Research Article
BibTex RIS Cite

EAHŞİ Konumlarının Belirlenmesinde Kullanılan Algoritma Uygulamalarının Karşılaştırmalı Performans Analizi

Year 2025, Volume: 15 Issue: 3, 1306 - 1324, 15.09.2025
https://doi.org/10.31466/kfbd.1699614

Abstract

Artan nüfusla birlikte ulaşımda petrol ve türevlerinin kullanılması, küresel ısınma ve kentsel hava kirliliği gibi ciddi çevresel sorunlara neden olmuştur. Bu durum, Elektrikli Araçlar (EA) başta olmak üzere alternatif yakıtlı araçların yaygın olarak benimsenmesine yol açmış ve istasyon konumlarının belirlenmesi popüler bir araştırma konusu haline gelmiştir. Bu çalışmaların literatüre katkıları arasında hızlı şarj istasyonları için en uygun yerlerin belirlenmesi ve alan planlaması yer almaktadır. EA'lar için çok sayıda rotalama ve şarj hesaplama programı mevcut olsa da doğadan ilham alan optimizasyon algoritmaları, rotalama ve optimum yerleştirmedeki zorlukları ele almak için değerli bir yaklaşım olabilir. EA teknolojisinin mevcut aşamasında, araç menzili ve mevcut şarj istasyonu konumları gibi parametreler göz önünde bulundurulduğunda, verimli şehirlerarası seyahati kolaylaştırmak için şarj istasyonu sıkıntısı yaşanmaktadır. Bu nedenle, Elektrikli Araç Hızlı Şarj İstasyonları (EAHŞİ) için en uygun konumların belirlenmesi, ele alınması gereken hayati bir konudur. Optimum konumların belirlenememesi ve hızlı şarj istasyonlarının yeterince planlanamaması hem elektrikli araç sahipleri hem de şarj sistemi operatörleri için şarj talebinin istenen düzeyde karşılanamaması veya planlanan hızlı şarj istasyonlarının yetersiz kullanılması gibi sorunlara yol açabilir. İstasyon yeri planlamasının temel amacı, akış hacmini en üst düzeye çıkarırken aynı zamanda şarj istasyonlarının kurulum maliyetlerini en aza indiren optimum bir çözüm elde etmektir. Bu makale, kullanılan çeşitli EA optimum konumlandırma teknikleri ve algoritmalarının karşılaştırmalı bir incelemesini sunmaktadır. Bunun yanında coğrafi yakınlık temelli Haversine algoritması ile Çok Kriterli Karar Verme (ÇKKV) yöntemi olan Analitik Hiyerarşi Süreci (AHP) algoritmalarını ayrı ayrı uygulayarak İstanbul ili Beykoz ilçesi Kavacık bölgesi sınırları içerisindeki en uygun EVFCS noktalarını belirlemeyi amaçlamaktadır.

References

  • Akar, O., Terzi, U. K., & Ozgönenel, O. (2022). Location of transformers during the extension of an electricity distribution network. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4048210
  • Alabi, T. M., Lu, L., & Yang, Z. (2022). Data-driven optimal scheduling of multi-energy system virtual power plant (MEVPP) incorporating carbon capture system (CCS), electric vehicle flexibility, and clean energy marketer (CEM) strategy. Applied Energy, 314, 118997. https://doi.org/10.1016/j.apenergy.2022.118997
  • Aliasghari, P., Mohammadi-Ivatloo, B., & Abapour, M. (2019). Risk-based scheduling strategy for electric vehicle aggregator using hybrid Stochastic/IGDT approach. Journal of Cleaner Production, 248, 119270. https://doi.org/10.1016/j.jclepro.2019.119270
  • Alinia, B., Hajiesmaili, M. H., & Crespi, N. (2019). Online EV charging scheduling with On-Arrival commitment. IEEE Transactions on Intelligent Transportation Systems, 20(12), 4524–4537. https://doi.org/10.1109/tits.2018.2887194
  • Alkan, T., Atiz, Ö. F., & Durduran, S. S. (2023). Suitable site selection for electric vehicle charging stations with AHP method: The case of Konya. Niğde Ömer Halisdemir University Journal of Engineering Sciences, 12(1), 193-199. https://doi.org/10.28948/ngumuh.1189242
  • Al-Zaidi, W. K. M., & Inan, A. (2023). Optimal placement of battery swapping stations for power quality improvement: a novel multi Techno-Economic objective function approach. Energies, 17(1), 110. https://doi.org/10.3390/en17010110
  • Azzouz, I., & Hassen, W. F. (2023). Optimization of electric vehicles charging scheduling based on deep reinforcement learning: a decentralized approach. Energies, 16(24), 8102. https://doi.org/10.3390/en16248102
  • AYEDAS, “Vaniköy Electricity Distribution Network Information”. Vaniköy Operations Center, Istanbul. 2023.
  • Beheshtikhoo, A., Pourgholi, M., & Khazaee, I. (2023). Design of type-2 fuzzy logic controller in a smart home energy management system with a combination of renewable energy and an electric vehicle. Journal of Building Engineering, 68, 106097. https://doi.org/10.1016/j.jobe.2023.106097
  • Bhadoria, A., & Marwaha, S. (2022). Optimal Generation Scheduling Considering Amalgamating Solar PV and Electric vehicle Power Generation Using Hybrid SMA-SOA Optimizer. 2022 IEEE Delhi Section Conference (DELCON). https://doi.org/10.1109/delcon54057.2022.9753466
  • Bhushan, N., & Rai, K. (2004). The analytic hierarchy process. Decision Engineering, 11–21. https://doi.org/10.1007/978-1-85233-864-0_2
  • Bouguerra, S., & Layeb, S. B. (2019). Determining optimal deployment of electric vehicles charging stations: Case of Tunis City, Tunisia. Case Studies on Transport Policy, 7(3), 628–642. https://doi.org/10.1016/j.cstp.2019.06.003
  • Cao, Y., Huang, L., Li, Y., Jermsittiparsert, K., Ahmadi-Nezamabad, H., & Nojavan, S. (2019b). Optimal scheduling of electric vehicles aggregator under market price uncertainty using robust optimization technique. International Journal of Electrical Power & Energy Systems, 117, 105628. https://doi.org/10.1016/j.ijepes.2019.105628
  • Chakraborty, N., Mondal, A., & Mondal, S. (2018a). Multi-objective heuristic charge scheduling and eco-routing mechanism for electric vehicles. Proceedings of the Ninth International Conference on Future Energy Systems, 468–470.
  • Cheng, N., She, L., & Chen, D. (2023). Electric vehicle charging scheduling optimization method based on improved Ant colony. Journal of Physics Conference Series, 2418(1), 012112. https://doi.org/10.1088/1742-6596/2418/1/012112
  • Das, S., Acharjee, P., & Bhattacharya, A. (2020). Charging Scheduling of Electric Vehicle incorporating Grid-to-Vehicle (G2V) and Vehicle-to-Grid (V2G) technology in Smart-Grid. 2020 IEEE International Conference on Power Electronics, Smart Grid and Renewable Energy (PESGRE2020). https://doi.org/10.1109/pesgre45664.2020.9070489
  • Ding, Z., Lu, Y., Lai, K., Yang, M., & Lee, W. (2020). Optimal coordinated operation scheduling for electric vehicle aggregator and charging stations in an integrated electricity-transportation system. International Journal of Electrical Power & Energy Systems, 121, 106040. https://doi.org/10.1016/j.ijepes.2020.106040
  • Guo, C., Wang, C., & Zuo, X. (2019). A genetic algorithm based column generation method for multi-depot electric bus vehicle scheduling. Proceedings of the Genetic and Evolutionary Computation Conference Companion. https://doi.org/10.1145/3319619.3321991
  • Guo, S., Qiu, Z., Xiao, C., Liao, H., Huang, Y., Lei, T., Wu, D., & Jiang, Q. (2021). A multi-level vehicle-to-grid optimal scheduling approach with EV economic dispatching model. Energy Reports, 7, 22–37. https://doi.org/10.1016/j.egyr.2021.10.058
  • Guo, Z., Yu, B., Li, K., Yang, Y., Yao, B., & Lin, Q. (2018). Locating battery supplying infrastructures for electric taxies. Transportation Letters, 12(2), 77–86. https://doi.org/10.1080/19427867.2018.1520449
  • Hsaini, S., Ghogho, M., & Charaf, M. E. H. (2022). An OCPP-Based approach for Electric vehicle charging management. Energies, 15(18), 6735. https://doi.org/10.3390/en15186735
  • Jamgochian, A. L., & Kochenderfer, M. J. (2019a). Stochastic model predictive control for scheduling charging of electric vehicle fleets with market power. 2019 IEEE International Conference on Connected Vehicles and Expo (ICCVE), 1–6.
  • Jordán, J., Palanca, J., Del Val, E., Julian, V., & Botti, V. (2018). A Multi-Agent system for the dynamic emplacement of electric vehicle charging stations. Applied Sciences, 8(2), 313. https://doi.org/10.3390/app8020313
  • Kaya, F., & Akar, O. (2024b). Short circuit effects on HV feeders of optimally located electric vehicle fast charging stations. IEEE Access, 12, 47842–47853. https://doi.org/10.1109/access.2024.3383433
  • Kaya, F. (2023). Analysis of the effects of electric vehicle fast charging stations on the grid. M.S. thesis, Dept. Electric. Edu., Marmara Univ., Istanbul, Türkiye.
  • Kaya, Ö., Alemdar, K. D., Atalay, A., Çodur, M. Y., & Tortum, A. (2022). Electric car sharing stations site selection from the perspective of sustainability: A GIS-based multi-criteria decision-making approach. Sustainable Energy Technologies and Assessments, 52, 102026. https://doi.org/10.1016/j.seta.2022.102026
  • Kodeeswaran, S., Kannabhiran, A., & Nandhini, G. M. (2025). Implementation of V2G and G2V Methods with Distributed Generation for E-Mobility. In River Publishers eBooks (pp. 219–238). https://doi.org/10.1201/9788770046152-8
  • Koufakis, A., Rigas, E. S., Bassiliades, N., & Ramchurn, S. D. (2019). Offline and online electric vehicle charging scheduling with V2V energy transfer. IEEE Transactions on Intelligent Transportation Systems, 21(5), 2128–2138. https://doi.org/10.1109/tits.2019.2914087
  • Kułakowski, K. (2020). AHP as a decision-making method. Understanding the Analytic Hierarchy Process, 1–27. https://doi.org/10.1201/9781315392226-1
  • Lee, S., & Choi, D. (2021). Dynamic pricing and energy management for profit maximization in multiple smart electric vehicle charging stations: A privacy-preserving deep reinforcement learning approach. Applied Energy, 304, 117754. https://doi.org/10.1016/j.apenergy.2021.117754
  • Li, H., Zhan, J., Zhao, Z., & Wang, H. (2024). An improved particle swarm optimization algorithm based on variable neighborhood search. Mathematics, 12(17), 2708. https://doi.org/10.3390/math12172708
  • Liu, Y., Wang, Y., Li, Y., Gooi, H. B., & Xin, H. (2020). Multi-Agent based optimal scheduling and trading for Multi-Microgrids integrated with urban transportation networks. IEEE Transactions on Power Systems, 36(3), 2197–2210. https://doi.org/10.1109/tpwrs.2020.3040310
  • Mahyari, E., & Freeman, N. (2025). Electric vehicle fleet charging management: An approximate dynamic programming policy. European Journal of Operational Research. https://doi.org/10.1016/j.ejor.2025.04.031
  • Micari, S., Polimeni, A., Napoli, G., Andaloro, L., & Antonucci, V. (2017). Electric vehicle charging infrastructure planning in a road network. Renewable and Sustainable Energy Reviews, 80, 98–108. https://doi.org/10.1016/j.rser.2017.05.022
  • Moghaddam, S. Z., & Akbari, T. (2022). A mixed-integer linear programming model for the plug-in electric vehicle charging problem in unbalanced low voltage electrical distribution systems considering neutral conductor. Electric Power Systems Research, 209, 108049. https://doi.org/10.1016/j.epsr.2022.108049
  • Mohammed, A., Saif, O., Abo-Adma, M. A., & Elazab, R. (2024). Multiobjective optimization for sizing and placing electric vehicle charging stations considering comprehensive uncertainties. Research Square (Research Square). https://doi.org/10.21203/rs.3.rs-4696351/v1
  • Nejati, S. A., Chong, B., Alinejad, M., & Abbasi, S. (2021). Optimal scheduling of electric vehicles charging and discharging in a smart parking-lot. 2022 57th International Universities Power Engineering Conference (UPEC), 1–6. https://doi.org/10.1109/upec50034.2021.9548226
  • Nimalsiri, N. I., Mediwaththe, C. P., Ratnam, E. L., Shaw, M., Smith, D. B., & Halgamuge, S. K. (2019). A survey of algorithms for distributed charging control of electric vehicles in smart grid. IEEE Transactions on Intelligent Transportation Systems, 21(11), 4497–4515. https://doi.org/10.1109/tits.2019.2943620
  • Nurmuhammed, M., & Karadağ, T. (2021). Elektrikli Araç Şarj İstasyonlarının Konumlandırılması ve Enerji Şebekesi Üzerine Etkisi Konulu Derleme Çalışması. Gazi University Journal of Science Part A: Engineering and Innovation, 8(2), 218-233.
  • Paudel, A., Hussain, S. A., Sadiq, R., Zareipour, H., & Hewage, K. (2022). Decentralized Cooperative Approach for Electric Vehicle Charging. Journal of Cleaner Production, 364, 132590.
  • Petersen, P., & Sax, E. (2022). A fully automated methodology for the selection and extraction of Energy-Relevant features for the energy consumption of battery electric vehicles. SN Computer Science, 3(5). https://doi.org/10.1007/s42979-022-01233-7
  • Raposo, J., Rodrigues, A., Silva, C., & Dentinho, T. (2015). A multi-criteria decision aid methodology to design electric vehicles public charging networks. AIP Advances, 5(5). https://doi.org/10.1063/1.4921087
  • Shanmugam, P. K., & Thomas, P. (2024). Optimization Strategies for Electric Vehicle Charging and Routing: A Comprehensive Review. Gazi University Journal of Science, 37(3), 1256-1285. https://doi.org/10.35378/gujs.1321572
  • Shen, J., Wang, L., & Zhang, J. (2021). Distributed charging control of electric vehicles in PV-based charging stations. 2022 IEEE Applied Power Electronics Conference and Exposition (APEC), 995–1000. https://doi.org/10.1109/apec42165.2021.9487054
  • Singh, V., Ganapathy, L., & Pundir, A. K. (2021). An improved genetic algorithm for solving multi depot vehicle routing problems. In IGI Global eBooks (pp. 375–402). https://doi.org/10.4018/978-1-7998-8048-6.ch020
  • Sun, L. (2020). Site selection for evcss by GIS-based AHP Method. E3S Web of Conferences, 194, 05051. https://doi.org/10.1051/e3sconf/202019405051
  • Wang, L., & Chen, B. (2019). Distributed control for large-scale plug-in electric vehicle charging with a consensus algorithm. International Journal of Electrical Power & Energy Systems, 109, 369–383. https://doi.org/10.1016/j.ijepes.2019.02.020
  • Wang, Y., Yang, Z., Mourshed, M., Guo, Y., Niu, Q., & Zhu, X. (2019). Demand side management of plug-in electric vehicles and coordinated unit commitment: A novel parallel competitive swarm optimization method. Energy Conversion and Management, 196, 935–949. https://doi.org/10.1016/j.enconman.2019.06.012
  • Xia, Y., Cheng, Z., Zhang, J., & Chen, X. (2025). User cost minimization and load balancing for multiple electric vehicle charging stations based on deep reinforcement learning. World Electric Vehicle Journal, 16(3), 184. https://doi.org/10.3390/wevj16030184
  • Yalcin, G. D., Ozsoy, C. Y., & Taskin, Y. (2021). A multi-objective mathematical model for the electric vehicle charging station placement problem in urban areas. International Journal of Sustainable Energy, 41(8), 945–961. https://doi.org/10.1080/14786451.2021.2016761
  • Yeni̇Gün, O., Boyar, T., & Yildiz, K. (2023). Determination of Optimal Location of Electrical Vehicle Charging Stations in Istanbul with Genetic Algorithm and Geographical Systems. Bilişim Teknolojileri Dergisi, 17(1), 1–9. https://doi.org/10.17671/gazibtd.1329029
  • Zhang, R., Guo, J., & Wang, J. (2020). A Time-Dependent electric vehicle routing problem with congestion tolls. IEEE Transactions on Engineering Management, 69(4), 861–873. https://doi.org/10.1109/tem.2019.2959701
  • Zheng, Y., Wang, Y., & Yang, Q. (2025). Market mechanism enabling electric vehicle grid integration: A critical review on operational frameworks, service provisions and optimization techniques. Sustainable Cities and Society, 106347. https://doi.org/10.1016/j.scs.2025.106347
  • Zhou, K., Cheng, L., Wen, L., Lu, X., & Ding, T. (2020). A coordinated charging scheduling method for electric vehicles considering different charging demands. Energy, 213, 118882. https://doi.org/10.1016/j.energy.2020.118882

Comparative Performance Analysis of Algorithm Applications Used in Determining EVFCS Locations

Year 2025, Volume: 15 Issue: 3, 1306 - 1324, 15.09.2025
https://doi.org/10.31466/kfbd.1699614

Abstract

With the increasing population, using petroleum and its derivatives in transportation has caused serious environmental problems, including global warming and urban air pollution. This situation has led to the widespread adoption of alternative fuel vehicles, especially Electric Vehicles (EVs), and determining station locations has become a popular research topic. Among the contributions of these studies to the literature are identifying the optimal locations for fast charging stations and space planning. Although numerous routing and charging calculation programs exist for EVs, nature-inspired optimization algorithms can be a valuable approach to addressing the challenges in routing and optimal placement. At the current stage of EV technology, when parameters such as vehicle range and available charging station locations are considered, there is a shortage of charging stations to facilitate efficient intercity travel. Therefore, determining the optimal locations for Electric Vehicles Fast Charging Stations (EVFCS) is a vital issue that needs to be addressed. Failure to identify optimal locations and to adequately plan fast charging stations may lead to problems for both EV owners and charging system operators, such as failing to meet charging demand at the desired level or underutilizing the planned fast charging stations. The main objective of station location planning is to obtain an optimal solution that maximizes the flow volume while simultaneously minimizing the installation costs of charging stations. This paper presents a comparative review of various EV optimal positioning techniques and algorithms used. In addition, it aims to determine the most suitable EVFCS points within the boundaries of Kavacik region of Beykoz district of Istanbul province by applying the geographical proximity-based Haversine algorithm and Analytical Hierarchy Process (AHP) algorithms, which are Multi-Criteria Decision-Making (MCDM) methods, separately.

References

  • Akar, O., Terzi, U. K., & Ozgönenel, O. (2022). Location of transformers during the extension of an electricity distribution network. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4048210
  • Alabi, T. M., Lu, L., & Yang, Z. (2022). Data-driven optimal scheduling of multi-energy system virtual power plant (MEVPP) incorporating carbon capture system (CCS), electric vehicle flexibility, and clean energy marketer (CEM) strategy. Applied Energy, 314, 118997. https://doi.org/10.1016/j.apenergy.2022.118997
  • Aliasghari, P., Mohammadi-Ivatloo, B., & Abapour, M. (2019). Risk-based scheduling strategy for electric vehicle aggregator using hybrid Stochastic/IGDT approach. Journal of Cleaner Production, 248, 119270. https://doi.org/10.1016/j.jclepro.2019.119270
  • Alinia, B., Hajiesmaili, M. H., & Crespi, N. (2019). Online EV charging scheduling with On-Arrival commitment. IEEE Transactions on Intelligent Transportation Systems, 20(12), 4524–4537. https://doi.org/10.1109/tits.2018.2887194
  • Alkan, T., Atiz, Ö. F., & Durduran, S. S. (2023). Suitable site selection for electric vehicle charging stations with AHP method: The case of Konya. Niğde Ömer Halisdemir University Journal of Engineering Sciences, 12(1), 193-199. https://doi.org/10.28948/ngumuh.1189242
  • Al-Zaidi, W. K. M., & Inan, A. (2023). Optimal placement of battery swapping stations for power quality improvement: a novel multi Techno-Economic objective function approach. Energies, 17(1), 110. https://doi.org/10.3390/en17010110
  • Azzouz, I., & Hassen, W. F. (2023). Optimization of electric vehicles charging scheduling based on deep reinforcement learning: a decentralized approach. Energies, 16(24), 8102. https://doi.org/10.3390/en16248102
  • AYEDAS, “Vaniköy Electricity Distribution Network Information”. Vaniköy Operations Center, Istanbul. 2023.
  • Beheshtikhoo, A., Pourgholi, M., & Khazaee, I. (2023). Design of type-2 fuzzy logic controller in a smart home energy management system with a combination of renewable energy and an electric vehicle. Journal of Building Engineering, 68, 106097. https://doi.org/10.1016/j.jobe.2023.106097
  • Bhadoria, A., & Marwaha, S. (2022). Optimal Generation Scheduling Considering Amalgamating Solar PV and Electric vehicle Power Generation Using Hybrid SMA-SOA Optimizer. 2022 IEEE Delhi Section Conference (DELCON). https://doi.org/10.1109/delcon54057.2022.9753466
  • Bhushan, N., & Rai, K. (2004). The analytic hierarchy process. Decision Engineering, 11–21. https://doi.org/10.1007/978-1-85233-864-0_2
  • Bouguerra, S., & Layeb, S. B. (2019). Determining optimal deployment of electric vehicles charging stations: Case of Tunis City, Tunisia. Case Studies on Transport Policy, 7(3), 628–642. https://doi.org/10.1016/j.cstp.2019.06.003
  • Cao, Y., Huang, L., Li, Y., Jermsittiparsert, K., Ahmadi-Nezamabad, H., & Nojavan, S. (2019b). Optimal scheduling of electric vehicles aggregator under market price uncertainty using robust optimization technique. International Journal of Electrical Power & Energy Systems, 117, 105628. https://doi.org/10.1016/j.ijepes.2019.105628
  • Chakraborty, N., Mondal, A., & Mondal, S. (2018a). Multi-objective heuristic charge scheduling and eco-routing mechanism for electric vehicles. Proceedings of the Ninth International Conference on Future Energy Systems, 468–470.
  • Cheng, N., She, L., & Chen, D. (2023). Electric vehicle charging scheduling optimization method based on improved Ant colony. Journal of Physics Conference Series, 2418(1), 012112. https://doi.org/10.1088/1742-6596/2418/1/012112
  • Das, S., Acharjee, P., & Bhattacharya, A. (2020). Charging Scheduling of Electric Vehicle incorporating Grid-to-Vehicle (G2V) and Vehicle-to-Grid (V2G) technology in Smart-Grid. 2020 IEEE International Conference on Power Electronics, Smart Grid and Renewable Energy (PESGRE2020). https://doi.org/10.1109/pesgre45664.2020.9070489
  • Ding, Z., Lu, Y., Lai, K., Yang, M., & Lee, W. (2020). Optimal coordinated operation scheduling for electric vehicle aggregator and charging stations in an integrated electricity-transportation system. International Journal of Electrical Power & Energy Systems, 121, 106040. https://doi.org/10.1016/j.ijepes.2020.106040
  • Guo, C., Wang, C., & Zuo, X. (2019). A genetic algorithm based column generation method for multi-depot electric bus vehicle scheduling. Proceedings of the Genetic and Evolutionary Computation Conference Companion. https://doi.org/10.1145/3319619.3321991
  • Guo, S., Qiu, Z., Xiao, C., Liao, H., Huang, Y., Lei, T., Wu, D., & Jiang, Q. (2021). A multi-level vehicle-to-grid optimal scheduling approach with EV economic dispatching model. Energy Reports, 7, 22–37. https://doi.org/10.1016/j.egyr.2021.10.058
  • Guo, Z., Yu, B., Li, K., Yang, Y., Yao, B., & Lin, Q. (2018). Locating battery supplying infrastructures for electric taxies. Transportation Letters, 12(2), 77–86. https://doi.org/10.1080/19427867.2018.1520449
  • Hsaini, S., Ghogho, M., & Charaf, M. E. H. (2022). An OCPP-Based approach for Electric vehicle charging management. Energies, 15(18), 6735. https://doi.org/10.3390/en15186735
  • Jamgochian, A. L., & Kochenderfer, M. J. (2019a). Stochastic model predictive control for scheduling charging of electric vehicle fleets with market power. 2019 IEEE International Conference on Connected Vehicles and Expo (ICCVE), 1–6.
  • Jordán, J., Palanca, J., Del Val, E., Julian, V., & Botti, V. (2018). A Multi-Agent system for the dynamic emplacement of electric vehicle charging stations. Applied Sciences, 8(2), 313. https://doi.org/10.3390/app8020313
  • Kaya, F., & Akar, O. (2024b). Short circuit effects on HV feeders of optimally located electric vehicle fast charging stations. IEEE Access, 12, 47842–47853. https://doi.org/10.1109/access.2024.3383433
  • Kaya, F. (2023). Analysis of the effects of electric vehicle fast charging stations on the grid. M.S. thesis, Dept. Electric. Edu., Marmara Univ., Istanbul, Türkiye.
  • Kaya, Ö., Alemdar, K. D., Atalay, A., Çodur, M. Y., & Tortum, A. (2022). Electric car sharing stations site selection from the perspective of sustainability: A GIS-based multi-criteria decision-making approach. Sustainable Energy Technologies and Assessments, 52, 102026. https://doi.org/10.1016/j.seta.2022.102026
  • Kodeeswaran, S., Kannabhiran, A., & Nandhini, G. M. (2025). Implementation of V2G and G2V Methods with Distributed Generation for E-Mobility. In River Publishers eBooks (pp. 219–238). https://doi.org/10.1201/9788770046152-8
  • Koufakis, A., Rigas, E. S., Bassiliades, N., & Ramchurn, S. D. (2019). Offline and online electric vehicle charging scheduling with V2V energy transfer. IEEE Transactions on Intelligent Transportation Systems, 21(5), 2128–2138. https://doi.org/10.1109/tits.2019.2914087
  • Kułakowski, K. (2020). AHP as a decision-making method. Understanding the Analytic Hierarchy Process, 1–27. https://doi.org/10.1201/9781315392226-1
  • Lee, S., & Choi, D. (2021). Dynamic pricing and energy management for profit maximization in multiple smart electric vehicle charging stations: A privacy-preserving deep reinforcement learning approach. Applied Energy, 304, 117754. https://doi.org/10.1016/j.apenergy.2021.117754
  • Li, H., Zhan, J., Zhao, Z., & Wang, H. (2024). An improved particle swarm optimization algorithm based on variable neighborhood search. Mathematics, 12(17), 2708. https://doi.org/10.3390/math12172708
  • Liu, Y., Wang, Y., Li, Y., Gooi, H. B., & Xin, H. (2020). Multi-Agent based optimal scheduling and trading for Multi-Microgrids integrated with urban transportation networks. IEEE Transactions on Power Systems, 36(3), 2197–2210. https://doi.org/10.1109/tpwrs.2020.3040310
  • Mahyari, E., & Freeman, N. (2025). Electric vehicle fleet charging management: An approximate dynamic programming policy. European Journal of Operational Research. https://doi.org/10.1016/j.ejor.2025.04.031
  • Micari, S., Polimeni, A., Napoli, G., Andaloro, L., & Antonucci, V. (2017). Electric vehicle charging infrastructure planning in a road network. Renewable and Sustainable Energy Reviews, 80, 98–108. https://doi.org/10.1016/j.rser.2017.05.022
  • Moghaddam, S. Z., & Akbari, T. (2022). A mixed-integer linear programming model for the plug-in electric vehicle charging problem in unbalanced low voltage electrical distribution systems considering neutral conductor. Electric Power Systems Research, 209, 108049. https://doi.org/10.1016/j.epsr.2022.108049
  • Mohammed, A., Saif, O., Abo-Adma, M. A., & Elazab, R. (2024). Multiobjective optimization for sizing and placing electric vehicle charging stations considering comprehensive uncertainties. Research Square (Research Square). https://doi.org/10.21203/rs.3.rs-4696351/v1
  • Nejati, S. A., Chong, B., Alinejad, M., & Abbasi, S. (2021). Optimal scheduling of electric vehicles charging and discharging in a smart parking-lot. 2022 57th International Universities Power Engineering Conference (UPEC), 1–6. https://doi.org/10.1109/upec50034.2021.9548226
  • Nimalsiri, N. I., Mediwaththe, C. P., Ratnam, E. L., Shaw, M., Smith, D. B., & Halgamuge, S. K. (2019). A survey of algorithms for distributed charging control of electric vehicles in smart grid. IEEE Transactions on Intelligent Transportation Systems, 21(11), 4497–4515. https://doi.org/10.1109/tits.2019.2943620
  • Nurmuhammed, M., & Karadağ, T. (2021). Elektrikli Araç Şarj İstasyonlarının Konumlandırılması ve Enerji Şebekesi Üzerine Etkisi Konulu Derleme Çalışması. Gazi University Journal of Science Part A: Engineering and Innovation, 8(2), 218-233.
  • Paudel, A., Hussain, S. A., Sadiq, R., Zareipour, H., & Hewage, K. (2022). Decentralized Cooperative Approach for Electric Vehicle Charging. Journal of Cleaner Production, 364, 132590.
  • Petersen, P., & Sax, E. (2022). A fully automated methodology for the selection and extraction of Energy-Relevant features for the energy consumption of battery electric vehicles. SN Computer Science, 3(5). https://doi.org/10.1007/s42979-022-01233-7
  • Raposo, J., Rodrigues, A., Silva, C., & Dentinho, T. (2015). A multi-criteria decision aid methodology to design electric vehicles public charging networks. AIP Advances, 5(5). https://doi.org/10.1063/1.4921087
  • Shanmugam, P. K., & Thomas, P. (2024). Optimization Strategies for Electric Vehicle Charging and Routing: A Comprehensive Review. Gazi University Journal of Science, 37(3), 1256-1285. https://doi.org/10.35378/gujs.1321572
  • Shen, J., Wang, L., & Zhang, J. (2021). Distributed charging control of electric vehicles in PV-based charging stations. 2022 IEEE Applied Power Electronics Conference and Exposition (APEC), 995–1000. https://doi.org/10.1109/apec42165.2021.9487054
  • Singh, V., Ganapathy, L., & Pundir, A. K. (2021). An improved genetic algorithm for solving multi depot vehicle routing problems. In IGI Global eBooks (pp. 375–402). https://doi.org/10.4018/978-1-7998-8048-6.ch020
  • Sun, L. (2020). Site selection for evcss by GIS-based AHP Method. E3S Web of Conferences, 194, 05051. https://doi.org/10.1051/e3sconf/202019405051
  • Wang, L., & Chen, B. (2019). Distributed control for large-scale plug-in electric vehicle charging with a consensus algorithm. International Journal of Electrical Power & Energy Systems, 109, 369–383. https://doi.org/10.1016/j.ijepes.2019.02.020
  • Wang, Y., Yang, Z., Mourshed, M., Guo, Y., Niu, Q., & Zhu, X. (2019). Demand side management of plug-in electric vehicles and coordinated unit commitment: A novel parallel competitive swarm optimization method. Energy Conversion and Management, 196, 935–949. https://doi.org/10.1016/j.enconman.2019.06.012
  • Xia, Y., Cheng, Z., Zhang, J., & Chen, X. (2025). User cost minimization and load balancing for multiple electric vehicle charging stations based on deep reinforcement learning. World Electric Vehicle Journal, 16(3), 184. https://doi.org/10.3390/wevj16030184
  • Yalcin, G. D., Ozsoy, C. Y., & Taskin, Y. (2021). A multi-objective mathematical model for the electric vehicle charging station placement problem in urban areas. International Journal of Sustainable Energy, 41(8), 945–961. https://doi.org/10.1080/14786451.2021.2016761
  • Yeni̇Gün, O., Boyar, T., & Yildiz, K. (2023). Determination of Optimal Location of Electrical Vehicle Charging Stations in Istanbul with Genetic Algorithm and Geographical Systems. Bilişim Teknolojileri Dergisi, 17(1), 1–9. https://doi.org/10.17671/gazibtd.1329029
  • Zhang, R., Guo, J., & Wang, J. (2020). A Time-Dependent electric vehicle routing problem with congestion tolls. IEEE Transactions on Engineering Management, 69(4), 861–873. https://doi.org/10.1109/tem.2019.2959701
  • Zheng, Y., Wang, Y., & Yang, Q. (2025). Market mechanism enabling electric vehicle grid integration: A critical review on operational frameworks, service provisions and optimization techniques. Sustainable Cities and Society, 106347. https://doi.org/10.1016/j.scs.2025.106347
  • Zhou, K., Cheng, L., Wen, L., Lu, X., & Ding, T. (2020). A coordinated charging scheduling method for electric vehicles considering different charging demands. Energy, 213, 118882. https://doi.org/10.1016/j.energy.2020.118882
There are 54 citations in total.

Details

Primary Language English
Subjects Power Plants
Journal Section Articles
Authors

Fikret Kaya 0009-0003-5832-2766

Pınar Özkan 0000-0002-2321-6539

Onur Akar 0000-0001-9695-886X

Publication Date September 15, 2025
Submission Date May 14, 2025
Acceptance Date July 29, 2025
Published in Issue Year 2025 Volume: 15 Issue: 3

Cite

APA Kaya, F., Özkan, P., & Akar, O. (2025). Comparative Performance Analysis of Algorithm Applications Used in Determining EVFCS Locations. Karadeniz Fen Bilimleri Dergisi, 15(3), 1306-1324. https://doi.org/10.31466/kfbd.1699614