Research Article
BibTex RIS Cite

Jelatin, Laktalbumin ve Kazeinin Kakao Yağı Absorplama Kapasitelerinin Araştırılması

Year 2018, Volume: 2 Issue: 1, 64 - 71, 18.05.2018

Abstract

Çikolatada
yağ çiçeklenmesi, sıcaklık dalgalanmaları nedeniyle kakao yağının yeniden
kristallenmesi kusurudur. Çikolatada emülsifiye edici olarak bulunan lesitin
miktarının kakao yağının kararlı bir yapıda bulunmasına yardımcı olamayacak
kadar az olması, tüketici beğenisini olumsuz etkileyen bu sorunu çözümsüz
bırakmaktadır. Proteinler, besin değerlerinin yanında gıdalarda viskozite
arttırıcı, stabilizör ve jelleştirici gibi özellikleriyle gıda endüstrisinde
yapı iyileştirici olarak sıkça kullanılan maddelerdir. Hayvansal kaynaklı
proteinlerden kolajenden üretilen jelatin ile süt proteinleri olan kazein ve
laktalbuminin bu amaçlar için kullanımı oldukça yaygındır. Bu çalışmanın amacı,
emülsifiye edici özelliği bilinen bu proteinlerin kakao yağını tutma kapasitelerinin
belirlenmesidir. Bununla birlikte yüzey gerilimi ve zeta potansiyel ölçümleri
de yapılmıştır. Jelatinin kakao yağı absorplamasının laktalbumin ve kazeine
göre daha iyi olduğu görülmüştür. Aynı zamanda yüzey gerilimi diğer proteinlere
göre düşüktür. Ancak zeta potansiyel değeri bakımından en iyi sonucu
laktalbumin vermiştir. Bu çalışmanın çıktıları, çikolatada hem emülsifiye edici
hem de yağ çiçeklenmesini önleyici olarak işlev gösterecek modifiye
proteinlerle ilgili araştırmalarda kullanılabilecektir.

References

  • [1] Bricknell, J. ve Hartel, RW. 1998. Relation of Fat Bloom in Chocolate to Polymorphic Transition of Cocoa Butter. Journal of American Oil Chemists’s Society, 75(11), 1609-1615.
  • [2] Altan, A. Özel Gıdalar Teknolojisi. Çukurova Üniversitesi Yayınları. No:191, 11. Baskı. (2010), s: 60-61. Adana.
  • [3] GTHB, 2016. Gıda, Tarım ve Hayvancılık Bakanlığı resmi sitesi. www.tarim.gov.tr Erişim tarihi: 17.02.2016
  • [4] Sun, C. ve Gunasekaran, S. (2009). Effects of protein concentration and oil-phase volume fraction on the stability and rheology of menhaden oil-in-water emulsions stabilized by whey protein isolate with xanthan gum. Food Hydrocolloids, 23(1), 165−174.
  • [5] Taherian, A. R.; Britten, M.; Sabik, H. ve Fustier, P. (2011). Ability of whey protein isolate and/or fish gelatin to inhibit physical separation and lipid oxidation in fish oil-in-water beverage emulsion. Food Hydrocolloids, 25, 868−878.
  • [6] Lankfeld, J.M.G. ve Lyklema J. (1972). Adsorption of polyvinyl alcohol on the paraffin–water interface. I. Interfacial tension as a function of time and concentration. Journal of Colloid and Interface Science, 41, 454–465.
  • [7] Courthaudon, J. L., Dickinson, E. ve Christie, W. W. (1991). Competitive adsorption of lecithin and p-casein in oil in water emulsions. Journal of Agricultural and Food Chemistry, 39, 1365-1368.
  • [8] Dalgleish, D. G., Srinivasan, M. ve Singh, H. (1995). Surface properties of oil-in-water emulsion droplets containing casein and Tween-60. Journal of Agricultural and Food Chemistry, 43, 2351-2355.
  • [9] Dalgleish, D. G. (1996). Conformations and structures of milk proteins adsorbed to oil-water interfaces. Food Research International, 29(5-6), 541-547.
  • [10] Dickinson, E. (1997). Properties of emulsions stabilized with milk proteins: overview of some recent developments. J. Dairy Sci., 80: 2607-2619.
  • [11] Min Hu, D., Mc Clements, J. ve Decker, E. A. (2003). Lipid Oxidation in Corn Oil-in-Water Emulsions Stabilized by Casein, Whey Protein Isolate, and Soy Protein Isolate. Journal of Agricultural and Food Chemistry, 51(6), 1696–1700.
  • [12] Dickinson, E., Rolfe, S. E., Dalgleish, D. G. (1988). Competitive absorption of Rs1-casein and â-casein in oil-in-water emulsions. Food Hydrocolloids, 265, 397-405.
  • [13] Euston, S. E., Singh, M., Munro, P. A. ve Dalgleish, D. G. (1995). Competitive absorption between sodium caseinate and oil-soluble and water-soluble surfactants in oil-in-water emulsions. Journal of Food Science, 60, 1124-1131.
  • [14] Dickinson, E. ve Golding, M. (1998). Influence of calcium ions on creaming and rheology of emulsions containing sodium caseinate. Colloids Surface A, 144, 167-177.
  • [15] Dickinson, E ve Gelin, J-L. (1992). Influence of emulsifier on competitive adsorption of αs-casein + β-lactoglobulin in oil-in-water emulsions. Colloids and Surfaces. 63(3–4), 329–335.
  • [16] Dalgleish, D. G. (1997). Adsorption of protein and the stability of emulsions. Trends in Food Science & Technology, 8(1), 1–6.
  • [17] Dickinson, E. (2011). Mixed biopolymers at interfaces: Competitive adsorption and multilayer structures. Food Hydrocolloids, 25, 1966-1983.
  • [18] Jara, F.L., Sanchez, C.C., Patino, J.M.R. ve Pilosof, A.M.R. (2014). Competitive adsorption behavior of β-lactoglobulin, α-lactalbumin, bovine serum albumin in presence of hydroxypropylmethylcellulose. Influence of pH. Food Hydrocolloids, 35, 189–197.
  • [19] Salminen, H. ve Weiss, J. (2014). Electrostatic adsorption and stability of whey protein–pectin complexes on emulsion interfaces. Food Hydrocolloids, 35,410-419.
  • [20] Fustier, P., Achouri, A., Taherian, A. R., Britten, M., Pelletier, M., Sabik, H., Villeneuve, S., ve Mondor, M. (2015). Protein−Protein Multilayer Oil-in-Water Emulsions for the Microencapsulation of Flaxseed Oil: Effect of Whey and Fish Gelatin Concentration. Journal of Agricultural and Food Chemistry, 63, 9239−9250.
  • [21] Skurtys O., Acevedo C., Pedreschi F., Enrione J., Osorio F. ve Aguilera., J.M., (2001). Food Hydrocolloid Edible Films and Coatings. Science & Engineering, ss.34.
  • [22] Dickinson, E. An Introduction to Food Colloids. Oxford University Press, (1992). Oxford.
  • [23] Dickinson, E. (2009). Hydrocolloids as emulsifiers and emulsion stabilizers. Food Hydrocolloids, 23, 1473–1482.
  • [24] Ma, W., Tang, C-H., Yin, S-W., Yang, X-Q., Wang, Q., Liu, F. ve Wei, Z-H. (2012). Characterization of gelatin-based edible films incorporated with olive oil. Food Research International, 49, 572–579.
  • [25] Dickinson, E. (2001). Milk protein interfacial layers and the relationship to emulsion stability and rheology. Colloids and Surfaces B, 20, 197–210.
  • [26] Dickinson, E. (2006). Structure formation of casein-based gels, foams and emulsions. Colloids and Surfaces A, 288, 3–11.
  • [27] Dickinson, E. (1999). Caseins in emulsions: interfacial properties and interactions. International Dairy Journal, 9, 305-312.
  • [28] Dybowska, B.E. (2008). Properties of milk protein concentrate stabilized oil-in-water emulsions. Journal of Food Engineering, 88(4), 507-513.
  • [29] Horn, A.F., Wulff, T., Nielsen, N.S. ve Jacobsen, C. (2013). Effect of alpha-lactalbumin and beta-lactoglobulin on the oxidative stability of 10% fish oil-in-water emulsions depends on pH. Food Chemistry, 141(1), 574-581.
  • [30] Liang, Y., Patel, H., Matia-Merino, L., Ye, A. ve Golding, M. (2013). Structure and stability of heat-treated concentrated dairy-protein-stabilised oil-in-water emulsions: A stability map characterisation approach. Food Hydrocolloids, 33, 297-308.
  • [31] Singh, H. ve Ye, A. Chapter 12 – Interactions and Functionality of Milk Proteins in Food Emulsions. Milk Proteins (Second edition). From Expression to Food. A volume in Food Science and Technology, (2014), 359-386.
  • [32] Hebishy, E., Buffa, M., Guamis, B., Blasco-Moreno, A. ve Trujillo, A-J. (2015). Physical and oxidative stability of whey protein oil-in-water emulsions produced by conventional and ultra-high-pressure homogenization: Effects of pressure and protein concentration on emulsion characteristics. Innovative Food Science and Emerging Technologies, 32, 79–90.
  • [33] Öztürk, B. ve Clements, D.J. (2016). Progress in natural emulsifiers for utilization in food emulsions. Current Opinion in Food Science, 7, 1-6.
  • [34] Tavernier, I., Wijaya, W., Van der Meeren, P., Dewettinck, K. ve Patel, A. R. (2016). Food-grade particles for emulsion stabilization. Trends in Food Science & Technology, 50, 159-174.
  • [35] Caprez, A., Arrigoni, E., Amadò, R. ve Neukom, H. (1986). Influence of different types of thermal treatment on the chemical composition and physical properties of wheat bran. Journal of Cereal Science, 4(3), 233-239.
  • [36] Han, J.H. ve Krochta, J.M. (2001). Physical Properties and Oil Absorption of Whey-Protein-Coated Paper. Journal of Food Science, 66(2), 294-299.
  • [37] Larachi, F., Laurent, A., Midoux, N. ve Wild, G. (1991). Experimental study of a trickle-bed reactor operating at high pressure; two phase pressure drop and liquid saturation. Chemical Engineering Science. 46(5/6), 1233-1246.
  • [38] Saldamlı, İ. ve Temiz, A. Bölüm 4- Aminoasitler, Peptidler ve Proteinler. Amino grubunun alkolle inaktivasyonu. Gıda Kimyası. (Ed. Saldamlı, İ.) Hacettepe Üniversitesi Yayınları. Ankara, 1998. ss: 209.
  • [39] Dickinson, E ve Woskett, C.M. (1988). Effect of alcohol on adsorption of casein at the oil-water interface. Food Hydrocolloids, 2(3), 187-194.
Year 2018, Volume: 2 Issue: 1, 64 - 71, 18.05.2018

Abstract

References

  • [1] Bricknell, J. ve Hartel, RW. 1998. Relation of Fat Bloom in Chocolate to Polymorphic Transition of Cocoa Butter. Journal of American Oil Chemists’s Society, 75(11), 1609-1615.
  • [2] Altan, A. Özel Gıdalar Teknolojisi. Çukurova Üniversitesi Yayınları. No:191, 11. Baskı. (2010), s: 60-61. Adana.
  • [3] GTHB, 2016. Gıda, Tarım ve Hayvancılık Bakanlığı resmi sitesi. www.tarim.gov.tr Erişim tarihi: 17.02.2016
  • [4] Sun, C. ve Gunasekaran, S. (2009). Effects of protein concentration and oil-phase volume fraction on the stability and rheology of menhaden oil-in-water emulsions stabilized by whey protein isolate with xanthan gum. Food Hydrocolloids, 23(1), 165−174.
  • [5] Taherian, A. R.; Britten, M.; Sabik, H. ve Fustier, P. (2011). Ability of whey protein isolate and/or fish gelatin to inhibit physical separation and lipid oxidation in fish oil-in-water beverage emulsion. Food Hydrocolloids, 25, 868−878.
  • [6] Lankfeld, J.M.G. ve Lyklema J. (1972). Adsorption of polyvinyl alcohol on the paraffin–water interface. I. Interfacial tension as a function of time and concentration. Journal of Colloid and Interface Science, 41, 454–465.
  • [7] Courthaudon, J. L., Dickinson, E. ve Christie, W. W. (1991). Competitive adsorption of lecithin and p-casein in oil in water emulsions. Journal of Agricultural and Food Chemistry, 39, 1365-1368.
  • [8] Dalgleish, D. G., Srinivasan, M. ve Singh, H. (1995). Surface properties of oil-in-water emulsion droplets containing casein and Tween-60. Journal of Agricultural and Food Chemistry, 43, 2351-2355.
  • [9] Dalgleish, D. G. (1996). Conformations and structures of milk proteins adsorbed to oil-water interfaces. Food Research International, 29(5-6), 541-547.
  • [10] Dickinson, E. (1997). Properties of emulsions stabilized with milk proteins: overview of some recent developments. J. Dairy Sci., 80: 2607-2619.
  • [11] Min Hu, D., Mc Clements, J. ve Decker, E. A. (2003). Lipid Oxidation in Corn Oil-in-Water Emulsions Stabilized by Casein, Whey Protein Isolate, and Soy Protein Isolate. Journal of Agricultural and Food Chemistry, 51(6), 1696–1700.
  • [12] Dickinson, E., Rolfe, S. E., Dalgleish, D. G. (1988). Competitive absorption of Rs1-casein and â-casein in oil-in-water emulsions. Food Hydrocolloids, 265, 397-405.
  • [13] Euston, S. E., Singh, M., Munro, P. A. ve Dalgleish, D. G. (1995). Competitive absorption between sodium caseinate and oil-soluble and water-soluble surfactants in oil-in-water emulsions. Journal of Food Science, 60, 1124-1131.
  • [14] Dickinson, E. ve Golding, M. (1998). Influence of calcium ions on creaming and rheology of emulsions containing sodium caseinate. Colloids Surface A, 144, 167-177.
  • [15] Dickinson, E ve Gelin, J-L. (1992). Influence of emulsifier on competitive adsorption of αs-casein + β-lactoglobulin in oil-in-water emulsions. Colloids and Surfaces. 63(3–4), 329–335.
  • [16] Dalgleish, D. G. (1997). Adsorption of protein and the stability of emulsions. Trends in Food Science & Technology, 8(1), 1–6.
  • [17] Dickinson, E. (2011). Mixed biopolymers at interfaces: Competitive adsorption and multilayer structures. Food Hydrocolloids, 25, 1966-1983.
  • [18] Jara, F.L., Sanchez, C.C., Patino, J.M.R. ve Pilosof, A.M.R. (2014). Competitive adsorption behavior of β-lactoglobulin, α-lactalbumin, bovine serum albumin in presence of hydroxypropylmethylcellulose. Influence of pH. Food Hydrocolloids, 35, 189–197.
  • [19] Salminen, H. ve Weiss, J. (2014). Electrostatic adsorption and stability of whey protein–pectin complexes on emulsion interfaces. Food Hydrocolloids, 35,410-419.
  • [20] Fustier, P., Achouri, A., Taherian, A. R., Britten, M., Pelletier, M., Sabik, H., Villeneuve, S., ve Mondor, M. (2015). Protein−Protein Multilayer Oil-in-Water Emulsions for the Microencapsulation of Flaxseed Oil: Effect of Whey and Fish Gelatin Concentration. Journal of Agricultural and Food Chemistry, 63, 9239−9250.
  • [21] Skurtys O., Acevedo C., Pedreschi F., Enrione J., Osorio F. ve Aguilera., J.M., (2001). Food Hydrocolloid Edible Films and Coatings. Science & Engineering, ss.34.
  • [22] Dickinson, E. An Introduction to Food Colloids. Oxford University Press, (1992). Oxford.
  • [23] Dickinson, E. (2009). Hydrocolloids as emulsifiers and emulsion stabilizers. Food Hydrocolloids, 23, 1473–1482.
  • [24] Ma, W., Tang, C-H., Yin, S-W., Yang, X-Q., Wang, Q., Liu, F. ve Wei, Z-H. (2012). Characterization of gelatin-based edible films incorporated with olive oil. Food Research International, 49, 572–579.
  • [25] Dickinson, E. (2001). Milk protein interfacial layers and the relationship to emulsion stability and rheology. Colloids and Surfaces B, 20, 197–210.
  • [26] Dickinson, E. (2006). Structure formation of casein-based gels, foams and emulsions. Colloids and Surfaces A, 288, 3–11.
  • [27] Dickinson, E. (1999). Caseins in emulsions: interfacial properties and interactions. International Dairy Journal, 9, 305-312.
  • [28] Dybowska, B.E. (2008). Properties of milk protein concentrate stabilized oil-in-water emulsions. Journal of Food Engineering, 88(4), 507-513.
  • [29] Horn, A.F., Wulff, T., Nielsen, N.S. ve Jacobsen, C. (2013). Effect of alpha-lactalbumin and beta-lactoglobulin on the oxidative stability of 10% fish oil-in-water emulsions depends on pH. Food Chemistry, 141(1), 574-581.
  • [30] Liang, Y., Patel, H., Matia-Merino, L., Ye, A. ve Golding, M. (2013). Structure and stability of heat-treated concentrated dairy-protein-stabilised oil-in-water emulsions: A stability map characterisation approach. Food Hydrocolloids, 33, 297-308.
  • [31] Singh, H. ve Ye, A. Chapter 12 – Interactions and Functionality of Milk Proteins in Food Emulsions. Milk Proteins (Second edition). From Expression to Food. A volume in Food Science and Technology, (2014), 359-386.
  • [32] Hebishy, E., Buffa, M., Guamis, B., Blasco-Moreno, A. ve Trujillo, A-J. (2015). Physical and oxidative stability of whey protein oil-in-water emulsions produced by conventional and ultra-high-pressure homogenization: Effects of pressure and protein concentration on emulsion characteristics. Innovative Food Science and Emerging Technologies, 32, 79–90.
  • [33] Öztürk, B. ve Clements, D.J. (2016). Progress in natural emulsifiers for utilization in food emulsions. Current Opinion in Food Science, 7, 1-6.
  • [34] Tavernier, I., Wijaya, W., Van der Meeren, P., Dewettinck, K. ve Patel, A. R. (2016). Food-grade particles for emulsion stabilization. Trends in Food Science & Technology, 50, 159-174.
  • [35] Caprez, A., Arrigoni, E., Amadò, R. ve Neukom, H. (1986). Influence of different types of thermal treatment on the chemical composition and physical properties of wheat bran. Journal of Cereal Science, 4(3), 233-239.
  • [36] Han, J.H. ve Krochta, J.M. (2001). Physical Properties and Oil Absorption of Whey-Protein-Coated Paper. Journal of Food Science, 66(2), 294-299.
  • [37] Larachi, F., Laurent, A., Midoux, N. ve Wild, G. (1991). Experimental study of a trickle-bed reactor operating at high pressure; two phase pressure drop and liquid saturation. Chemical Engineering Science. 46(5/6), 1233-1246.
  • [38] Saldamlı, İ. ve Temiz, A. Bölüm 4- Aminoasitler, Peptidler ve Proteinler. Amino grubunun alkolle inaktivasyonu. Gıda Kimyası. (Ed. Saldamlı, İ.) Hacettepe Üniversitesi Yayınları. Ankara, 1998. ss: 209.
  • [39] Dickinson, E ve Woskett, C.M. (1988). Effect of alcohol on adsorption of casein at the oil-water interface. Food Hydrocolloids, 2(3), 187-194.
There are 39 citations in total.

Details

Primary Language Turkish
Subjects Food Engineering
Journal Section Genel
Authors

Sercan Dede 0000-0003-2049-9497

Saide Başak Arıkan This is me

Filiz Altay

Publication Date May 18, 2018
Published in Issue Year 2018 Volume: 2 Issue: 1

Cite

APA Dede, S., Arıkan, S. B., & Altay, F. (2018). Jelatin, Laktalbumin ve Kazeinin Kakao Yağı Absorplama Kapasitelerinin Araştırılması. Kilis 7 Aralık Üniversitesi Fen Ve Mühendislik Dergisi, 2(1), 64-71.
AMA Dede S, Arıkan SB, Altay F. Jelatin, Laktalbumin ve Kazeinin Kakao Yağı Absorplama Kapasitelerinin Araştırılması. KİFMD. May 2018;2(1):64-71.
Chicago Dede, Sercan, Saide Başak Arıkan, and Filiz Altay. “Jelatin, Laktalbumin Ve Kazeinin Kakao Yağı Absorplama Kapasitelerinin Araştırılması”. Kilis 7 Aralık Üniversitesi Fen Ve Mühendislik Dergisi 2, no. 1 (May 2018): 64-71.
EndNote Dede S, Arıkan SB, Altay F (May 1, 2018) Jelatin, Laktalbumin ve Kazeinin Kakao Yağı Absorplama Kapasitelerinin Araştırılması. Kilis 7 Aralık Üniversitesi Fen ve Mühendislik Dergisi 2 1 64–71.
IEEE S. Dede, S. B. Arıkan, and F. Altay, “Jelatin, Laktalbumin ve Kazeinin Kakao Yağı Absorplama Kapasitelerinin Araştırılması”, KİFMD, vol. 2, no. 1, pp. 64–71, 2018.
ISNAD Dede, Sercan et al. “Jelatin, Laktalbumin Ve Kazeinin Kakao Yağı Absorplama Kapasitelerinin Araştırılması”. Kilis 7 Aralık Üniversitesi Fen ve Mühendislik Dergisi 2/1 (May 2018), 64-71.
JAMA Dede S, Arıkan SB, Altay F. Jelatin, Laktalbumin ve Kazeinin Kakao Yağı Absorplama Kapasitelerinin Araştırılması. KİFMD. 2018;2:64–71.
MLA Dede, Sercan et al. “Jelatin, Laktalbumin Ve Kazeinin Kakao Yağı Absorplama Kapasitelerinin Araştırılması”. Kilis 7 Aralık Üniversitesi Fen Ve Mühendislik Dergisi, vol. 2, no. 1, 2018, pp. 64-71.
Vancouver Dede S, Arıkan SB, Altay F. Jelatin, Laktalbumin ve Kazeinin Kakao Yağı Absorplama Kapasitelerinin Araştırılması. KİFMD. 2018;2(1):64-71.