Research Article
BibTex RIS Cite

Analysis of the Risk Arising from Fire Installations in Manufacturing Facilities By Ranking Method

Year 2018, Volume: 2 Issue: 1, 1 - 11, 29.06.2018
https://doi.org/10.33720/kisgd.415363

Abstract

Fire is a disaster that causes death, injury and major financial loss. For old or existing fire installations in manufacturing facilities, detailed but traditional check-list fire risk analyzes based on standards can produce unrealistic results. For this reason, new and more holistic approaches need to be implemented. This article is for manufacturing facilities in Turkey, "Fire Safety Risk Ranking System" in the form of a risk analysis method aims to propose. For this purpose, application was made in 30 manufacturing facilities and a fire safety ranking score table was created. According to the results, 93 percent of the applications were found to be nonconformities in fire installations, it was understood that 67% had a medium or high risk of fire.

References

  • [1] Başkaya, Z., Öztürk, B. A. (2012). Tedarikçi değerlendirme probleminde bulanık TOPSIS algoritması ile grup karar verme ve karar vericilerin bireysel kararları arasındaki ilişkiler. Uludağ Üniversitesi İ.İ.B.F. Dergisi, 21(1), 153-178
  • [2] Binaların Yangından Korunması Hakkında Yönetmelik (2007), T. C. Resmi Gazete, 26735, 19 Aralık 2007.
  • [3] Chow, W.K., (2002). Proposed fire safety ranking system EB-FSRS for existing high-rise nonresidential buildings in Hong Kong. J. Archit. Eng. 8 (4), 116–124.
  • [4] Chow, W.K., Lui, G.C.H., 2002. Fire safety facilities assessment for karaokes. Facilities 20 (13/14), 441–449.
  • [5] Copping, A.G., 2002. Application of a systematic fire safety evaluation procedure in the protection of historic property. Fire Prot. Eng. 14, 19–25.
  • [6] Dağdeviren, M., Yüksel, I., (2008). Developing a fuzzy analytic hierarchy process (AHP) model for behavior-based safety management. Information Sciences: an International Journal, 178 (6), 1717-1733
  • [7] Guozhong, Z., Neng, Z., Zhe, T., Ying, C., Bingul, S., (2012). Application of a trapezoidal fuzzy AHP method for work safety evaluation and early warning rating of hot and humid environments. Safety Science, 50(2), 228-239
  • [8] Gülsün, B., Yılmaz, F., (2016) Çalışma ortamına uygun zemin yapısının çok kriterli karar verme yöntemi (AHP) ile seçimi. Uluslararası Hakemli İş Güvenliği ve Çalışan Sağlığı Dergisi, s. 41-43
  • [9] Hatami-Marbini, A., Tavana, M., Moradi, M., Kangi, F., (2013). A fuzzy group electre method for safety and health assessment in hazardous waste recycling facilities. Safety Science, 51, 414-426
  • [10] Hassanain, M. A., Hafeez, M. A., Sanni-Anibire, M. O., (2017) Ranking system for fire safety performance of student housing facilities. Safety Science, 92, 116-127
  • [11] Huang, Y.F., Hsu, K. H., Chein, P.S., Dong, S.H., (2011). Discussing performance index of human resource valuation with AHP-occupational safety section in T company in Taiwan as the case study. Information Technology Journal, 10(3), 549-556
  • [12]İBB. (2018), 2013-2018 İstatistikler. Erişim Tarihi: 07.04.2018, http://itfaiye.ibb.gov.tr
  • [13] İş Ekipmanlarının Kullanımında Sağlık ve Güvenlik Şartları Yönetmeliği (2013), T. C. Resmi Gazete, 28628, 25 Nisan 2013.
  • [14] İş Sağlığı Ve Güvenliği Kanunu (2012), T. C. Resmi Gazete, 28339, 30 Haziran 2012.
  • [15] Janackovic, G. L., (2013). Delphi-Fuzzy AHP ranking of the occupational safety community of practice performance indicators. Journal of Management and Marketing, 1(1), 9-16
  • [16] Janackovic, G.L., Savic, S.M., Stankovic, M.S., (2013). Selection and ranking of occupational safety indicators based on Fuzzy-Ahp: a case study in road construction companies. South African Journal of Industrial Engineering, 24(3), 175-189
  • [17] Kim, D.I., Yoo, W.S., Cho, H., Kang, K.I., (2014). A fuzzy AHP-based decision support model for quantifying failure risk of excavation work. KSCE Journal of Civil Engineering, 18(7), 1966-1976
  • [18] Kılıç, A., (2013). Yangın Riski. Yangın Ve Güvenlik Dergisi, 158, 8-10
  • [19] Lo, S.M., (1998). A building safety inspection system for fire safety issues in existing buildings. Struct. Surv. 16 (4), 209–217.
  • [20] Lo, S.M., (1999). A fire safety assessment system for existing buildings. Fire Technol. 35 (2), 131–152.
  • [21] Manchester, S., Bardos, P., (2004). Fire Hazards from Self-Heating at Compositing and Waste Processing Sites. Environmental Technology Limited, Building Research Establishment Limited, Watford, UK, p. 9.
  • [22] Novin, V., Givehchi, S., Hoveidi, H., (2014). A novel fuzzy-based modeling for route safety management of hazardous materials. International Journal of Scientific & Engineering Research, 5(8), 277-282
  • [23] NFPA – l0lA, (1995). Guide on Alternative Approaches to Life Safety. National Fire Protection Association, Quincy.
  • [24] Oturakçı, M., Dağsuyu C., (2017). Risk Değerlendirmesinde Bulanık Fine‐Kinney Yöntemi ve Uygulaması, Karaelmas İş Sağlığı ve Güvenliği Dergisi, 1, 17-25 [25] Özdemir, A.I., Seçme, N., (2009). İki aşamalı stratejik tedarikçi seçiminin bulanık TOPSIS yöntemi ile analizi. Afyon Kocatepe Üniversitesi İ.İ.B.F. Dergisi, 10(2), 79-112
  • [26] Özkan, E., Demirel, F., (2002). Çelik yapı bileşenlerinde alınması gereken yangın güvenlik önlemleri ve bir uygulama örneği (Yüksek Lisans Tezi). https://www.tk.org.tr veri tabanından erişildi (07.04.2018)
  • [27] Prete, L.D., Cefarelli, G., Nigro, E., (2016) "Calibration of a simplified method for fire resistance assessment of partially encased composite beams", Journal of Structural Fire Engineering, Vol. 7 Issue: 3, pp.262-282
  • [28] Saaty, T.L., (1980). Multi Criteria Decision Making: The Analytical Hierarchy Process. McGraw-Hill, New York.
  • [29] Saaty, L.T., (1990). How to make a decision: the analytic hierarchy process. European Journal of Operational Research, 48, 9-26
  • [30] Santos, F.J.J., Camargo, H.A. (2010) Fuzzy systems for multicriteria decisionmaking. Clei Electronic Journal, 13(3), 1-8
  • [31] Tadic, D., Djapan, M., (2012). A fuzzy model for assessing risk of occupational safety in the processing industry International Journal of Occupational Safety and Ergonomics, 18(2), 115–126
  • [32] Tilehnoel, M.H., Aref, M.A., (2013). Temporal dimension evaluation by fuzzy TOPSIS method. International Journal of Architecture and Urban Development, 3(2), 55-60
  • [33] Ünal, Ö.F., (2011). Analitik hiyerarşi prosesi ve personel seçimi alanında uygulamaları. Akdeniz Üniversitesi Uluslararası Alanya İşletme Fakültesi Dergisi, 3(2), 18-38
  • [34] Yarahmadi, R., (2012). Evaluating and prioritizing of performance indicators of health, safety, and environment using fuzzy TOPSIS. African Journal of Business Management, 6(5), 20-26
  • [35] Yılmaz, F., Alp, S., (2016). Underlying factors of occupational accidents: the case of Turkey. Open Journal of Safety Science and Technology, 6, 1-10
  • [36] Zhao, C.M., Lo, S.M., Lu, J.A., Fang, Z., 2004. A simulation approach for ranking of fire safety attributes of existing buildings. Fire Saf. J. 39 (7), 557–579.
  • [37] Watts, J.M., (1995). Fire risk ranking. İçinde: SFPE Handbook of Fire Prevention Engineering. National Fire Protection Association, Quincy, Mass., USA, s. 5–26.
  • [38] Watts, J.M., (1997a). Analysis of the NFPA fire safety evaluation system for business occupancies. Fire Technol. 33 (3), 276–282.
  • [39] Watts, J.M., 1997b. Fire risk assessment using multiattribute evaluation. In: Hasemi, Y. (Ed.), Proceedings of the 5th International Symposium on Fire Safety Science. Elsevier, London, pp. 679–690.
  • [40] Watts Jr., J.M., Kaplan, M.E., (2001). Fire risk index for historic buildings. Fire technology 37 (2), 167–180.
  • [41] Wong, L.T., Lau, S.W., 2007. A fire safety evaluation system for prioritizing fire improvements in old high-rise buildings in Hong Kong. Fire Technol. 43 (3), 233–249.

İmalat Tesislerinde Yangın Tesisatlarından Kaynaklanan Risklerin Sıralama Yöntemi İle Analizi

Year 2018, Volume: 2 Issue: 1, 1 - 11, 29.06.2018
https://doi.org/10.33720/kisgd.415363

Abstract

Yangın ölüm, yaralanma ve büyük maddi kayıplara neden olan bir afettir. İmalat tesislerindeki eski veya mevcut yangın tesisatları için, standartlara dayanan detaylı ancak geleneksel kontrol listesi şeklindeki yangın risk analizleri gerçekçi olmayan sonuçlar doğurabilir. Bu sebeple, yeni ve daha bütüncül yaklaşımların da uygulanması gerekmektedir. Bu makale, Türkiye’de imalat tesisleri için “Yangın Güvenliği Risk Sıralama Sistemi” şeklinde bir risk analiz yöntemi önermeyi amaçlamaktadır. Bu amaçla, 30 imalat tesisinde uygulama yapılmış ve yangın güvenlik sıralaması skor tablosu oluşturulmuştur. Sonuçlara göre, uygulama yapılan işletmelerin yüzde 93’ünün yangın tesisatlarında uygunsuzluk tespit edilmiş, % 67’sinin orta ya da yüksek düzeyde yangın riski taşıdığı anlaşılmıştır.

References

  • [1] Başkaya, Z., Öztürk, B. A. (2012). Tedarikçi değerlendirme probleminde bulanık TOPSIS algoritması ile grup karar verme ve karar vericilerin bireysel kararları arasındaki ilişkiler. Uludağ Üniversitesi İ.İ.B.F. Dergisi, 21(1), 153-178
  • [2] Binaların Yangından Korunması Hakkında Yönetmelik (2007), T. C. Resmi Gazete, 26735, 19 Aralık 2007.
  • [3] Chow, W.K., (2002). Proposed fire safety ranking system EB-FSRS for existing high-rise nonresidential buildings in Hong Kong. J. Archit. Eng. 8 (4), 116–124.
  • [4] Chow, W.K., Lui, G.C.H., 2002. Fire safety facilities assessment for karaokes. Facilities 20 (13/14), 441–449.
  • [5] Copping, A.G., 2002. Application of a systematic fire safety evaluation procedure in the protection of historic property. Fire Prot. Eng. 14, 19–25.
  • [6] Dağdeviren, M., Yüksel, I., (2008). Developing a fuzzy analytic hierarchy process (AHP) model for behavior-based safety management. Information Sciences: an International Journal, 178 (6), 1717-1733
  • [7] Guozhong, Z., Neng, Z., Zhe, T., Ying, C., Bingul, S., (2012). Application of a trapezoidal fuzzy AHP method for work safety evaluation and early warning rating of hot and humid environments. Safety Science, 50(2), 228-239
  • [8] Gülsün, B., Yılmaz, F., (2016) Çalışma ortamına uygun zemin yapısının çok kriterli karar verme yöntemi (AHP) ile seçimi. Uluslararası Hakemli İş Güvenliği ve Çalışan Sağlığı Dergisi, s. 41-43
  • [9] Hatami-Marbini, A., Tavana, M., Moradi, M., Kangi, F., (2013). A fuzzy group electre method for safety and health assessment in hazardous waste recycling facilities. Safety Science, 51, 414-426
  • [10] Hassanain, M. A., Hafeez, M. A., Sanni-Anibire, M. O., (2017) Ranking system for fire safety performance of student housing facilities. Safety Science, 92, 116-127
  • [11] Huang, Y.F., Hsu, K. H., Chein, P.S., Dong, S.H., (2011). Discussing performance index of human resource valuation with AHP-occupational safety section in T company in Taiwan as the case study. Information Technology Journal, 10(3), 549-556
  • [12]İBB. (2018), 2013-2018 İstatistikler. Erişim Tarihi: 07.04.2018, http://itfaiye.ibb.gov.tr
  • [13] İş Ekipmanlarının Kullanımında Sağlık ve Güvenlik Şartları Yönetmeliği (2013), T. C. Resmi Gazete, 28628, 25 Nisan 2013.
  • [14] İş Sağlığı Ve Güvenliği Kanunu (2012), T. C. Resmi Gazete, 28339, 30 Haziran 2012.
  • [15] Janackovic, G. L., (2013). Delphi-Fuzzy AHP ranking of the occupational safety community of practice performance indicators. Journal of Management and Marketing, 1(1), 9-16
  • [16] Janackovic, G.L., Savic, S.M., Stankovic, M.S., (2013). Selection and ranking of occupational safety indicators based on Fuzzy-Ahp: a case study in road construction companies. South African Journal of Industrial Engineering, 24(3), 175-189
  • [17] Kim, D.I., Yoo, W.S., Cho, H., Kang, K.I., (2014). A fuzzy AHP-based decision support model for quantifying failure risk of excavation work. KSCE Journal of Civil Engineering, 18(7), 1966-1976
  • [18] Kılıç, A., (2013). Yangın Riski. Yangın Ve Güvenlik Dergisi, 158, 8-10
  • [19] Lo, S.M., (1998). A building safety inspection system for fire safety issues in existing buildings. Struct. Surv. 16 (4), 209–217.
  • [20] Lo, S.M., (1999). A fire safety assessment system for existing buildings. Fire Technol. 35 (2), 131–152.
  • [21] Manchester, S., Bardos, P., (2004). Fire Hazards from Self-Heating at Compositing and Waste Processing Sites. Environmental Technology Limited, Building Research Establishment Limited, Watford, UK, p. 9.
  • [22] Novin, V., Givehchi, S., Hoveidi, H., (2014). A novel fuzzy-based modeling for route safety management of hazardous materials. International Journal of Scientific & Engineering Research, 5(8), 277-282
  • [23] NFPA – l0lA, (1995). Guide on Alternative Approaches to Life Safety. National Fire Protection Association, Quincy.
  • [24] Oturakçı, M., Dağsuyu C., (2017). Risk Değerlendirmesinde Bulanık Fine‐Kinney Yöntemi ve Uygulaması, Karaelmas İş Sağlığı ve Güvenliği Dergisi, 1, 17-25 [25] Özdemir, A.I., Seçme, N., (2009). İki aşamalı stratejik tedarikçi seçiminin bulanık TOPSIS yöntemi ile analizi. Afyon Kocatepe Üniversitesi İ.İ.B.F. Dergisi, 10(2), 79-112
  • [26] Özkan, E., Demirel, F., (2002). Çelik yapı bileşenlerinde alınması gereken yangın güvenlik önlemleri ve bir uygulama örneği (Yüksek Lisans Tezi). https://www.tk.org.tr veri tabanından erişildi (07.04.2018)
  • [27] Prete, L.D., Cefarelli, G., Nigro, E., (2016) "Calibration of a simplified method for fire resistance assessment of partially encased composite beams", Journal of Structural Fire Engineering, Vol. 7 Issue: 3, pp.262-282
  • [28] Saaty, T.L., (1980). Multi Criteria Decision Making: The Analytical Hierarchy Process. McGraw-Hill, New York.
  • [29] Saaty, L.T., (1990). How to make a decision: the analytic hierarchy process. European Journal of Operational Research, 48, 9-26
  • [30] Santos, F.J.J., Camargo, H.A. (2010) Fuzzy systems for multicriteria decisionmaking. Clei Electronic Journal, 13(3), 1-8
  • [31] Tadic, D., Djapan, M., (2012). A fuzzy model for assessing risk of occupational safety in the processing industry International Journal of Occupational Safety and Ergonomics, 18(2), 115–126
  • [32] Tilehnoel, M.H., Aref, M.A., (2013). Temporal dimension evaluation by fuzzy TOPSIS method. International Journal of Architecture and Urban Development, 3(2), 55-60
  • [33] Ünal, Ö.F., (2011). Analitik hiyerarşi prosesi ve personel seçimi alanında uygulamaları. Akdeniz Üniversitesi Uluslararası Alanya İşletme Fakültesi Dergisi, 3(2), 18-38
  • [34] Yarahmadi, R., (2012). Evaluating and prioritizing of performance indicators of health, safety, and environment using fuzzy TOPSIS. African Journal of Business Management, 6(5), 20-26
  • [35] Yılmaz, F., Alp, S., (2016). Underlying factors of occupational accidents: the case of Turkey. Open Journal of Safety Science and Technology, 6, 1-10
  • [36] Zhao, C.M., Lo, S.M., Lu, J.A., Fang, Z., 2004. A simulation approach for ranking of fire safety attributes of existing buildings. Fire Saf. J. 39 (7), 557–579.
  • [37] Watts, J.M., (1995). Fire risk ranking. İçinde: SFPE Handbook of Fire Prevention Engineering. National Fire Protection Association, Quincy, Mass., USA, s. 5–26.
  • [38] Watts, J.M., (1997a). Analysis of the NFPA fire safety evaluation system for business occupancies. Fire Technol. 33 (3), 276–282.
  • [39] Watts, J.M., 1997b. Fire risk assessment using multiattribute evaluation. In: Hasemi, Y. (Ed.), Proceedings of the 5th International Symposium on Fire Safety Science. Elsevier, London, pp. 679–690.
  • [40] Watts Jr., J.M., Kaplan, M.E., (2001). Fire risk index for historic buildings. Fire technology 37 (2), 167–180.
  • [41] Wong, L.T., Lau, S.W., 2007. A fire safety evaluation system for prioritizing fire improvements in old high-rise buildings in Hong Kong. Fire Technol. 43 (3), 233–249.
There are 40 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Occupational Health and Safety
Authors

Ahmetcan Alkoç

Fatih Yılmaz

Publication Date June 29, 2018
Submission Date April 15, 2018
Published in Issue Year 2018 Volume: 2 Issue: 1

Cite

IEEE A. Alkoç and F. Yılmaz, “İmalat Tesislerinde Yangın Tesisatlarından Kaynaklanan Risklerin Sıralama Yöntemi İle Analizi”, kisgd, vol. 2, no. 1, pp. 1–11, 2018, doi: 10.33720/kisgd.415363.