analyzed based on the standard values of the Surface Water Quality Regulation in effect in our country, and water quality classes were determined. Cluster Analysis methodology, a multivariate statistical method, was used to evaluate the data. As a result of cluster analysis, three statistically significant clusters were identified. The classification of water quality according to Surface Water Quality and Hierarchical Cluster Analysis showed similarity. As a result of the clusters formed, it was observed that the overall water quality situation was Class II (Good Quality) for Acısu Stream, Class I (Very Good Quality) for Köprüçay Stream, Class I (Very Good Quality) for Sarısu Stream, Class II (Good Quality) for Kömürcüler Stream, and Class III (Medium Quality) for Ilıca Stream. According to Principal Components Analysis, four factors were determined, explaining 91.04% of the total variance, with the first factor alone explaining 59% of the total variance. The variables with the highest eigenvalues, according to the results of the principal components analysis, were Total Coliform, Total Kjeldahl Nitrogen, Fecal Coliform, Total Nitrogen, and Total Phosphorus. In general, it is anticipated that pollutants originate from tourism facilities, domestic sources, and intensive agricultural activities. The study concluded that the statistically determined factor parameters are prioritized parameters that can be used in water quality monitoring studies in the field.

References

  • Akin, B., and Kirmizigul, O. (2007). Heavy metal contamination in surface sediments of Gokçekaya Dam Lake, Eskişehir, Turkey. Environmental Earth Sciences, (76):402.
  • Akin, B., Atici. T., Katircioglu, H., and Keskin, F. (2011). Investigation of water quality on Gokcekaya dam lake using multivariate statistical analysis, in Eskisehir, Turkey. Environmental Earth Sciences, (63):1251–1261.
  • Alam, A., and Singh, A. (2023). Groundwater quality assessment using SPSS based on multivariate statistics and water quality index of Gaya, Bihar (India). Environmental Monitoring and Assessment, (195): 687.
  • Altunyüzük, A.İ. (2022). Coğrafi Özellikleri Yönüyle Belek’te (Antalya) Kongre Turizmi. Yüksek Lisans Tezi, Bursa Uludağ Üniversitesi, Sosyal Bilimler Enstitüsü, Coğrafya Anabilim Dalı, Bursa.
  • Álvarez-Rogel, J.0., Jiménez-Cárceles, F.J., and Nicolás, C.E. (2006). Phosphorus and nitrogen content in the water of a coastal wetland in the Mar Menor lagoon: relationships with effluents from urban and agricultural areas. Water Air and Soil Pollution, 173(1-4): 21-38.
  • Arıman, S., and Koyuncu, S. (2019). Su Kirliliği Açısından Hassas Alanların İzlenmesi: Kızılırmak Deltası-Balık Gölü. Journal of Engineering Sciences and Design, 7(4), 705 – 714.
  • Arslan, O. (2008). Su Kalitesi verilerinin CBS ile Çok Değişkenli İstatistik Analizi. HKM Jeodezi, Jeoinformasyon ve Arazi Yönetimi Dergisi, (2):99.
  • Aydın Uncumusaoğlu, A., and Mutlu, E. (2021). Water Quality Assessment in Karaboğaz Stream Basin (Turkey) from a Multi-Statistical Perspective. Polish Journal of Environmental Studies, 30(5), 4747-4759.
  • Bakır, S. (2019). Türkiye’de Küreselleşme Süreci ve Korunan Alanlar Üzerine Etkisi: Datça Bozburun Özel Çevre Koruma Bölgesi. Yüksek Lisans Tezi, Dokuz Eylül Üniversitesi, Fen Bilimleri Enstitüsü, İzmir.
  • Çevre ve Şehircilik Bakanlığı – Çevresel Etki Değerlendirmesi, İzin ve Denetim Genel Müdürlüğü, (2021). Çevresel Göstergeler (2020): 77, 155-156.
  • Çevre, Şehircilik ve İklim Değişikliği Bakanlığı, Çevresel Etki Değerlendirmesi, İzin ve Denetim Genel Müdürlüğü, (2021), Türkiye Çevre Durum Raporu, (6):228.
  • Chawishborwornworng, C., Luanwuthi, S., Umpuch C., and Puchongkawarin, C. (2024). Bootstrap approach for quantifying the uncertainty in modeling of the water quality index using principal component analysis and artificial intelligence. Journal of the Saudi Society of Agricultural Sciences, 23(1):17-33.
  • Cho, Y-C., Choi, H., Lee, M-G., Kim, S-H., and Im, J-K. (2022). Identification and Apportionment of Potential Pollution Sources Using Multivariate Statistical Techniques and APCS-MLR Model to Assess Surface Water Quality in Imjin River Watershed, South Korea. Water, 14(5):793.
  • Dalal, S.G., Shirodkar, P.V., Jagtap, T.G., Naik, B.G., and Rao, G.S. (2010). Evaluation of significant sources influencing the variation of water quality of Kandla Creek, Gulf of Katchchh, using PCA. Environmental Monitoring and Assessment, (16): 49–56.
  • Dalkıran, N., Karacaoğlu, D., Taş, D., Karabayırlı, G., Atak, S., Koşucu, T.N.A., Coşkun, F., ve Akay, E. (2020). Mustafakemalpaşa Çayı’nın (Bursa) Su Kalitesinin Faktör Analizi Kullanılarak Değerlendirilmesi, Acta Aquatica Turcica, 16(1), 124-137.
  • de Andrade Costa, D., Soares de Azevedo, J.P., dos Santos, M.A., and dos Santos Facchetti Vinhaes Assumpção, R. (2020). Water quality assessment based on multivariate statistics and water quality index of a strategic river in the Brazilian Atlantic Forest. Scientific Reports, 10.
  • Egbueri, J.C. (2022). Incorporation of information entropy theory, artificial neural network, and soft computing models in the development of integrated industrial water quality index. Environmental Monitoring and Assessment, (194): 693.
  • Einax, J.W., Zwanziger, H.W., and Geiss, S. (1997). Chemometrics in Environmental Analysis. Winheim: Wiley ISBN: 3-527-28772-8.
  • Ewaid, S.H., Abed, S.A., Al-Ansari, N., and Salih, R.M. (2020). Development and Evaluation of a Water Quality Index for the Iraqi Rivers, Hydrology, 7(3): 67.
  • Fan, X., Cui, B., Zhao, H., Zhang, Z., and Zhang, H. (2010). Assessment of river water quality in Pearl River Delta using multivariate statistical techniques. Procedia Environmental Sciences, (2): 1220-1234.
  • Gad, M., Saleh, A.H., Hussein, H., Farouk, H., and Elsayed, S. (2022). Appraisal of surface water quality of Nile river using water quality indices, spectral signature and multivariate modeling. Water, 14(7): 1131.
  • Gare, A. (2017). From Sustainable Development to Ecological Civilization: Winning the War for Survival. Cosmos and History. The Journal of Natural and Social Philosophy, 13(3), 130-153.
  • Haghnazar, H., Hudson-Edwards, K.A., Kumar, V., Pourakbar, M., Mahdavianpour, M., and Aghayani, E. (2021). Potentially toxic elements contamination in surface sediment and indigenous aquatic macrophytes of the Bahmanshir River, Iran: Appraisal of phytoremediation capability. Chemosphere, 285.
  • Ibrahim, A., Ismail, A., Juahir, H., Iliyasu, A.B., Wailare, B.T., Mukhtar, M., and Aminu, H. (2023). Water quality modelling using principal component analysis and artificial neural network. Marine Pollution Bulletin, (187):114493.
  • Ji, X., Dahlgren, R.A., and Zhang, M. (2016). Comparison of seven water quality assessment methods for the characterization and management of highly impaired river systems. Environmental Monitoring and Assessment, 188(15).
  • Kalaycı, Ş. (2016). SPSS Uygulamalı Çok Değişkenli İstatistik Teknikleri, 7. Baskı. Asil Yayın Dağıtım, Ankara.
  • Kazi, T.G., Arain, M.B., Jamali, M.K., Jalbani, N., Afridi, H.I., Sarfraz, R.A., Baig, J.A., and Shah, A.Q. (2009). Assessment of water quality of polluted lake using multivariate statistical techniques: a case study. Ecotoxicology and Environmental Safety, (72): 301–309.
  • Kılıç, E. (2017), Asi Havzasindaki Su Kalitesinin Çok Değişkenli Istatiksel Yöntemler Kullanilarak Değerlendirilmesi. Yüksek Lisans Tezi, İskenderun Teknik Üniversitesi, Mühendislik ve Fen Bilimleri Enstitüsü, Hatay.
  • Kim, J.O., and Mueller, C.W. (1987). Introduction to factor analysis: What it is and how to do it. Quantitative applications in the social sciences series, Newbury Park: Sage University Press.
  • Köse, E., Tokatlı, C., and Çiçek, A. (2014). Monitoring stream water quality: a statistical evaluation. Polish Journal of Environmental Studies, 23(5):1637–1647.
  • Köse, E., Emiroğlu, Ö., Çiçek, A., Tokatlı, C., Başkurt, S., and Aksu, S. (2018). Sediment quality assessment in Porsuk Stream Basin (Turkey) from a multi-statistical perspective. Polish Journal of Environmental Studies, 27(2): 747–752.
  • Kowalkovski, T., Zbytniewski, R., Szpejna, J., and Buszewski, B. (2006). Aplication of Chemometrics in River Water Clasification. Water Research, (40):744-752.
  • Kwon, H.G., and Jo, C.D. (2023). Water quality assessment of the Nam River, Korea, using multivariate statistical analysis and WQI. International Journal of Environmental Science and Technology, (20): 2487–2502.
  • Lattin, J., Carroll, D., and Green, P. (2003). Analyzing Multivariate Data. New York: Duxbury. Liu, C.W., Lin, K.H., and Kuo, Y.M. (2003). Application of factor analysis in the assessment of groundwater quality in a blackfoot disease area in Taiwan. Science of the Total Environment, 313(1): 77-89.
  • Mahloch, J.L.E. (1974). Multivarate Techniques fo Water Quality Analysis. Journal of The Enviromental Engineering Division, (100):1119-1132.
  • Mancini, L., Formichetti, P., Anselmo, A., Tancion, L., Marchini, S., and Sorace, A. (2005). Biological quality of running waters in protected areas: the influence of size and land use. Biodiversity and Conservation, (14): 351–364.
  • McKenna, J.E. (2003). An enhanced cluster analysis program with bootstrap significance testing for ecological community analysis. Environmental Modelling and Software, 18(3): 205-220.
  • Monica, N., and Choi, K. (2016). Temporal and spatial analysis of water quality in Saemangeum watershed using multivariate statistical techniques. Paddy and Water Environment, 14(1): 3-17.
  • Muangthong, S., and Shrestha, S. (2015). Assessment of surface water quality using multivariate statistical techniques: case study of the Nampong River and Songkhram River, Thailand. Environmental monitoring and assessment, 187(9): 1-12.
  • Mutlu, E., and Aydın Uncumusaoğlu, A. (2022). Assessment of spatial and temporal water pollution patterns in Aydos River Turkey by using water quality index and multivariate statistical methods. Desalination and Water Treatment, (246): 196–211.
  • Nguyen, T.G. (2020). Evaluating Current Water Quality Monitoring System on Hau River, Mekong Delta, Vietnam Using Multivariate Statistical Techniques. Applied Environmental Research, 42(1):2.
  • Oke, A.O., and Sangodoyin, A.Y. (2015). Evaluation of surface water quality characteristics in Ogun watershed of south western Nigeria using principal component analysis. Journal of Science and Technology (Ghana), 35(1): 89-101.
  • Otto, M. (1998). Multivariate methods. In: Kellner, R., Mermet, J. M., Otto, M., and Widmer, H.M. (Eds.), Analytical chemistry. Weinheim: Wiley-VCH.
  • Özdamar, K. (1999). Paket Programlar ile İstatiksel Veri Analizi-2. İkinci Baskı, Kaan Kitabevi, Eskişehir.
  • Pan, J. (2015). Ecological Civilization: A New Development Paradigm. China Economist, 10(4), 44.
  • Pejman, A.H., Bidhendi, G.N., Karbassi, A.R., Mehrdadi, N., and Bidhendi, M.E. (2009). Evaluation of spatial and seasonal variations in surface water quality using multivariate statistical techniques. International Journal of Environmental Science and Technology, 6(3): 467-476.
  • Prendergast, J.R., Quinn, R.M., Lawton, J.H., Eversham, B.C., and Gibbons, D.W. (1993). Rare species, the coincidence of diversity hotspots and conservation strategies. Nature, (365): 335–337.
  • Pressey, R.L., Humphries, C.J., Margules, C.R., Vane-Wright, R.I., and Williams, P.H. (1993). Beyond opportunism: key principles for systematic reserve selection. Trends in Ecology and Evolution, (8):124–128.
  • Reena, M.V., Amalraj, A., Ajitha, R., and Louis, C.N. (2022). Cluster analysis of water quality parameters of water samples from Colachel to Melmidalam in Kanyakumari district. International Journal of Science and Research Archive, 7(2), 269–285.
  • Santos, R.D.M., Warner, G.S., and Scateno, F. (2003). Multivariate Analysis of Water Quality and Physical Characteristics of Selected Watershed in Puerto Rico. Journal of The American Water Resources Association, 39(4):329-839.
  • Schmitt, E.A. (2016). The Atmosphere of an Ecological Civilization: A Study of Ideology, Perception and Action in Chengdu, China. A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Doctor of Philosophy in Anthropology, The Chinese University of Hong Kong.
  • Şener, Ş., ve Şener, E. (2020). Belek Özel Çevre Koruma Alanı Akarsularının Su Kalitelerinin ve Kirleticilerinin Değerlendirilmesi. Journal of Limnology and Freshwater Fisheries Research, 6(2): 100-110.
  • Shrestha, S., and Kazama, F. (2007). Assessment of surface water quality using multivariate statistical techniques: A case study of the Fuji river basin, Japan. Environmental Modelling and Software, 22(4): 464-475.
  • Simberloff, D.S., and Abele, L.G. (1982). Refuge design and island biogeographic theory. The American Naturalist, (120): 41–50.
  • Şimşek, A., Türkten, H., ve Bakan, G. (2022). Su Kalite İndeksi ve İstatistiksel Analiz Kullanılarak Orta Karadeniz Bölgesi Kızılırmak ve Yeşilırmak Nehirleri Su Kalitesinin Değerlendirilmesi. Karadeniz Fen Bilimleri Dergisi, 12(2), 645-662.
  • Singh, K.P., Malik, A,. Mohan, D., and Sinha, S. (2004). Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India)—a case study. Water research, 38(18): 3980-3992.
  • Soulé, M.E. (1991). Conservation: tactics for a constant crisis. Science, (253): 744–750. Tokatlı, C., ve Helvacıoğlu, İ.A. (2019). Tarımsal Kirliliğin Trakya Bölgesi Sucul Habitatları Üzerine Etkilerinin Temel Bileşen Analizi Kullanılarak Değerlendirilmesi: Makro ve Mikro Elementler – Ağır Metaller. Journal of Tekirdag Agricultural Faculty, 17(2): 143.
  • Tripathi M., and Singal S.K. (2019). Use of principal component analysis for parameter selection for development of a novel water quality index: a case study of river Ganga India. Ecological Indicators, (96):430–436.
  • Türkiye Bilimsel ve Teknolojik Araştırma Kurumu – Marmara Araştırma Merkezi – Çevre ve Temiz Üretim Enstitüsü, Havza Koruma Eylem Planlarının Hazırlanması Projesi Antalya Havzası, (2013): 55, 166-241.
  • TVKGM (2023), Çevre, Şehircilik ve İklim Değişikliği Bakanlığı, Tabiat Varlıklarını Koruma Genel Müdürlüğü, Belek Özel Çevre Koruma Bölgesi Yönetim Planı (2023-2027).
  • URL-1: Çevre, Şehircilik ve İklim Değişikliği Bakanlığı, Özel Çevre Koruma Bölgeleri, https://ockb.csb.gov.tr/ock-bolgeleri-harita-i-55 , (Erişim Tarihi: 06.02.2024).
  • URL-2 TÜİK 2023 yılı Adrese Dayalı Nüfus Kayıt Sistemi Sonuçları https://www.tuik.gov.tr/media/announcements/Favori_Tablolar.xlsx , (Erişim Tarihi: 13.02.2024)
  • URL-3: Belek Turizm Yatırımcıları Ortak Girişimi, Belek Ruhu https://www.visitbelek.com/tr/about-belek/the-spirit-of-belek/history , (Erişim Tarihi: 06.02.2024)
  • Ustaoğlu, F., Tepe, Y., ve Taş, B. (2019). Assessment of stream quality and health risk in a subtropical Turkey river system: A combined approach using statistical analysis and water quality index. Ecological Indicator, 113.
  • Üstün Odabaşi, S., Ceylan, Z., Şentürk, İ., Akbal, F., Bakan, G., and Büyükgüngör, H. (2022). Investigation of spatial and seasonal variation of water quality along the mid-Black Sea coast (from Sinop to Ordu) of Turkey, by multivariate statistical techniques. Regional Studies in Marine Science, 50.
  • Wu, J.Y. (2005). Assessing surface water quality of the Yangtze Estuary with genotoxicity data. Marine Pollution Bulletin, 50(12): 1661-1667.
  • Yang, H.J., Shen, Z.M., Zhang, J.P., and Wang, W.H. (2007). Water quality characteristics along the course of the Huangpu River (China). Journal of Environmental Sciences, 19(10): 1193-1198.
  • Yerel, S., and Ankara, H. (2011). Application of multivariate statistical techniques in the assessment of water quality in Sakarya River, Turkey. Journal of the Geological Society of India, 78(6): 1-5.
  • Yolcu, İ.D. (2012). Bursa Nilüfer Çayı Su Kalitesi Parametrelerinin İstatistiksel Yöntemlerle Değerlendirilmesi. Doktora Tezi, Uludağ Üniversitesi, Fen Bilimleri Enstitüsü, Çevre Mühendisliği Anabilim Dalı, Bursa.
  • YSKY (2021). Yerüstü Su Kalitesi Yönetmeliği Ek-2 Tablo-5. 16.06.2021 tarihli ve 31513 sayılı Resmi Gazete.
  • Zhang, D., Ni, G., Cong, Z., Chen, T., and Zhang, T. (2013). Statistical interpretation of the daily variation of urban water consumption in Beijing, China. Hydrological Sciences Journal, 59(1): 181-192.
There are 71 citations in total.

Details

Primary Language Turkish
Subjects Environmental Engineering (Other)
Journal Section Articles
Authors

Ömer Faruk Özcan 0000-0003-0960-4903

Prof. Dr. Beril Akın 0000-0003-1730-154X

Publication Date June 18, 2024
Submission Date February 8, 2024
Acceptance Date April 28, 2024
Published in Issue Year 2024 Volume: 14 Issue: 2

Cite

APA Özcan, Ö. F., & Akın, P. D. B. (2024). Belek Özel Çevre Koruma Bölgesi Su Kalitesinin Çok Değişkenli İstatistiksel Yöntemler ile Değerlendirilmesi. Karadeniz Fen Bilimleri Dergisi, 14(2), 719-741. https://doi.org/10.31466/kfbd.1433923