Research Article
BibTex RIS Cite

NOTES ON ESPECIAL CONTINUED FRACTION EXPANSIONS AND REAL QUADRATIC NUMBER FIELDS

Year 2016, Volume: 2 Issue: 1, 74 - 89, 30.06.2016

Abstract

The primary purpose of this paper is to classify real quadratic fields Q(√d) which

include the form of specific continued fraction expansion of integral basis element 𝑤𝑑 for

arbitrary period length ℓ = ℓ(𝑑) where d ≡ 2,3(mod4) is a square free positive integers.

Furthermore, the present paper deals with determining new certain parametric

formulas of fundamental unit............ and Yokoi’s d-invariants nd , md for

such real quadratic fields. All results are also supported by several numerical tabular forms.

References

  • [1] R.A. Mollin, “Quadratics”, Boca Rato, F.L, CRC Press, 1996.
  • [2] C.D. Olds, “Continued Functions” ,New York: Random House, 1963.
  • [3] O. Perron, “Die Lehre von den Kettenbrüchen” ,New York: Chelsea, Reprint from Teubner Leipzig, 1950.
  • [4] R. Sasaki, “A characterization of certain real quadratic fields”, Proc. Japan Acad, 62, Ser. A, 1986, no. 3, 97-100.
  • [5] W. Sierpinski, “Elementary Theory of Numbers”, Warsaw: Monografi Matematyczne, 1964.
  • [6] K.Tomita, “Explicit representation of fundamental units of some quadratic fields”, Proc. Japan Acad., 71, Ser. A, 1995, no. 2, 41-43.
  • [7] K. Tomita and K. Yamamuro, “Lower bounds for fundamental units of real quadratic fields”, Nagoya Math. J, Vol.166, 2002, 29-37.
  • [8] K.S. Williams and N. Buck, “Comparison of the lengths of the continued fractions of √D and 1/2(1 + √D)”, Proc. Amer. Math. Soc., 120 no. 4, 1994, 995-1002.
  • [9] H. Yokoi, “New invariants and class number problem in real quadratic fields”, Nagoya Math. J, 132, 1993, 175-197.
Year 2016, Volume: 2 Issue: 1, 74 - 89, 30.06.2016

Abstract

References

  • [1] R.A. Mollin, “Quadratics”, Boca Rato, F.L, CRC Press, 1996.
  • [2] C.D. Olds, “Continued Functions” ,New York: Random House, 1963.
  • [3] O. Perron, “Die Lehre von den Kettenbrüchen” ,New York: Chelsea, Reprint from Teubner Leipzig, 1950.
  • [4] R. Sasaki, “A characterization of certain real quadratic fields”, Proc. Japan Acad, 62, Ser. A, 1986, no. 3, 97-100.
  • [5] W. Sierpinski, “Elementary Theory of Numbers”, Warsaw: Monografi Matematyczne, 1964.
  • [6] K.Tomita, “Explicit representation of fundamental units of some quadratic fields”, Proc. Japan Acad., 71, Ser. A, 1995, no. 2, 41-43.
  • [7] K. Tomita and K. Yamamuro, “Lower bounds for fundamental units of real quadratic fields”, Nagoya Math. J, Vol.166, 2002, 29-37.
  • [8] K.S. Williams and N. Buck, “Comparison of the lengths of the continued fractions of √D and 1/2(1 + √D)”, Proc. Amer. Math. Soc., 120 no. 4, 1994, 995-1002.
  • [9] H. Yokoi, “New invariants and class number problem in real quadratic fields”, Nagoya Math. J, 132, 1993, 175-197.
There are 9 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Issue
Authors

Özen Özer This is me

Publication Date June 30, 2016
Published in Issue Year 2016 Volume: 2 Issue: 1

Cite

APA Özer, Ö. (2016). NOTES ON ESPECIAL CONTINUED FRACTION EXPANSIONS AND REAL QUADRATIC NUMBER FIELDS. Kirklareli University Journal of Engineering and Science, 2(1), 74-89.