Research Article
BibTex RIS Cite

A Fail Safe Electronic Card Design for Lifts

Year 2023, , 130 - 154, 30.06.2023
https://doi.org/10.34186/klujes.1250928

Abstract

With the impact of digitalization and Industry 4.0, many systems used in our daily lives include more electronic and programmable electronic components. This increased complexity has also revealed many safety risks. The international community has put forward many standards and regulations to make these systems safer. At this point, the IEC 61508 standard identifies the hardware and software requirements for a safety-related system to be implemented. Over time, many sectoral standards have been derived from IEC 61508. In this study, we focus on lifts, which the city dweller uses regularly, and the reliability of these systems. In this context, it is aimed to control the opening of the doors that provide access to the lift shaft with a safe and reliable electronic card. The aim is to reach the required safety integrity level in the electrical safety equipment table in EN 81-20 standard by designing and implementing the electronic system. The designed electronic card is expected to track the positions of the doors securely and produce appropriate notifications. In this context, a SIL 3 level system according to IEC 61508 with a 1oo2 safety architecture has been designed and implemented.

References

  • CENELEC/IEC, “EN 61508 - Functional safety of electrical/electronic/programmable electronic safety-related systems,” 2010.
  • CENELEC/IEC, “EN 81-50 - Safety rules for the construction and installation of lifts. Examinations and tests Design rules, calculations, examinations and tests of lift components,” 2020.
  • Flesch B. F., Brand B., Figueiredo R. M. de, Prade L. R., and Silva M. Rosa Da, “Proposal of a functional safety methodology applied to fault tolerance in FPGA applications,” in LATS 2016 - 17th IEEE Latin-American Test Symposium, 2016. doi: 10.1109/LATW.2016.7483331.
  • Meany T., “Functional safety for integrated circuits used in variable speed drives,” in PCIM Europe 2016; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, 2016.
  • Kim S. D., Kim T. O., and Kang G. H., “A study on the application of functional safety for PMS of electric propulsion ships,” in 2016 IEEE Transportation Electrification Conference and Expo, Asia-Pacific, ITEC Asia-Pacific 2016, 2016. doi: 10.1109/ITEC-AP.2016.7512958.
  • Gradwell B., “Arc Flash\Blast, Safe by Design a Safety Integrity Level approach (SIL),” in IEEE IAS Electrical Safety Workshop, 2017. doi: 10.1109/ESW.2017.7914852.
  • Sinha P., “Architectural design and reliability analysis of a fail-operational brake-by-wire system from ISO 26262 perspectives,” Reliab Eng Syst Saf, vol. 96, no. 10, 2011, doi: 10.1016/j.ress.2011.03.013.
  • Kilian P. et al., “Principle Guidelines for Safe Power Supply Systems Development,” IEEE Access, vol. 9, 2021, doi: 10.1109/ACCESS.2021.3100711.
  • Pancik J., Drgona P., and Paskala M., “Functional Safety For Developing Of Mechatronic Systems - Electric Parking Brake Case Study,” Communications - Scientific Letters of the University of Žilina, vol. 22, no. 4, 2020, doi: 10.26552/com.C.2020.4.134-143.
  • Wang H. and Blaabjerg F., “Power Electronics Reliability: State of the Art and Outlook,” IEEE J Emerg Sel Top Power Electron, vol. 9, no. 6, 2021, doi: 10.1109/JESTPE.2020.3037161.
  • Sandelic M., Peyghami S., Sangwongwanich A., and Blaabjerg F., “Reliability aspects in microgrid design and planning: Status and power electronics-induced challenges,” Renewable and Sustainable Energy Reviews, vol. 159. 2022. doi: 10.1016/j.rser.2022.112127.
  • Soury A., Genon-Catalot D., and Thiriet J. M., “New lift safety architecture to meet PESSRAL requirements,” in 2015 2nd World Symposium on Web Applications and Networking, WSWAN 2015, 2015. doi: 10.1109/WSWAN.2015.7210314.
  • CENELEC/IEC, “EN 81-20 - Safety rules for the construction and installation of lifts. Lifts for the transport of persons and goods Passenger and goods passenger lifts,” 2020.
  • IEC/ISO, “IEC 31010 - Risk management - Risk assessment techniques,” 2019.
  • CENELEC/IEC, “EN 81-50 - Safety rules for the construction and installation of lifts. Examinations and tests Design rules, calculations, examinations and tests of lift components,” 2020.
  • Rausand M., Reliability of Safety-Critical Systems: Theory and Applications, vol. 9781118112724. 2014. doi: 10.1002/9781118776353.
  • Pham H., Reliability and Risk Issues in Large Scale Safety-critical Digital Control Systems. 2009. doi: 10.1007/978-1-84800-384-2.
  • Rausand M. and Haugen S., Risk assessment: Theory, methods, and applications. 2020. doi: 10.1002/9781119377351.
  • Rausand M., Reliability of Safety-Critical Systems: Theory and Applications, vol. 9781118112724. 2014. doi: 10.1002/9781118776353.
  • CENELEC/ISO, “IEC 60812 - Failure modes and effects analysis (FMEA and FMECA),” 2018.
  • CENELEC/IEC, “IEC 62380 - Reliability data handbook Universal model for reliability prediction of electronics components, PCBs and equipment,” 2005.

ASANSÖRLER İÇİN HATADA GÜVENLİ BİR ELEKTRONİK KART TASARIMI

Year 2023, , 130 - 154, 30.06.2023
https://doi.org/10.34186/klujes.1250928

Abstract

Dijitalleşme ve endüstri 4.0’ın etkisi ile gündelik hayatımızda kullandığımız birçok sistemde artık daha fazla elektronik ve programlanabilir elektronik bileşen bulunmaktadır. Bu artan karmaşıklık beraberinde birçok güvenlik riskini de açığa çıkartmıştır. İlgili sistemleri güvenli kılmak adına uluslararası camia birçok standart ve regülasyon ortaya koymuştur. Bu noktada IEC 61508 standardı güvenlikle ilgili sistemin hayata geçirebilmek için donanımsal ve yazılımsal açıdan gerekli özellikleri tanılamaktadır. Zaman içinde IEC 61508 temel alınarak birçok sektörel standart türetilmiştir. Bu çalışmada şehir insanının gündelik hayatında düzenli aralıklar ile kullandığı asansör sistemleri ve bu sistemlerin güvenilirliği üzerinde durulmuştur. Bu kapsamda asansör kuyusuna erişim sağlayan kapıların açılmasının kontrolü güvenli bir elektronik kart ile gerçeklenmesi hedeflenmiştir. Bu tasarlanan ve hayata geçirilen elektronik sistemin EN 81-20 standardında bulunan elektrik güvenlik tertibatları tablosundaki gerekli emniyet bütünlük seviyesine ulaşılması amaçlanmıştır. Tasarlanan elektronik kart kapıların pozisyonlarını güvenli bir şekilde takip etmesi ve uygun bildirimi üretmesi hedeflenmiştir. Bu kapsamda 1oo2 güvenlik mimarisine sahip IEC 61508’e göre SIL 3 seviyesinde bir sistem tasarlanmış ve hayata geçirilmiştir.

References

  • CENELEC/IEC, “EN 61508 - Functional safety of electrical/electronic/programmable electronic safety-related systems,” 2010.
  • CENELEC/IEC, “EN 81-50 - Safety rules for the construction and installation of lifts. Examinations and tests Design rules, calculations, examinations and tests of lift components,” 2020.
  • Flesch B. F., Brand B., Figueiredo R. M. de, Prade L. R., and Silva M. Rosa Da, “Proposal of a functional safety methodology applied to fault tolerance in FPGA applications,” in LATS 2016 - 17th IEEE Latin-American Test Symposium, 2016. doi: 10.1109/LATW.2016.7483331.
  • Meany T., “Functional safety for integrated circuits used in variable speed drives,” in PCIM Europe 2016; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, 2016.
  • Kim S. D., Kim T. O., and Kang G. H., “A study on the application of functional safety for PMS of electric propulsion ships,” in 2016 IEEE Transportation Electrification Conference and Expo, Asia-Pacific, ITEC Asia-Pacific 2016, 2016. doi: 10.1109/ITEC-AP.2016.7512958.
  • Gradwell B., “Arc Flash\Blast, Safe by Design a Safety Integrity Level approach (SIL),” in IEEE IAS Electrical Safety Workshop, 2017. doi: 10.1109/ESW.2017.7914852.
  • Sinha P., “Architectural design and reliability analysis of a fail-operational brake-by-wire system from ISO 26262 perspectives,” Reliab Eng Syst Saf, vol. 96, no. 10, 2011, doi: 10.1016/j.ress.2011.03.013.
  • Kilian P. et al., “Principle Guidelines for Safe Power Supply Systems Development,” IEEE Access, vol. 9, 2021, doi: 10.1109/ACCESS.2021.3100711.
  • Pancik J., Drgona P., and Paskala M., “Functional Safety For Developing Of Mechatronic Systems - Electric Parking Brake Case Study,” Communications - Scientific Letters of the University of Žilina, vol. 22, no. 4, 2020, doi: 10.26552/com.C.2020.4.134-143.
  • Wang H. and Blaabjerg F., “Power Electronics Reliability: State of the Art and Outlook,” IEEE J Emerg Sel Top Power Electron, vol. 9, no. 6, 2021, doi: 10.1109/JESTPE.2020.3037161.
  • Sandelic M., Peyghami S., Sangwongwanich A., and Blaabjerg F., “Reliability aspects in microgrid design and planning: Status and power electronics-induced challenges,” Renewable and Sustainable Energy Reviews, vol. 159. 2022. doi: 10.1016/j.rser.2022.112127.
  • Soury A., Genon-Catalot D., and Thiriet J. M., “New lift safety architecture to meet PESSRAL requirements,” in 2015 2nd World Symposium on Web Applications and Networking, WSWAN 2015, 2015. doi: 10.1109/WSWAN.2015.7210314.
  • CENELEC/IEC, “EN 81-20 - Safety rules for the construction and installation of lifts. Lifts for the transport of persons and goods Passenger and goods passenger lifts,” 2020.
  • IEC/ISO, “IEC 31010 - Risk management - Risk assessment techniques,” 2019.
  • CENELEC/IEC, “EN 81-50 - Safety rules for the construction and installation of lifts. Examinations and tests Design rules, calculations, examinations and tests of lift components,” 2020.
  • Rausand M., Reliability of Safety-Critical Systems: Theory and Applications, vol. 9781118112724. 2014. doi: 10.1002/9781118776353.
  • Pham H., Reliability and Risk Issues in Large Scale Safety-critical Digital Control Systems. 2009. doi: 10.1007/978-1-84800-384-2.
  • Rausand M. and Haugen S., Risk assessment: Theory, methods, and applications. 2020. doi: 10.1002/9781119377351.
  • Rausand M., Reliability of Safety-Critical Systems: Theory and Applications, vol. 9781118112724. 2014. doi: 10.1002/9781118776353.
  • CENELEC/ISO, “IEC 60812 - Failure modes and effects analysis (FMEA and FMECA),” 2018.
  • CENELEC/IEC, “IEC 62380 - Reliability data handbook Universal model for reliability prediction of electronics components, PCBs and equipment,” 2005.
There are 21 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Issue
Authors

Özgür Turay Kaymakçı 0000-0001-7553-6887

Furkan Karabayır 0000-0002-7375-6998

Publication Date June 30, 2023
Published in Issue Year 2023

Cite

APA Kaymakçı, Ö. T., & Karabayır, F. (2023). ASANSÖRLER İÇİN HATADA GÜVENLİ BİR ELEKTRONİK KART TASARIMI. Kirklareli University Journal of Engineering and Science, 9(1), 130-154. https://doi.org/10.34186/klujes.1250928