Bir Gama Spektrometresinde Farklı Sintilator ve Ana Yükseltici Kullanımının Dedeksiyon Performansına Etkisinin Araştırılması
Year 2025,
Volume: 11 Issue: 1, 138 - 158, 30.06.2025
Buket Canbaz Öztürk
,
Cüneyt Çeliktaş
Abstract
Bu çalışmada, hızlı cevap süresine ve yüksek ışık verimine sahip CsI(Tl) sintilasyon kristali, yeni nesil bir fotoçoğaltıcı tüpe montajlanarak yeni bir radyasyon dedektör sistemi tasarlanmıştır. Söz konusu dedektör, gama spektroskopisi uygulamalarında kullanılmak üzere bir spektrometre sistemine entegre edilmiştir. Dedeksiyon performansının karşılaştırmalı analizini gerçekleştirmek amacıyla, NaI(Tl) sintilasyon dedektörü de aynı spektrometre altyapısında ve aynı fiziksel ortam koşullarında test edilmiştir. Deneysel çalışmalarda, farklı enerjilerde gama fotonları yayan iki farklı standart radyasyon kaynağı, (Cs-137 ve Co-60) kullanılarak her iki dedektörün net enerji spektrumları elde edilmiştir. Spektral çözünürlükleri optimize etmek amacıyla, iki farklı ana yükseltici modeli (ORTEC 451 ve 485) tasarlanan spektrometre sisteminde kullanılmış ve bu yükselticilerin enerji spektrumu üzerindeki etkileri incelenmiştir. Elde edilen spektrumlar, enerji çözünürlüğü ve dedeksiyon verimliliği gibi temel nicelikler açısından karşılaştırılmıştır. Sonuçlar, 451 model ana yükseltici ve CsI(Tl) kristalli kullanılarak oluşturulan spektrometrenin, özellikle yüksek sayım oranı gerektiren uygulamalarda alternatif bir çözüm potansiyeline sahip olduğunu göstermiştir.
Ethical Statement
Yazarlar arasında çıkar çatışması bulunmamaktadır.
Supporting Institution
Bu çalışma, Ege Üniversitesi Aliye Üster Vakfı tarafından desteklenmiştir.
Project Number
Ege Üniversitesi Aliye Üster Vakfı
References
- Birks, J. B. (1964). The theory and practice of scintillation counting. (D. W. Fry, L. Costrell, & K. Kandiah, Eds.). Pergamon Press Oxrord.
- Dietrich, H. B., & Murray, R. B. (1972). Kinetics of the diffusion of self-trapped holes in alkali halide scintillators. Journal of Luminescence, 5, 155–170.
- Heath, R. L., Hofstadter, R., & Hughes, E. B. (1979). Inorganic scintillators. A review of techniques and applications. Nuclear Instruments and Methods, 162, 431–476. https://doi.org/10.1016/0029-554X(79)90728-6
- http1: (Erişim Tarihi: 13/05/2025). http://tr.kinheng-crystal.com/csitl-scintillator-csitl-crystal-csitl-scintillation-crystal-product/.
- http2: (Erişim Tarihi: 13/05/2025). http://tr.kinheng-crystal.com/naitl-scintillator-naitl-crystal-naitl-scintillation-crystal-product/.
- http3: (Erişim Tarihi: 13/05/2025). https://www.scientificlib.com/en/Spectroscopy/GammaRaySpectroscopy.html.
- Kaufman, R. G., Hadley, W. B., & Hersh, H. N. (1970). The scintillation mechanism in thallium doped alkali halides. IEEE Transactions on Nuclear Science, 17, 82–87.
- Knoll, G. F. (1999). Radiation Detection and Measurement. John Wiley and Sons Inc., U.S.A.
- Leo, W. R. (1987). Techniques for Nuclear and Particle Physics Experiments. Springer–Verlag, Berlin Heidelberg, Germany.
- Mouhti, I., McFee, J. E., Drissi El-Bouzaidi, M., El Qars, J., Ouacha, E. H., Assakrar, M., & Bellioua, M. (2025). Experimental validation of absolute full energy peak efficiency and energy resolution of NaI(Tl), CsI(Tl), BGO, YAP(Ce) and CeBr3 scintillation detectors modeled with Monte Carlo codes. Radiation Physics and Chemistry, 231, 112603. https://doi.org/10.1016/j.radphyschem.2025.112603.
- Parker, A. J., Bandala, M., Croft, S., Crouch, L., Dunphy, R. D., Hutchinson, D., … Joyce, M. J. (2024). Enrichment measurement by passive γ-ray spectrometry of uranium dioxide fuel pellets using a europium-doped, strontium iodide scintillator. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1062. https://doi.org/10.1016/j.nima.2024.169191.
- Pereira, M. C. C., Filho, T. M., Lopes, V. M., Berretta, J. R., & Cardenas, J. P. N. (2015). Scintilation response of CsI:Tl crystal under neutron, gamma, alpha particles and beta excitations. In International Nuclear Atlantic Conference, SP, Brasil.
- Santomé, A. C. H., Sanjurjo-Sánchez, J., & Alves, C. (2025). Use of hand-held gamma-ray spectrometry to assess decay of granite ashlars in historical buildings of NW Spain (Barbanza, Galicia). Journal of Cultural Heritage, 71, 20–29. https://doi.org/10.1016/j.culher.2024.10.019
- Tariwong, Y., Kim, H. J., Quang, N. D., Khan, A., Daniel, D. J., Limsuwan, P., … Kaewkhao, J. (2025). Ca co-doped CsI(Tl) crystal scintillator for γ- and X-ray detecting applications. Radiation Physics and Chemistry, 226, 112241. https://doi.org/10.1016/j.radphyschem.2024.112241
- Tsoulfanidis, N. (1995). Measurements and Detection of Radiation (2nd ed.). Taylor & Francis: London, UK.
- Yang, H., Lai, Z., Wang, W., Qi, H, Wang, S, Chen, J., Qin, J., Zhang, H., Fang, Z., Xu, H., Xu, R., & Zhu, Y. (2025). Growth of high-quality, large-size CsI and CsI(Tl) scintillator single crystals via continuous-mass transport process method. Optical Materials, 164, 117065. https://doi.org/10.1016/j.optmat.2025.117065
Investigation of the Effect of Using Different Scintillators and Main Amplifiers on Detection Performance in a Gamma Spectrometer
Year 2025,
Volume: 11 Issue: 1, 138 - 158, 30.06.2025
Buket Canbaz Öztürk
,
Cüneyt Çeliktaş
Abstract
In this study, a novel radiation detector system was designed by coupling a CsI(Tl) scintillation crystal—characterized by its fast response time and high light yield—with a next-generation photomultiplier tube. The proposed detector was integrated into a spectrometer system for applications in gamma-ray spectroscopy. To conduct a comparative analysis of detection performance, a NaI(Tl) scintillation detector was also tested within the same spectrometric setup and under identical physical environmental conditions. In the experimental phase, two standard radioactive sources (Cs-137 and Co-60), which emit gamma photons at different energies, were used to obtain the net energy spectra of both detectors. To optimize spectral resolution, two different main amplifier models (ORTEC 451 and ORTEC 485) were employed in the spectrometer system, and the effects of these amplifiers on the resulting energy spectra were analyzed. The acquired spectra were compared in terms of key parameters such as energy resolution and detection efficiency. The results demonstrated that the spectrometer system incorporating the ORTEC 451 main amplifier and the CsI(Tl) crystal offers a viable alternative, particularly for applications requiring high count rates.
Project Number
Ege Üniversitesi Aliye Üster Vakfı
References
- Birks, J. B. (1964). The theory and practice of scintillation counting. (D. W. Fry, L. Costrell, & K. Kandiah, Eds.). Pergamon Press Oxrord.
- Dietrich, H. B., & Murray, R. B. (1972). Kinetics of the diffusion of self-trapped holes in alkali halide scintillators. Journal of Luminescence, 5, 155–170.
- Heath, R. L., Hofstadter, R., & Hughes, E. B. (1979). Inorganic scintillators. A review of techniques and applications. Nuclear Instruments and Methods, 162, 431–476. https://doi.org/10.1016/0029-554X(79)90728-6
- http1: (Erişim Tarihi: 13/05/2025). http://tr.kinheng-crystal.com/csitl-scintillator-csitl-crystal-csitl-scintillation-crystal-product/.
- http2: (Erişim Tarihi: 13/05/2025). http://tr.kinheng-crystal.com/naitl-scintillator-naitl-crystal-naitl-scintillation-crystal-product/.
- http3: (Erişim Tarihi: 13/05/2025). https://www.scientificlib.com/en/Spectroscopy/GammaRaySpectroscopy.html.
- Kaufman, R. G., Hadley, W. B., & Hersh, H. N. (1970). The scintillation mechanism in thallium doped alkali halides. IEEE Transactions on Nuclear Science, 17, 82–87.
- Knoll, G. F. (1999). Radiation Detection and Measurement. John Wiley and Sons Inc., U.S.A.
- Leo, W. R. (1987). Techniques for Nuclear and Particle Physics Experiments. Springer–Verlag, Berlin Heidelberg, Germany.
- Mouhti, I., McFee, J. E., Drissi El-Bouzaidi, M., El Qars, J., Ouacha, E. H., Assakrar, M., & Bellioua, M. (2025). Experimental validation of absolute full energy peak efficiency and energy resolution of NaI(Tl), CsI(Tl), BGO, YAP(Ce) and CeBr3 scintillation detectors modeled with Monte Carlo codes. Radiation Physics and Chemistry, 231, 112603. https://doi.org/10.1016/j.radphyschem.2025.112603.
- Parker, A. J., Bandala, M., Croft, S., Crouch, L., Dunphy, R. D., Hutchinson, D., … Joyce, M. J. (2024). Enrichment measurement by passive γ-ray spectrometry of uranium dioxide fuel pellets using a europium-doped, strontium iodide scintillator. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1062. https://doi.org/10.1016/j.nima.2024.169191.
- Pereira, M. C. C., Filho, T. M., Lopes, V. M., Berretta, J. R., & Cardenas, J. P. N. (2015). Scintilation response of CsI:Tl crystal under neutron, gamma, alpha particles and beta excitations. In International Nuclear Atlantic Conference, SP, Brasil.
- Santomé, A. C. H., Sanjurjo-Sánchez, J., & Alves, C. (2025). Use of hand-held gamma-ray spectrometry to assess decay of granite ashlars in historical buildings of NW Spain (Barbanza, Galicia). Journal of Cultural Heritage, 71, 20–29. https://doi.org/10.1016/j.culher.2024.10.019
- Tariwong, Y., Kim, H. J., Quang, N. D., Khan, A., Daniel, D. J., Limsuwan, P., … Kaewkhao, J. (2025). Ca co-doped CsI(Tl) crystal scintillator for γ- and X-ray detecting applications. Radiation Physics and Chemistry, 226, 112241. https://doi.org/10.1016/j.radphyschem.2024.112241
- Tsoulfanidis, N. (1995). Measurements and Detection of Radiation (2nd ed.). Taylor & Francis: London, UK.
- Yang, H., Lai, Z., Wang, W., Qi, H, Wang, S, Chen, J., Qin, J., Zhang, H., Fang, Z., Xu, H., Xu, R., & Zhu, Y. (2025). Growth of high-quality, large-size CsI and CsI(Tl) scintillator single crystals via continuous-mass transport process method. Optical Materials, 164, 117065. https://doi.org/10.1016/j.optmat.2025.117065