Review
BibTex RIS Cite

Year 2025, Volume: 13 Issue: 4, 1318 - 1370, 01.12.2025
https://doi.org/10.36306/konjes.1583103

Abstract

References

  • S. A. Bhat and N.-F. Huang, “Big Data and AI Revolution in Precision Agriculture: Survey and Challenges,” IEEE Access, vol. 9, pp. 110209–110222, 2021, doi: 10.1109/ACCESS.2021.3102227.
  • C. Liu, D. Xu, X. Dong, and Q. Huang, “A review: Research progress of SERS-based sensors for agricultural applications,” Trends Food Sci Technol, vol. 128, pp. 90–101, 2022, doi: https://doi.org/10.1016/j.tifs.2022.07.012.
  • S. Mitchell, A. Weersink, and N. Bannon, “Adoption barriers for precision agriculture technologies in Canadian crop production,” Canadian Journal of Plant Science, vol. 101, no. 3, pp. 412–416, 2021, doi: 10.1139/cjps-2020-0234.
  • A. Monteiro, S. Santos, and P. Gonçalves, “Precision Agriculture for Crop and Livestock Farming—Brief Review,” Animals, vol. 11, no. 8, 2021, doi: 10.3390/ani11082345.
  • P. Zhang, Z. Guo, S. Ullah, G. Melagraki, A. Afantitis, and I. Lynch, “Nanotechnology and artificial intelligence to enable sustainable and precision agriculture,” Nat Plants, vol. 7, no. 7, pp. 864–876, 2021, doi: 10.1038/s41477-021-00946-6.
  • J. Heaton, “Ian Goodfellow, Yoshua Bengio, and Aaron Courville: Deep learning,” Genet Program Evolvable Mach, vol. 19, no. 1, pp. 305–307, 2018, doi: 10.1007/s10710-017-9314-z.
  • P. Tharani Pavithra and B. Baranidharan, “OSPS-MicroNet: a distilled knowledge micro-CNN network for detecting rice diseases,” Front Comput Sci, vol. Volume 6-2024, 2024, doi: 10.3389/fcomp.2024.1279810.
  • A. Balafoutis et al., “Precision Agriculture Technologies Positively Contributing to GHG Emissions Mitigation, Farm Productivity and Economics,” Sustainability, vol. 9, no. 8, 2017, doi: 10.3390/su9081339.
  • O. Hrynevych, M. Blanco Canto, and M. Jiménez García, “Tendencies of Precision Agriculture in Ukraine: Disruptive Smart Farming Tools as Cooperation Drivers,” Agriculture, vol. 12, no. 5, 2022, doi: 10.3390/agriculture12050698.
  • J. Zhang et al., “Challenges and opportunities in precision irrigation decision-support systems for center pivots,” May 01, 2021, IOP Publishing Ltd. doi: 10.1088/1748-9326/abe436.
  • M. Pyingkodi et al., “Sensor Based Smart Agriculture with IoT Technologies: A Review,” in 2022 International Conference on Computer Communication and Informatics (ICCCI), 2022, pp. 1–7. doi: 10.1109/ICCCI54379.2022.9741001.
  • Y. Ma, S. Chen, S. Ermon, and D. B. Lobell, “Transfer learning in environmental remote sensing,” Feb. 01, 2024, Elsevier Inc. doi: 10.1016/j.rse.2023.113924.
  • A. A. Aleissaee et al., “Transformers in Remote Sensing: A Survey,” Apr. 01, 2023, MDPI. doi: 10.3390/rs15071860.
  • A. Sharma, A. Prakash, S. Bhambota, and S. Kumar, “Investigations of precision agriculture technologies with application to developing countries,” Environ Dev Sustain, vol. 27, no. 7, pp. 15135–15171, 2025, doi: 10.1007/s10668-024-04572-y.
  • J. Vrchota, M. Pech, and I. Švepešová, “Precision Agriculture Technologies for Crop and Livestock Production in the Czech Republic,” Agriculture, vol. 12, no. 8, 2022, doi: 10.3390/agriculture12081080.
  • K. Khairudin et al., “Enhancing riverine load prediction of anthropogenic pollutants: Harnessing the potential of feed-forward backpropagation (FFBP) artificial neural network (ANN) models,” Results in Engineering, vol. 22, p. 102072, 2024, doi: https://doi.org/10.1016/j.rineng.2024.102072.
  • D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by back-propagating errors,” Nature, vol. 323, no. 6088, pp. 533–536, 1986, doi: 10.1038/323533a0.
  • Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998, doi: 10.1109/5.726791.
  • J. Schmidhuber, “Deep learning in neural networks: An overview,” Neural Networks, vol. 61, pp. 85–117, 2015, doi: https://doi.org/10.1016/j.neunet.2014.09.003.
  • M. S. Chughtai, I. Bibi, S. Karim, S. W. A. Shah, A. A. Laghari, and A. A. Khan, “Deep learning trends and future perspectives of web security and vulnerabilities,” Journal of High Speed Networks, vol. 30, no. 1, pp. 115–146, 2024, doi: 10.3233/JHS-230037.
  • M. S. Chughtai, I. Bibi, S. Karim, S. W. A. Shah, A. A. Laghari, and A. A. Khan, “Deep learning trends and future perspectives of web security and vulnerabilities,” Journal of High Speed Networks, vol. 30, no. 1, pp. 115–146, 2024, doi: 10.3233/JHS-230037.
  • P. K. Roy, A. K. Tripathy, T. H. Weng, and K. C. Li, “Securing social platform from misinformation using deep learning,” Comput Stand Interfaces, vol. 84, Mar. 2023, doi: 10.1016/j.csi.2022.103674.
  • L. Ilias and I. Roussaki, “Detecting malicious activity in Twitter using deep learning techniques,” Appl Soft Comput, vol. 107, Aug. 2021, doi: 10.1016/j.asoc.2021.107360.
  • S. S. S. Ramesh, J. F. Banu, V. R. Kavitha, and T. Ramesh, “Enhancing Intelligent Transportation Systems in Smart Cities Using VANETs With Deep Reinforcement Transfer Learning and Explainable AI,” Transactions on Emerging Telecommunications Technologies, vol. 36, no. 8, Aug. 2025, doi: 10.1002/ett.70219.
  • S. S. Band et al., “Novel Ensemble Approach of Deep Learning Neural Network (DLNN) Model and Particle Swarm Optimization (PSO) Algorithm for Prediction of Gully Erosion Susceptibility,” Sensors, vol. 20, no. 19, 2020, doi: 10.3390/s20195609.
  • I. Pacal et al., “A systematic review of deep learning techniques for plant diseases,” Artif Intell Rev, vol. 57, no. 11, p. 304, 2024, doi: 10.1007/s10462-024-10944-7.
  • R. Archana and P. S. E. Jeevaraj, “Deep learning models for digital image processing: a review,” Artif Intell Rev, vol. 57, no. 1, p. 11, 2024, doi: 10.1007/s10462-023-10631-z.
  • D. Muthusamy and P. Palani, “Deep learning model using classification for diabetic retinopathy detection: an overview,” Artif Intell Rev, vol. 57, no. 7, p. 185, 2024, doi: 10.1007/s10462-024-10806-2.
  • M. Beniwal, A. Singh, and N. Kumar, “Forecasting multistep daily stock prices for long-term investment decisions: A study of deep learning models on global indices,” Eng Appl Artif Intell, vol. 129, p. 107617, 2024, doi: https://doi.org/10.1016/j.engappai.2023.107617.
  • S. Batool, M. H. Khan, and M. S. Farid, “An ensemble deep learning model for human activity analysis using wearable sensory data,” Appl Soft Comput, vol. 159, p. 111599, 2024, doi: https://doi.org/10.1016/j.asoc.2024.111599.
  • W. Ullah, A. Ullah, I. U. Haq, K. Muhammad, M. Sajjad, and S. W. Baik, “CNN features with bi-directional LSTM for real-time anomaly detection in surveillance networks,” Multimed Tools Appl, vol. 80, no. 11, pp. 16979–16995, 2021, doi: 10.1007/s11042-020-09406-3.
  • H. Almukhalfi, A. Noor, and T. H. Noor, “Traffic management approaches using machine learning and deep learning techniques: A survey,” Eng Appl Artif Intell, vol. 133, p. 108147, 2024, doi: https://doi.org/10.1016/j.engappai.2024.108147.
  • B. Xu and G. Yang, “Interpretability research of deep learning: A literature survey,” Information Fusion, vol. 115, p. 102721, 2025, doi: https://doi.org/10.1016/j.inffus.2024.102721.
  • B. Xu and G. Yang, “Interpretability research of deep learning: A literature survey,” Information Fusion, vol. 115, p. 102721, 2025, doi: https://doi.org/10.1016/j.inffus.2024.102721.
  • K. M. Hosny, A. Magdi, O. ElKomy, and H. M. Hamza, “Digital image watermarking using deep learning: A survey,” Comput Sci Rev, vol. 53, p. 100662, 2024, doi: https://doi.org/10.1016/j.cosrev.2024.100662.
  • A. Galli, E. Masciari, V. Moscato, and G. Sperlí, “A comprehensive Benchmark for fake news detection,” J Intell Inf Syst, vol. 59, no. 1, pp. 237–261, Aug. 2022, doi: 10.1007/s10844-021-00646-9.
  • H. Kheddar, M. Hemis, and Y. Himeur, “Automatic speech recognition using advanced deep learning approaches: A survey,” Information Fusion, vol. 109, p. 102422, 2024, doi: https://doi.org/10.1016/j.inffus.2024.102422.
  • M. Astani, M. Hasheminejad, and M. Vaghefi, “A diverse ensemble classifier for tomato disease recognition,” Comput Electron Agric, vol. 198, p. 107054, 2022, doi: https://doi.org/10.1016/j.compag.2022.107054.
  • S. Cho et al., “Plant growth information measurement based on object detection and image fusion using a smart farm robot,” Comput Electron Agric, vol. 207, p. 107703, 2023, doi: https://doi.org/10.1016/j.compag.2023.107703.
  • M. L. Ali and Z. Zhang, “The YOLO Framework: A Comprehensive Review of Evolution, Applications, and Benchmarks in Object Detection,” Computers, vol. 13, no. 12, 2024, doi: 10.3390/computers13120336.
  • U. Sirisha, S. P. Praveen, P. N. Srinivasu, P. Barsocchi, and A. K. Bhoi, “Statistical Analysis of Design Aspects of Various YOLO-Based Deep Learning Models for Object Detection,” International Journal of Computational Intelligence Systems, vol. 16, no. 1, p. 126, 2023, doi: 10.1007/s44196-023-00302-w.
  • A. J. Hati and R. R. Singh, “AI-Driven Pheno-Parenting: A Deep Learning Based Plant Phenotyping Trait Analysis Model on a Novel Soilless Farming Dataset,” IEEE Access, vol. 11, pp. 35298–35314, 2023, doi: 10.1109/ACCESS.2023.3265195.
  • R. P. Devanna et al., “In-Field Automatic Identification of Pomegranates Using a Farmer Robot,” Sensors, vol. 22, no. 15, 2022, doi: 10.3390/s22155821.
  • Y. Mu, T.-S. Chen, S. Ninomiya, and W. Guo, “Intact Detection of Highly Occluded Immature Tomatoes on Plants Using Deep Learning Techniques,” Sensors, vol. 20, no. 10, 2020, doi: 10.3390/s20102984.
  • E. C. Nnadozie, O. N. Iloanusi, O. A. Ani, and K. Yu, “Detecting Cassava Plants under Different Field Conditions Using UAV-Based RGB Images and Deep Learning Models,” Remote Sens (Basel), vol. 15, no. 9, 2023, doi: 10.3390/rs15092322.
  • M. Moraitis, K. Vaiopoulos, and A. T. Balafoutis, “Design and Implementation of an Urban Farming Robot,” Micromachines (Basel), vol. 13, no. 2, 2022, doi: 10.3390/mi13020250.
  • C. Zhou, H. Ye, D. Sun, J. Yue, G. Yang, and J. Hu, “An automated, high-performance approach for detecting and characterizing broccoli based on UAV remote-sensing and transformers: A case study from Haining, China,” International Journal of Applied Earth Observation and Geoinformation, vol. 114, p. 103055, 2022, doi: https://doi.org/10.1016/j.jag.2022.103055.
  • D. G. Pai, R. Kamath, and M. Balachandra, “Deep Learning Techniques for Weed Detection in Agricultural Environments: A Comprehensive Review,” IEEE Access, vol. 12, pp. 113193–113214, 2024, doi: 10.1109/ACCESS.2024.3418454.
  • I. A. Quiroz and G. H. Alférez, “Image recognition of Legacy blueberries in a Chilean smart farm through deep learning,” Comput Electron Agric, vol. 168, p. 105044, 2020, doi: https://doi.org/10.1016/j.compag.2019.105044.
  • P. Sajitha, A. D. Andrushia, N. Anand, and M. Z. Naser, “A review on machine learning and deep learning image-based plant disease classification for industrial farming systems,” J Ind Inf Integr, vol. 38, p. 100572, 2024, doi: https://doi.org/10.1016/j.jii.2024.100572.
  • Ndikumana JN, Lee U, Yoo JH, Yeboah S, Park SH, Lee TS, Yeoung YR and Kim HS (2024) Development of a deep-learning phenotyping tool for analyzing image-based strawberry phenotypes. Front. Plant Sci. 15:1418383. doi: 10.3389/fpls.2024.1418383
  • H. Shi, D. Shi, S. Wang, W. Li, H. Wen, and H. Deng, “Crop plant automatic detecting based on in-field images by lightweight DFU-Net model,” Comput Electron Agric, vol. 217, p. 108649, 2024, doi: https://doi.org/10.1016/j.compag.2024.108649.
  • J.-S. G. Kim, S. Moon, J. Park, T. Kim, and S. Chung, “Development of a machine vision-based weight prediction system of butterhead lettuce (Lactuca sativa L.) using deep learning models for industrial plant factory,” Front Plant Sci, vol. 15, Jun. 2024, doi: 10.3389/fpls.2024.1365266.
  • W. Ying, K. Hu, A. Ahmed, Z. Yi, J. Zhao, and H. Kang, “Accurate Fruit Phenotype Reconstruction via Geometry-Smooth Neural Implicit Surface,” Agriculture, vol. 14, no. 12, 2024, doi: 10.3390/agriculture14122325.
  • Y. Guo et al., “Plant Disease Identification Based on Deep Learning Algorithm in Smart Farming,” Discrete Dyn Nat Soc, vol. 2020, 2020, doi: 10.1155/2020/2479172.
  • N. Aishwarya, N. G. Praveena, S. Priyanka, and J. Pramod, “Smart farming for detection and identification of tomato plant diseases using light weight deep neural network,” Multimed Tools Appl, vol. 82, no. 12, pp. 18799–18810, 2023, doi: 10.1007/s11042-022-14272-2.
  • A. Wongchai, D. rao Jenjeti, A. I. Priyadarsini, N. Deb, A. Bhardwaj, and P. Tomar, “Farm monitoring and disease prediction by classification based on deep learning architectures in sustainable agriculture,” Ecol Modell, vol. 474, p. 110167, 2022, doi: https://doi.org/10.1016/j.ecolmodel.2022.110167.
  • M. H. Hamidon and T. Ahamed, “Detection of Tip-Burn Stress on Lettuce Grown in an Indoor Environment Using Deep Learning Algorithms,” Sensors, vol. 22, no. 19, 2022, doi: 10.3390/s22197251.
  • R. Sowmyalakshmi et al., “An Optimal Classification Model for Rice Plant Disease Detection,” Computers, Materials and Continua, vol. 68, no. 2, pp. 1751–1767, 2021, doi: https://doi.org/10.32604/cmc.2021.016825.
  • A. Elaraby, W. Hamdy, and M. Alruwaili, “Optimization of Deep Learning Model for Plant Disease Detection Using Particle Swarm Optimizer,” Computers, Materials and Continua, vol. 71, no. 2, pp. 4019–4031, 2021, doi: https://doi.org/10.32604/cmc.2022.022161.
  • L. Chen, X. Cui, and W. Li, “Meta-Learning for Few-Shot Plant Disease Detection,” Foods, vol. 10, no. 10, 2021, doi: 10.3390/foods10102441.
  • S. Janarthan, S. Thuseethan, S. Rajasegarar, and J. Yearwood, “P2OP—Plant Pathology on Palms: A deep learning-based mobile solution for in-field plant disease detection,” Comput Electron Agric, vol. 202, p. 107371, 2022, doi: https://doi.org/10.1016/j.compag.2022.107371.
  • T. Daniya and V. Srinivasan, “Shuffled shepherd social optimization based deep learning for rice leaf disease classification and severity percentage prediction,” Concurr Comput, vol. 35, no. 4, Feb. 2023, doi: 10.1002/cpe.7523.
  • M. P. Mathew and T. Y. Mahesh, “Leaf-based disease detection in bell pepper plant using YOLO v5,” Signal Image Video Process, vol. 16, no. 3, pp. 841–847, 2022, doi: 10.1007/s11760-021-02024-y.
  • P. Bansal, R. Kumar, and S. Kumar, “Disease Detection in Apple Leaves Using Deep Convolutional Neural Network,” Agriculture, vol. 11, no. 7, 2021, doi: 10.3390/agriculture11070617.
  • T. Tamilvizhi, R. Surendran, K. Anbazhagan, and K. Rajkumar, “Quantum Behaved Particle Swarm Optimization-Based Deep Transfer Learning Model for Sugarcane Leaf Disease Detection and Classification,” Math Probl Eng, vol. 2022, 2022, doi: 10.1155/2022/3452413.
  • Y. Borhani, J. Khoramdel, and E. Najafi, “A deep learning based approach for automated plant disease classification using vision transformer,” Sci Rep, vol. 12, no. 1, p. 11554, 2022, doi: 10.1038/s41598-022-15163-0.
  • S. Nalini et al., “Paddy Leaf Disease Detection Using an Optimized Deep Neural Network,” Computers, Materials and Continua, vol. 68, no. 1, pp. 1117–1128, 2021, doi: https://doi.org/10.32604/cmc.2021.012431.
  • R. Sharma et al., “Plant Disease Diagnosis and Image Classification Using Deep Learning,” Computers, Materials and Continua, vol. 71, no. 2, pp. 2125–2140, 2021, doi: https://doi.org/10.32604/cmc.2022.020017.
  • J. V Tembhurne, S. M. Gajbhiye, V. R. Gannarpwar, H. R. Khandait, P. R. Goydani, and T. Diwan, “Plant disease detection using deep learning based Mobile application,” Multimed Tools Appl, vol. 82, no. 18, pp. 27365–27390, 2023, doi: 10.1007/s11042-023-14541-8.
  • C. G. Simhadri and H. K. Kondaveeti, “Automatic Recognition of Rice Leaf Diseases Using Transfer Learning,” Agronomy, vol. 13, no. 4, 2023, doi: 10.3390/agronomy13040961.
  • I. Abbas, J. Liu, M. Amin, A. Tariq, and M. H. Tunio, “Strawberry Fungal Leaf Scorch Disease Identification in Real-Time Strawberry Field Using Deep Learning Architectures,” Plants, vol. 10, no. 12, 2021, doi: 10.3390/plants10122643.
  • K. Kusrini et al., “Data augmentation for automated pest classification in Mango farms,” Comput Electron Agric, vol. 179, p. 105842, 2020, doi: https://doi.org/10.1016/j.compag.2020.105842.
  • W. Wöber, L. Mehnen, P. Sykacek, and H. Meimberg, “Investigating Explanatory Factors of Machine Learning Models for Plant Classification,” Plants, vol. 10, no. 12, 2021, doi: 10.3390/plants10122674.
  • K. N, L. V Narasimha Prasad, C. S. Pavan Kumar, B. Subedi, H. B. Abraha, and S. V E, “Rice leaf diseases prediction using deep neural networks with transfer learning,” Environ Res, vol. 198, p. 111275, 2021, doi: https://doi.org/10.1016/j.envres.2021.111275.
  • J. Gao, J. C. Westergaard, E. H. R. Sundmark, M. Bagge, E. Liljeroth, and E. Alexandersson, “Automatic late blight lesion recognition and severity quantification based on field imagery of diverse potato genotypes by deep learning,” Knowl Based Syst, vol. 214, p. 106723, 2021, doi: https://doi.org/10.1016/j.knosys.2020.106723.
  • N. G. Rezk, A.-F. Attia, M. A. El-Rashidy, A. El-Sayed, and E. E.-D. Hemdan, “An Efficient Plant Disease Recognition System Using Hybrid Convolutional Neural Networks (CNNs) and Conditional Random Fields (CRFs) for Smart IoT Applications in Agriculture,” International Journal of Computational Intelligence Systems, vol. 15, no. 1, p. 65, 2022, doi: 10.1007/s44196-022-00129-x.
  • A. Ksibi, M. Ayadi, B. O. Soufiene, M. M. Jamjoom, and Z. Ullah, “MobiRes-Net: A Hybrid Deep Learning Model for Detecting and Classifying Olive Leaf Diseases,” Applied Sciences, vol. 12, no. 20, 2022, doi: 10.3390/app122010278.
  • M. Fraiwan, E. Faouri, and N. Khasawneh, “Classification of Corn Diseases from Leaf Images Using Deep Transfer Learning,” Plants, vol. 11, no. 20, 2022, doi: 10.3390/plants11202668.
  • R. Van De Vijver et al., “Ultra-High-Resolution UAV-Based Detection of Alternaria solani Infections in Potato Fields,” Remote Sens (Basel), vol. 14, no. 24, 2022, doi: 10.3390/rs14246232.
  • W. Shafik, A. Tufail, C. D. S. Liyanage, and R. A. A. H. M. Apong, “Using a novel convolutional neural network for plant pests detection and disease classification,” J Sci Food Agric, vol. 103, no. 12, pp. 5849–5861, Sep. 2023, doi: 10.1002/jsfa.12700.
  • Y. Wang, Y. Chen, and D. Wang, “Convolution Network Enlightened Transformer for Regional Crop Disease Classification,” Electronics (Basel), vol. 11, no. 19, 2022, doi: 10.3390/electronics11193174.
  • P. Kumar, S. Raghavendran, K. Silambarasan, K. S. Kannan, and N. Krishnan, “Mobile application using DCDM and cloud-based automatic plant disease detection,” Environ Monit Assess, vol. 195, no. 1, p. 44, 2022, doi: 10.1007/s10661-022-10561-3.
  • F. Chen, Y. Zhang, J. Zhang, L. Liu, and K. Wu, “Rice False Smut Detection and Prescription Map Generation in a Complex Planting Environment, with Mixed Methods, Based on Near Earth Remote Sensing,” Remote Sens (Basel), vol. 14, no. 4, 2022, doi: 10.3390/rs14040945.
  • U. Afzaal, B. Bhattarai, Y. R. Pandeya, and J. Lee, “An Instance Segmentation Model for Strawberry Diseases Based on Mask R-CNN,” Sensors, vol. 21, no. 19, 2021, doi: 10.3390/s21196565.
  • M. A. khan, T. Akram, M. Sharif, and T. Saba, “Fruits diseases classification: exploiting a hierarchical framework for deep features fusion and selection,” Multimed Tools Appl, vol. 79, no. 35, pp. 25763–25783, 2020, doi: 10.1007/s11042-020-09244-3.
  • K. Sathya and M. Rajalakshmi, “RDA-CNN: Enhanced Super Resolution Method for Rice Plant Disease Classification,” Computer Systems Science and Engineering, vol. 42, no. 1, pp. 33–47, 2022, doi: 10.32604/CSSE.2022.022206.
  • S. H. Lee, H. Goëau, P. Bonnet, and A. Joly, “Attention-Based Recurrent Neural Network for Plant Disease Classification,” Front Plant Sci, vol. 11, Dec. 2020, doi: 10.3389/fpls.2020.601250.
  • R. Moreira, L. F. Rodrigues Moreira, P. L. A. Munhoz, E. A. Lopes, and R. A. A. Ruas, “AgroLens: A low-cost and green-friendly Smart Farm Architecture to support real-time leaf disease diagnostics,” Internet of Things, vol. 19, p. 100570, 2022, doi: https://doi.org/10.1016/j.iot.2022.100570.
  • K. Demir and V. Tümen, “Drone-assisted automated plant diseases identification using spiking deep conventional neural learning,” AI Communications, vol. 34, no. 2, pp. 147–162, 2021, doi: 10.3233/AIC-210009.
  • C. Nguyen, V. Sagan, M. Maimaitiyiming, M. Maimaitijiang, S. Bhadra, and M. T. Kwasniewski, “Early Detection of Plant Viral Disease Using Hyperspectral Imaging and Deep Learning,” Sensors, vol. 21, no. 3, 2021, doi: 10.3390/s21030742.
  • L. P. Osco et al., “A CNN approach to simultaneously count plants and detect plantation-rows from UAV imagery,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 174, pp. 1–17, 2021, doi: https://doi.org/10.1016/j.isprsjprs.2021.01.024.
  • M. S. Islam et al., “Multimodal Hybrid Deep Learning Approach to Detect Tomato Leaf Disease Using Attention Based Dilated Convolution Feature Extractor with Logistic Regression Classification,” Sensors, vol. 22, no. 16, 2022, doi: 10.3390/s22166079.
  • J. Gao, A. P. French, M. P. Pound, Y. He, T. P. Pridmore, and J. G. Pieters, “Deep convolutional neural networks for image-based Convolvulus sepium detection in sugar beet fields,” Plant Methods, vol. 16, no. 1, p. 29, 2020, doi: 10.1186/s13007-020-00570-z.
  • M. Maray et al., “Artificial intelligence-enabled coconut tree disease detection and classification model for smart agriculture,” Computers and Electrical Engineering, vol. 104, p. 108399, 2022, doi: https://doi.org/10.1016/j.compeleceng.2022.108399.
  • F. N. Al-Wesabi, A. A. Albraikan, A. M. Hilal, M. M. Eltahir, M. A. Hamza, and A. S. Zamani, “Artificial intelligence enabled apple leaf disease classification for precision agriculture,” Computers, Materials and Continua, vol. 70, no. 3, pp. 6223–6238, 2022, doi: 10.32604/cmc.2022.021299.
  • X. Li, Y. Zhou, J. Liu, L. Wang, J. Zhang, and X. Fan, “The Detection Method of Potato Foliage Diseases in Complex Background Based on Instance Segmentation and Semantic Segmentation,” Front Plant Sci, vol. 13, Jul. 2022, doi: 10.3389/fpls.2022.899754.
  • F. Lu et al., “LeafConvNeXt: Enhancing plant disease classification for the future of unmanned farming,” Comput Electron Agric, vol. 233, p. 110165, 2025, doi: https://doi.org/10.1016/j.compag.2025.110165.
  • P. Mhala, A. Bilandani, and S. Sharma, “Enhancing crop productivity with fined-tuned deep convolution neural network for Potato leaf disease detection,” Expert Syst Appl, vol. 267, p. 126066, 2025, doi: https://doi.org/10.1016/j.eswa.2024.126066.
  • C. A. Elinisa, C. Wa Maina, A. Vodacek, and N. Mduma, “Image Segmentation Deep Learning Model for Early Detection of Banana Diseases,” Applied Artificial Intelligence, vol. 39, no. 1, p. 2440837, Dec. 2025, doi: 10.1080/08839514.2024.2440837.
  • A. Salam, M. Naznine, N. Jahan, E. Nahid, M. Nahiduzzaman, and M. E. H. Chowdhury, “Mulberry Leaf Disease Detection Using CNN-Based Smart Android Application,” IEEE Access, vol. 12, pp. 83575–83588, 2024, doi: 10.1109/ACCESS.2024.3407153.
  • B. Padmavathi, A. BhagyaLakshmi, G. Vishnupriya, and K. Datchanamoorthy, “IoT-based prediction and classification framework for smart farming using adaptive multi-scale deep networks,” Expert Syst Appl, vol. 254, p. 124318, 2024, doi: https://doi.org/10.1016/j.eswa.2024.124318.
  • D. Bırant and C. İ. Sofuoğlu, “Potato Plant Leaf Disease Detection Using Deep Learning Method,” J Agric Sci (Belihuloya), vol. 30, no. 1, pp. 153–165, 2024, doi: 10.15832/ankutbd.1276722.
  • A. Batool, J. Kim, S. J. Lee, J. H. Yang, and Y. C. Byun, “An enhanced lightweight T-Net architecture based on convolutional neural network (CNN) for tomato plant leaf disease classification,” PeerJ Comput Sci, vol. 10, 2024, doi: 10.7717/peerj-cs.2495.
  • X. Wu et al., “SAW-YOLO: A Multi-Scale YOLO for Small Target Citrus Pests Detection,” Agronomy, vol. 14, no. 7, 2024, doi: 10.3390/agronomy14071571.
  • Z. D. Daşkın, M. S. Alam, and M. U. Khan, “Ensemble transfer learning using MaizeSet: A dataset for weed and maize crop recognition at different growth stages,” Crop Protection, vol. 184, p. 106849, 2024, doi: https://doi.org/10.1016/j.cropro.2024.106849.
  • A. Saygılı and G. Irmak, “A Novel Approach for Tomato Leaf Disease Classification with Deep Convolutional Neural Networks,” J Agric Sci (Belihuloya), vol. 30, no. 2, pp. 367–385, 2024, doi: 10.15832/ankutbd.1332675.
  • T. H. Kim et al., “ANFIS Fuzzy convolutional neural network model for leaf disease detection,” Front Plant Sci, vol. 15, 2024, doi: 10.3389/fpls.2024.1465960.
  • J. S. Prashanth, N. R. Moparthi, G. B. Krishna, A. V. K. Prasad, B. Sravankumar, and P. R. Rao, “MPCSAR-AHH: A hybrid deep learning model for real-time detection of cassava leaf diseases and fertilizer recommendation,” Computers and Electrical Engineering, vol. 119, p. 109628, 2024, doi: https://doi.org/10.1016/j.compeleceng.2024.109628.
  • M. Chilakalapudi and S. Jayachandran, “Multi-classification of disease induced in plant leaf using chronological Flamingo search optimization with transfer learning,” PeerJ Comput Sci, vol. 10, 2024, doi: 10.7717/peerj-cs.1972.
  • P. Johri et al., “Advanced deep transfer learning techniques for efficient detection of cotton plant diseases,” Front Plant Sci, vol. 15, 2024, doi: 10.3389/fpls.2024.1441117.
  • A. Menshchikov et al., “Real-Time Detection of Hogweed: UAV Platform Empowered by Deep Learning,” IEEE Transactions on Computers, vol. 70, no. 8, pp. 1175–1188, 2021, doi: 10.1109/TC.2021.3059819.
  • D. Su, Y. Qiao, H. Kong, and S. Sukkarieh, “Real time detection of inter-row ryegrass in wheat farms using deep learning,” Biosyst Eng, vol. 204, pp. 198–211, 2021, doi: https://doi.org/10.1016/j.biosystemseng.2021.01.019.
  • S. Shorewala, A. Ashfaque, R. Sidharth, and U. Verma, “Weed Density and Distribution Estimation for Precision Agriculture Using Semi-Supervised Learning,” IEEE Access, vol. 9, pp. 27971–27986, 2021, doi: 10.1109/ACCESS.2021.3057912.
  • T. M. Shah, D. P. B. Nasika, and R. Otterpohl, “Plant and Weed Identifier Robot as an Agroecological Tool Using Artificial Neural Networks for Image Identification,” Agriculture, vol. 11, no. 3, 2021, doi: 10.3390/agriculture11030222.
  • R. Punithavathi, A. Delphin Carolina Rani, K. R. Sughashini, C. Kurangi, M. Nirmala, H. F. Thariq Ahmed, and S. P. Balamurugan, “Computer Vision and Deep Learning-enabled Weed Detection Model for Precision Agriculture,” Comput. Syst. Sci. Eng., vol. 44, no. 3, 2023, doi: 10.32604/csse.2023.027647.
  • G. G. Peteinatos, P. Reichel, J. Karouta, D. Andújar, and R. Gerhards, “Weed Identification in Maize, Sunflower, and Potatoes with the Aid of Convolutional Neural Networks,” Remote Sens (Basel), vol. 12, no. 24, 2020, doi: 10.3390/rs12244185.
  • A. S. M. M. Hasan, D. Diepeveen, H. Laga, M. G. K. Jones, and F. Sohel, “Image patch-based deep learning approach for crop and weed recognition,” Ecol Inform, vol. 78, Dec. 2023, doi: 10.1016/j.ecoinf.2023.102361.
  • R. Goyal, A. Nath, and U. Niranjan, “Weed detection using deep learning in complex and highly occluded potato field environment,” Crop Protection, vol. 187, p. 106948, 2025, doi: https://doi.org/10.1016/j.cropro.2024.106948.
  • J. Gao et al., “Cross-domain transfer learning for weed segmentation and mapping in precision farming using ground and UAV images,” Expert Syst Appl, vol. 246, p. 122980, 2024, doi: https://doi.org/10.1016/j.eswa.2023.122980.
  • A. S. M. M. Hasan, D. Diepeveen, H. Laga, M. G. K. Jones, A. A. M. Muzahid, and F. Sohel, “Morphology-based weed type recognition using Siamese network,” European Journal of Agronomy, vol. 163, p. 127439, 2025, doi: https://doi.org/10.1016/j.eja.2024.127439.
  • S. Kamalesh Kanna, R. Kumaraperumal, P. Pazhanivelan, R. Jagadeeswaran, and P. C. Prabu, “YOLO deep learning algorithm for object detection in agriculture: a review,” 2024, Page Press Publications. doi: 10.4081/jae.2024.1641.
  • I. Abbas et al., “Different sensor based intelligent spraying systems in Agriculture,” Sens Actuators A Phys, vol. 316, p. 112265, 2020, doi: https://doi.org/10.1016/j.sna.2020.112265.
  • A. Kayad, D. S. Paraforos, F. Marinello, and S. Fountas, “Latest Advances in Sensor Applications in Agriculture,” Agriculture, vol. 10, no. 8, 2020, doi: 10.3390/agriculture10080362.
  • A. Botta, P. Cavallone, L. Baglieri, G. Colucci, L. Tagliavini, and G. Quaglia, “A Review of Robots, Perception, and Tasks in Precision Agriculture,” Applied Mechanics, vol. 3, no. 3, pp. 830–854, 2022, doi: 10.3390/applmech3030049.
  • A. Bechar and C. Vigneault, “Agricultural robots for field operations: Concepts and components,” Biosyst Eng, vol. 149, pp. 94–111, 2016, doi: https://doi.org/10.1016/j.biosystemseng.2016.06.014.
  • V. A. H. Higuti, A. E. B. Velasquez, D. V. Magalhaes, M. Becker, and G. Chowdhary, “Under canopy light detection and ranging-based autonomous navigation,” J Field Robot, vol. 36, no. 3, pp. 547–567, May 2019, doi: 10.1002/rob.21852.
  • B. H. Y. Alsalam, K. Morton, D. Campbell, and F. Gonzalez, “Autonomous UAV with vision based on-board decision making for remote sensing and precision agriculture,” in 2017 IEEE Aerospace Conference, 2017, pp. 1–12. doi: 10.1109/AERO.2017.7943593.
  • S. Kanagasingham, M. Ekpanyapong, and R. Chaihan, “Integrating machine vision-based row guidance with GPS and compass-based routing to achieve autonomous navigation for a rice field weeding robot,” Precis Agric, vol. 21, no. 4, pp. 831–855, 2020, doi: 10.1007/s11119-019-09697-z.
  • P. K. Reddy Maddikunta et al., “Unmanned Aerial Vehicles in Smart Agriculture: Applications, Requirements, and Challenges,” IEEE Sens J, vol. 21, no. 16, pp. 17608–17619, 2021, doi: 10.1109/JSEN.2021.3049471.
  • A. D. Boursianis et al., “Internet of Things (IoT) and Agricultural Unmanned Aerial Vehicles (UAVs) in smart farming: A comprehensive review,” Internet of Things, vol. 18, p. 100187, 2022, doi: https://doi.org/10.1016/j.iot.2020.100187.
  • D. C. Tsouros, S. Bibi, and P. G. Sarigiannidis, “A Review on UAV-Based Applications for Precision Agriculture,” Information, vol. 10, no. 11, 2019, doi: 10.3390/info10110349.
  • J. Kim, S. Kim, C. Ju, and H. Il Son, “Unmanned Aerial Vehicles in Agriculture: A Review of Perspective of Platform, Control, and Applications,” IEEE Access, vol. 7, pp. 105100–105115, 2019, doi: 10.1109/ACCESS.2019.2932119.
  • J. de Wit, W. Pieters, and P. van Gelder, “Sources of security risk information: What do professionals rely on for their risk assessment?,” Information Society, vol. 41, no. 3, pp. 157–172, 2025, doi: 10.1080/01972243.2025.2475311.
  • M. Fraiwan, E. Faouri, and N. Khasawneh, “Multiclass Classification of Grape Diseases Using Deep Artificial Intelligence,” Agriculture, vol. 12, no. 10, 2022, doi: 10.3390/agriculture12101542.
  • W. Zhao et al., “Using infrared thermal imaging technology to estimate the transpiration rate of citrus trees and evaluate plant water status,” J Hydrol (Amst), vol. 615, Dec. 2022, doi: 10.1016/j.jhydrol.2022.128671.
  • D. Chen, P. Wawrzynski, and Z. Lv, “Cyber security in smart cities: A review of deep learning-based applications and case studies,” Sustain Cities Soc, vol. 66, Mar. 2021, doi: 10.1016/j.scs.2020.102655.
  • M. S. Islam et al., “Multimodal Hybrid Deep Learning Approach to Detect Tomato Leaf Disease Using Attention Based Dilated Convolution Feature Extractor with Logistic Regression Classification,” Sensors, vol. 22, no. 16, 2022, doi: 10.3390/s22166079.
  • M. A. Alohali, F. N. Al-Wesabi, A. M. Hilal, S. Goel, D. Gupta, and A. Khanna, “Artificial intelligence enabled intrusion detection systems for cognitive cyber-physical systems in industry 4.0 environment,” Cogn Neurodyn, vol. 16, no. 5, pp. 1045–1057, Oct. 2022, doi: 10.1007/s11571-022-09780-8.
  • V. Tiwari, R. C. Joshi, and M. K. Dutta, “Deep neural network for multi-class classification of medicinal plant leaves,” Expert Syst, vol. 39, no. 8, Sep. 2022, doi: 10.1111/exsy.13041.
  • S. Khaki, H. Pham, Y. Han, A. Kuhl, W. Kent, and L. Wang, “DeepCorn: A semi-supervised deep learning method for high-throughput image-based corn kernel counting and yield estimation,” Knowl Based Syst, vol. 218, p. 106874, 2021, doi: https://doi.org/10.1016/j.knosys.2021.106874.
  • N. Ali, A. Mohammed, A. Bais, J. S. Sangha, Y. Ruan, and R. D. Cuthbert, “LodgeNet: an automated framework for precise detection and classification of wheat lodging severity levels in precision farming,” Front Plant Sci, vol. 14, 2023, doi: 10.3389/fpls.2023.1255961.
  • V. Blanco, N. Willsea, T. Campbell, O. Howe, and L. Kalcsits, “Combining thermal imaging and soil water content sensors to assess tree water status in pear trees,” Front Plant Sci, vol. 14, 2023, doi: 10.3389/fpls.2023.1197437.
  • I. Attri, L. K. Awasthi, T. P. Sharma, and P. Rathee, “A review of deep learning techniques used in agriculture,” Ecol Inform, vol. 77, p. 102217, 2023, doi: https://doi.org/10.1016/j.ecoinf.2023.102217.
  • J. G. A. Barbedo, “A review on the combination of deep learning techniques with proximal hyperspectral images in agriculture,” Comput Electron Agric, vol. 210, p. 107920, 2023, doi: https://doi.org/10.1016/j.compag.2023.107920.
  • L. Shuai, Z. Li, Z. Chen, D. Luo, and J. Mu, “A research review on deep learning combined with hyperspectral Imaging in multiscale agricultural sensing,” Comput Electron Agric, vol. 217, p. 108577, 2024, doi: https://doi.org/10.1016/j.compag.2023.108577.
  • X. Deng et al., “Estimation of photosynthetic parameters from hyperspectral images using optimal deep learning architecture,” Comput Electron Agric, vol. 216, p. 108540, 2024, doi: https://doi.org/10.1016/j.compag.2023.108540.

DEEP LEARNING APPROACHES IN PRECISION AGRICULTURE: A COMPREHENSIVE REVIEW OF CROP CLASSIFICATION, DISEASE DETECTION, AND WEED DETECTION TECHNIQUES

Year 2025, Volume: 13 Issue: 4, 1318 - 1370, 01.12.2025
https://doi.org/10.36306/konjes.1583103

Abstract

This paper presents a systematic and comprehensive review of deep learning (DL) methodologies used in precision agriculture (PA). It focuses on three critical application areas in particular: plant classification, plant disease detection, and weed detection. The study covers 93 peer-reviewed papers published between 2020 and 2025 and indexed in the SCI and SCI-Expanded indexed WoS database. Of these, 68 studies addressed disease detection, 13 focused on plant classification, and 12 examined weed detection strategies. The review describes a wide range of DL architectures, including Convolutional Neural Networks (CNNs), Residual Networks (ResNet), You Only Look Once (YOLO), Image Transformers (ViT), and various hybrid frameworks. A large number of models demonstrated exceptional performance with classification accuracies reaching up to 99.64% and precision and sensitivity values exceeding 98%. Studies have evaluated a wide range of datasets such as PlantVillage, COCO, and privately acquired RGB/UAV imagery, and a variety of sensor platforms such as drones, smartphones, hyperspectral, and LiDAR systems. Moreover, transfer learning and ensemble learning approaches have been frequently adopted to enhance generalization capabilities and model robustness. The integration of DL models with advanced technologies such as unmanned aerial vehicles (UAVs), unmanned ground robots (UGRs), depth-sensing cameras, and mobile-based platforms facilitates automation in agricultural monitoring, disease diagnosis, and yield prediction. This review not only consolidates the current technological developments, but also analyzes the emerging trends, methodological gaps, and possible directions for the advancement of sustainable, data-driven agricultural systems using artificial intelligence.

References

  • S. A. Bhat and N.-F. Huang, “Big Data and AI Revolution in Precision Agriculture: Survey and Challenges,” IEEE Access, vol. 9, pp. 110209–110222, 2021, doi: 10.1109/ACCESS.2021.3102227.
  • C. Liu, D. Xu, X. Dong, and Q. Huang, “A review: Research progress of SERS-based sensors for agricultural applications,” Trends Food Sci Technol, vol. 128, pp. 90–101, 2022, doi: https://doi.org/10.1016/j.tifs.2022.07.012.
  • S. Mitchell, A. Weersink, and N. Bannon, “Adoption barriers for precision agriculture technologies in Canadian crop production,” Canadian Journal of Plant Science, vol. 101, no. 3, pp. 412–416, 2021, doi: 10.1139/cjps-2020-0234.
  • A. Monteiro, S. Santos, and P. Gonçalves, “Precision Agriculture for Crop and Livestock Farming—Brief Review,” Animals, vol. 11, no. 8, 2021, doi: 10.3390/ani11082345.
  • P. Zhang, Z. Guo, S. Ullah, G. Melagraki, A. Afantitis, and I. Lynch, “Nanotechnology and artificial intelligence to enable sustainable and precision agriculture,” Nat Plants, vol. 7, no. 7, pp. 864–876, 2021, doi: 10.1038/s41477-021-00946-6.
  • J. Heaton, “Ian Goodfellow, Yoshua Bengio, and Aaron Courville: Deep learning,” Genet Program Evolvable Mach, vol. 19, no. 1, pp. 305–307, 2018, doi: 10.1007/s10710-017-9314-z.
  • P. Tharani Pavithra and B. Baranidharan, “OSPS-MicroNet: a distilled knowledge micro-CNN network for detecting rice diseases,” Front Comput Sci, vol. Volume 6-2024, 2024, doi: 10.3389/fcomp.2024.1279810.
  • A. Balafoutis et al., “Precision Agriculture Technologies Positively Contributing to GHG Emissions Mitigation, Farm Productivity and Economics,” Sustainability, vol. 9, no. 8, 2017, doi: 10.3390/su9081339.
  • O. Hrynevych, M. Blanco Canto, and M. Jiménez García, “Tendencies of Precision Agriculture in Ukraine: Disruptive Smart Farming Tools as Cooperation Drivers,” Agriculture, vol. 12, no. 5, 2022, doi: 10.3390/agriculture12050698.
  • J. Zhang et al., “Challenges and opportunities in precision irrigation decision-support systems for center pivots,” May 01, 2021, IOP Publishing Ltd. doi: 10.1088/1748-9326/abe436.
  • M. Pyingkodi et al., “Sensor Based Smart Agriculture with IoT Technologies: A Review,” in 2022 International Conference on Computer Communication and Informatics (ICCCI), 2022, pp. 1–7. doi: 10.1109/ICCCI54379.2022.9741001.
  • Y. Ma, S. Chen, S. Ermon, and D. B. Lobell, “Transfer learning in environmental remote sensing,” Feb. 01, 2024, Elsevier Inc. doi: 10.1016/j.rse.2023.113924.
  • A. A. Aleissaee et al., “Transformers in Remote Sensing: A Survey,” Apr. 01, 2023, MDPI. doi: 10.3390/rs15071860.
  • A. Sharma, A. Prakash, S. Bhambota, and S. Kumar, “Investigations of precision agriculture technologies with application to developing countries,” Environ Dev Sustain, vol. 27, no. 7, pp. 15135–15171, 2025, doi: 10.1007/s10668-024-04572-y.
  • J. Vrchota, M. Pech, and I. Švepešová, “Precision Agriculture Technologies for Crop and Livestock Production in the Czech Republic,” Agriculture, vol. 12, no. 8, 2022, doi: 10.3390/agriculture12081080.
  • K. Khairudin et al., “Enhancing riverine load prediction of anthropogenic pollutants: Harnessing the potential of feed-forward backpropagation (FFBP) artificial neural network (ANN) models,” Results in Engineering, vol. 22, p. 102072, 2024, doi: https://doi.org/10.1016/j.rineng.2024.102072.
  • D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by back-propagating errors,” Nature, vol. 323, no. 6088, pp. 533–536, 1986, doi: 10.1038/323533a0.
  • Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998, doi: 10.1109/5.726791.
  • J. Schmidhuber, “Deep learning in neural networks: An overview,” Neural Networks, vol. 61, pp. 85–117, 2015, doi: https://doi.org/10.1016/j.neunet.2014.09.003.
  • M. S. Chughtai, I. Bibi, S. Karim, S. W. A. Shah, A. A. Laghari, and A. A. Khan, “Deep learning trends and future perspectives of web security and vulnerabilities,” Journal of High Speed Networks, vol. 30, no. 1, pp. 115–146, 2024, doi: 10.3233/JHS-230037.
  • M. S. Chughtai, I. Bibi, S. Karim, S. W. A. Shah, A. A. Laghari, and A. A. Khan, “Deep learning trends and future perspectives of web security and vulnerabilities,” Journal of High Speed Networks, vol. 30, no. 1, pp. 115–146, 2024, doi: 10.3233/JHS-230037.
  • P. K. Roy, A. K. Tripathy, T. H. Weng, and K. C. Li, “Securing social platform from misinformation using deep learning,” Comput Stand Interfaces, vol. 84, Mar. 2023, doi: 10.1016/j.csi.2022.103674.
  • L. Ilias and I. Roussaki, “Detecting malicious activity in Twitter using deep learning techniques,” Appl Soft Comput, vol. 107, Aug. 2021, doi: 10.1016/j.asoc.2021.107360.
  • S. S. S. Ramesh, J. F. Banu, V. R. Kavitha, and T. Ramesh, “Enhancing Intelligent Transportation Systems in Smart Cities Using VANETs With Deep Reinforcement Transfer Learning and Explainable AI,” Transactions on Emerging Telecommunications Technologies, vol. 36, no. 8, Aug. 2025, doi: 10.1002/ett.70219.
  • S. S. Band et al., “Novel Ensemble Approach of Deep Learning Neural Network (DLNN) Model and Particle Swarm Optimization (PSO) Algorithm for Prediction of Gully Erosion Susceptibility,” Sensors, vol. 20, no. 19, 2020, doi: 10.3390/s20195609.
  • I. Pacal et al., “A systematic review of deep learning techniques for plant diseases,” Artif Intell Rev, vol. 57, no. 11, p. 304, 2024, doi: 10.1007/s10462-024-10944-7.
  • R. Archana and P. S. E. Jeevaraj, “Deep learning models for digital image processing: a review,” Artif Intell Rev, vol. 57, no. 1, p. 11, 2024, doi: 10.1007/s10462-023-10631-z.
  • D. Muthusamy and P. Palani, “Deep learning model using classification for diabetic retinopathy detection: an overview,” Artif Intell Rev, vol. 57, no. 7, p. 185, 2024, doi: 10.1007/s10462-024-10806-2.
  • M. Beniwal, A. Singh, and N. Kumar, “Forecasting multistep daily stock prices for long-term investment decisions: A study of deep learning models on global indices,” Eng Appl Artif Intell, vol. 129, p. 107617, 2024, doi: https://doi.org/10.1016/j.engappai.2023.107617.
  • S. Batool, M. H. Khan, and M. S. Farid, “An ensemble deep learning model for human activity analysis using wearable sensory data,” Appl Soft Comput, vol. 159, p. 111599, 2024, doi: https://doi.org/10.1016/j.asoc.2024.111599.
  • W. Ullah, A. Ullah, I. U. Haq, K. Muhammad, M. Sajjad, and S. W. Baik, “CNN features with bi-directional LSTM for real-time anomaly detection in surveillance networks,” Multimed Tools Appl, vol. 80, no. 11, pp. 16979–16995, 2021, doi: 10.1007/s11042-020-09406-3.
  • H. Almukhalfi, A. Noor, and T. H. Noor, “Traffic management approaches using machine learning and deep learning techniques: A survey,” Eng Appl Artif Intell, vol. 133, p. 108147, 2024, doi: https://doi.org/10.1016/j.engappai.2024.108147.
  • B. Xu and G. Yang, “Interpretability research of deep learning: A literature survey,” Information Fusion, vol. 115, p. 102721, 2025, doi: https://doi.org/10.1016/j.inffus.2024.102721.
  • B. Xu and G. Yang, “Interpretability research of deep learning: A literature survey,” Information Fusion, vol. 115, p. 102721, 2025, doi: https://doi.org/10.1016/j.inffus.2024.102721.
  • K. M. Hosny, A. Magdi, O. ElKomy, and H. M. Hamza, “Digital image watermarking using deep learning: A survey,” Comput Sci Rev, vol. 53, p. 100662, 2024, doi: https://doi.org/10.1016/j.cosrev.2024.100662.
  • A. Galli, E. Masciari, V. Moscato, and G. Sperlí, “A comprehensive Benchmark for fake news detection,” J Intell Inf Syst, vol. 59, no. 1, pp. 237–261, Aug. 2022, doi: 10.1007/s10844-021-00646-9.
  • H. Kheddar, M. Hemis, and Y. Himeur, “Automatic speech recognition using advanced deep learning approaches: A survey,” Information Fusion, vol. 109, p. 102422, 2024, doi: https://doi.org/10.1016/j.inffus.2024.102422.
  • M. Astani, M. Hasheminejad, and M. Vaghefi, “A diverse ensemble classifier for tomato disease recognition,” Comput Electron Agric, vol. 198, p. 107054, 2022, doi: https://doi.org/10.1016/j.compag.2022.107054.
  • S. Cho et al., “Plant growth information measurement based on object detection and image fusion using a smart farm robot,” Comput Electron Agric, vol. 207, p. 107703, 2023, doi: https://doi.org/10.1016/j.compag.2023.107703.
  • M. L. Ali and Z. Zhang, “The YOLO Framework: A Comprehensive Review of Evolution, Applications, and Benchmarks in Object Detection,” Computers, vol. 13, no. 12, 2024, doi: 10.3390/computers13120336.
  • U. Sirisha, S. P. Praveen, P. N. Srinivasu, P. Barsocchi, and A. K. Bhoi, “Statistical Analysis of Design Aspects of Various YOLO-Based Deep Learning Models for Object Detection,” International Journal of Computational Intelligence Systems, vol. 16, no. 1, p. 126, 2023, doi: 10.1007/s44196-023-00302-w.
  • A. J. Hati and R. R. Singh, “AI-Driven Pheno-Parenting: A Deep Learning Based Plant Phenotyping Trait Analysis Model on a Novel Soilless Farming Dataset,” IEEE Access, vol. 11, pp. 35298–35314, 2023, doi: 10.1109/ACCESS.2023.3265195.
  • R. P. Devanna et al., “In-Field Automatic Identification of Pomegranates Using a Farmer Robot,” Sensors, vol. 22, no. 15, 2022, doi: 10.3390/s22155821.
  • Y. Mu, T.-S. Chen, S. Ninomiya, and W. Guo, “Intact Detection of Highly Occluded Immature Tomatoes on Plants Using Deep Learning Techniques,” Sensors, vol. 20, no. 10, 2020, doi: 10.3390/s20102984.
  • E. C. Nnadozie, O. N. Iloanusi, O. A. Ani, and K. Yu, “Detecting Cassava Plants under Different Field Conditions Using UAV-Based RGB Images and Deep Learning Models,” Remote Sens (Basel), vol. 15, no. 9, 2023, doi: 10.3390/rs15092322.
  • M. Moraitis, K. Vaiopoulos, and A. T. Balafoutis, “Design and Implementation of an Urban Farming Robot,” Micromachines (Basel), vol. 13, no. 2, 2022, doi: 10.3390/mi13020250.
  • C. Zhou, H. Ye, D. Sun, J. Yue, G. Yang, and J. Hu, “An automated, high-performance approach for detecting and characterizing broccoli based on UAV remote-sensing and transformers: A case study from Haining, China,” International Journal of Applied Earth Observation and Geoinformation, vol. 114, p. 103055, 2022, doi: https://doi.org/10.1016/j.jag.2022.103055.
  • D. G. Pai, R. Kamath, and M. Balachandra, “Deep Learning Techniques for Weed Detection in Agricultural Environments: A Comprehensive Review,” IEEE Access, vol. 12, pp. 113193–113214, 2024, doi: 10.1109/ACCESS.2024.3418454.
  • I. A. Quiroz and G. H. Alférez, “Image recognition of Legacy blueberries in a Chilean smart farm through deep learning,” Comput Electron Agric, vol. 168, p. 105044, 2020, doi: https://doi.org/10.1016/j.compag.2019.105044.
  • P. Sajitha, A. D. Andrushia, N. Anand, and M. Z. Naser, “A review on machine learning and deep learning image-based plant disease classification for industrial farming systems,” J Ind Inf Integr, vol. 38, p. 100572, 2024, doi: https://doi.org/10.1016/j.jii.2024.100572.
  • Ndikumana JN, Lee U, Yoo JH, Yeboah S, Park SH, Lee TS, Yeoung YR and Kim HS (2024) Development of a deep-learning phenotyping tool for analyzing image-based strawberry phenotypes. Front. Plant Sci. 15:1418383. doi: 10.3389/fpls.2024.1418383
  • H. Shi, D. Shi, S. Wang, W. Li, H. Wen, and H. Deng, “Crop plant automatic detecting based on in-field images by lightweight DFU-Net model,” Comput Electron Agric, vol. 217, p. 108649, 2024, doi: https://doi.org/10.1016/j.compag.2024.108649.
  • J.-S. G. Kim, S. Moon, J. Park, T. Kim, and S. Chung, “Development of a machine vision-based weight prediction system of butterhead lettuce (Lactuca sativa L.) using deep learning models for industrial plant factory,” Front Plant Sci, vol. 15, Jun. 2024, doi: 10.3389/fpls.2024.1365266.
  • W. Ying, K. Hu, A. Ahmed, Z. Yi, J. Zhao, and H. Kang, “Accurate Fruit Phenotype Reconstruction via Geometry-Smooth Neural Implicit Surface,” Agriculture, vol. 14, no. 12, 2024, doi: 10.3390/agriculture14122325.
  • Y. Guo et al., “Plant Disease Identification Based on Deep Learning Algorithm in Smart Farming,” Discrete Dyn Nat Soc, vol. 2020, 2020, doi: 10.1155/2020/2479172.
  • N. Aishwarya, N. G. Praveena, S. Priyanka, and J. Pramod, “Smart farming for detection and identification of tomato plant diseases using light weight deep neural network,” Multimed Tools Appl, vol. 82, no. 12, pp. 18799–18810, 2023, doi: 10.1007/s11042-022-14272-2.
  • A. Wongchai, D. rao Jenjeti, A. I. Priyadarsini, N. Deb, A. Bhardwaj, and P. Tomar, “Farm monitoring and disease prediction by classification based on deep learning architectures in sustainable agriculture,” Ecol Modell, vol. 474, p. 110167, 2022, doi: https://doi.org/10.1016/j.ecolmodel.2022.110167.
  • M. H. Hamidon and T. Ahamed, “Detection of Tip-Burn Stress on Lettuce Grown in an Indoor Environment Using Deep Learning Algorithms,” Sensors, vol. 22, no. 19, 2022, doi: 10.3390/s22197251.
  • R. Sowmyalakshmi et al., “An Optimal Classification Model for Rice Plant Disease Detection,” Computers, Materials and Continua, vol. 68, no. 2, pp. 1751–1767, 2021, doi: https://doi.org/10.32604/cmc.2021.016825.
  • A. Elaraby, W. Hamdy, and M. Alruwaili, “Optimization of Deep Learning Model for Plant Disease Detection Using Particle Swarm Optimizer,” Computers, Materials and Continua, vol. 71, no. 2, pp. 4019–4031, 2021, doi: https://doi.org/10.32604/cmc.2022.022161.
  • L. Chen, X. Cui, and W. Li, “Meta-Learning for Few-Shot Plant Disease Detection,” Foods, vol. 10, no. 10, 2021, doi: 10.3390/foods10102441.
  • S. Janarthan, S. Thuseethan, S. Rajasegarar, and J. Yearwood, “P2OP—Plant Pathology on Palms: A deep learning-based mobile solution for in-field plant disease detection,” Comput Electron Agric, vol. 202, p. 107371, 2022, doi: https://doi.org/10.1016/j.compag.2022.107371.
  • T. Daniya and V. Srinivasan, “Shuffled shepherd social optimization based deep learning for rice leaf disease classification and severity percentage prediction,” Concurr Comput, vol. 35, no. 4, Feb. 2023, doi: 10.1002/cpe.7523.
  • M. P. Mathew and T. Y. Mahesh, “Leaf-based disease detection in bell pepper plant using YOLO v5,” Signal Image Video Process, vol. 16, no. 3, pp. 841–847, 2022, doi: 10.1007/s11760-021-02024-y.
  • P. Bansal, R. Kumar, and S. Kumar, “Disease Detection in Apple Leaves Using Deep Convolutional Neural Network,” Agriculture, vol. 11, no. 7, 2021, doi: 10.3390/agriculture11070617.
  • T. Tamilvizhi, R. Surendran, K. Anbazhagan, and K. Rajkumar, “Quantum Behaved Particle Swarm Optimization-Based Deep Transfer Learning Model for Sugarcane Leaf Disease Detection and Classification,” Math Probl Eng, vol. 2022, 2022, doi: 10.1155/2022/3452413.
  • Y. Borhani, J. Khoramdel, and E. Najafi, “A deep learning based approach for automated plant disease classification using vision transformer,” Sci Rep, vol. 12, no. 1, p. 11554, 2022, doi: 10.1038/s41598-022-15163-0.
  • S. Nalini et al., “Paddy Leaf Disease Detection Using an Optimized Deep Neural Network,” Computers, Materials and Continua, vol. 68, no. 1, pp. 1117–1128, 2021, doi: https://doi.org/10.32604/cmc.2021.012431.
  • R. Sharma et al., “Plant Disease Diagnosis and Image Classification Using Deep Learning,” Computers, Materials and Continua, vol. 71, no. 2, pp. 2125–2140, 2021, doi: https://doi.org/10.32604/cmc.2022.020017.
  • J. V Tembhurne, S. M. Gajbhiye, V. R. Gannarpwar, H. R. Khandait, P. R. Goydani, and T. Diwan, “Plant disease detection using deep learning based Mobile application,” Multimed Tools Appl, vol. 82, no. 18, pp. 27365–27390, 2023, doi: 10.1007/s11042-023-14541-8.
  • C. G. Simhadri and H. K. Kondaveeti, “Automatic Recognition of Rice Leaf Diseases Using Transfer Learning,” Agronomy, vol. 13, no. 4, 2023, doi: 10.3390/agronomy13040961.
  • I. Abbas, J. Liu, M. Amin, A. Tariq, and M. H. Tunio, “Strawberry Fungal Leaf Scorch Disease Identification in Real-Time Strawberry Field Using Deep Learning Architectures,” Plants, vol. 10, no. 12, 2021, doi: 10.3390/plants10122643.
  • K. Kusrini et al., “Data augmentation for automated pest classification in Mango farms,” Comput Electron Agric, vol. 179, p. 105842, 2020, doi: https://doi.org/10.1016/j.compag.2020.105842.
  • W. Wöber, L. Mehnen, P. Sykacek, and H. Meimberg, “Investigating Explanatory Factors of Machine Learning Models for Plant Classification,” Plants, vol. 10, no. 12, 2021, doi: 10.3390/plants10122674.
  • K. N, L. V Narasimha Prasad, C. S. Pavan Kumar, B. Subedi, H. B. Abraha, and S. V E, “Rice leaf diseases prediction using deep neural networks with transfer learning,” Environ Res, vol. 198, p. 111275, 2021, doi: https://doi.org/10.1016/j.envres.2021.111275.
  • J. Gao, J. C. Westergaard, E. H. R. Sundmark, M. Bagge, E. Liljeroth, and E. Alexandersson, “Automatic late blight lesion recognition and severity quantification based on field imagery of diverse potato genotypes by deep learning,” Knowl Based Syst, vol. 214, p. 106723, 2021, doi: https://doi.org/10.1016/j.knosys.2020.106723.
  • N. G. Rezk, A.-F. Attia, M. A. El-Rashidy, A. El-Sayed, and E. E.-D. Hemdan, “An Efficient Plant Disease Recognition System Using Hybrid Convolutional Neural Networks (CNNs) and Conditional Random Fields (CRFs) for Smart IoT Applications in Agriculture,” International Journal of Computational Intelligence Systems, vol. 15, no. 1, p. 65, 2022, doi: 10.1007/s44196-022-00129-x.
  • A. Ksibi, M. Ayadi, B. O. Soufiene, M. M. Jamjoom, and Z. Ullah, “MobiRes-Net: A Hybrid Deep Learning Model for Detecting and Classifying Olive Leaf Diseases,” Applied Sciences, vol. 12, no. 20, 2022, doi: 10.3390/app122010278.
  • M. Fraiwan, E. Faouri, and N. Khasawneh, “Classification of Corn Diseases from Leaf Images Using Deep Transfer Learning,” Plants, vol. 11, no. 20, 2022, doi: 10.3390/plants11202668.
  • R. Van De Vijver et al., “Ultra-High-Resolution UAV-Based Detection of Alternaria solani Infections in Potato Fields,” Remote Sens (Basel), vol. 14, no. 24, 2022, doi: 10.3390/rs14246232.
  • W. Shafik, A. Tufail, C. D. S. Liyanage, and R. A. A. H. M. Apong, “Using a novel convolutional neural network for plant pests detection and disease classification,” J Sci Food Agric, vol. 103, no. 12, pp. 5849–5861, Sep. 2023, doi: 10.1002/jsfa.12700.
  • Y. Wang, Y. Chen, and D. Wang, “Convolution Network Enlightened Transformer for Regional Crop Disease Classification,” Electronics (Basel), vol. 11, no. 19, 2022, doi: 10.3390/electronics11193174.
  • P. Kumar, S. Raghavendran, K. Silambarasan, K. S. Kannan, and N. Krishnan, “Mobile application using DCDM and cloud-based automatic plant disease detection,” Environ Monit Assess, vol. 195, no. 1, p. 44, 2022, doi: 10.1007/s10661-022-10561-3.
  • F. Chen, Y. Zhang, J. Zhang, L. Liu, and K. Wu, “Rice False Smut Detection and Prescription Map Generation in a Complex Planting Environment, with Mixed Methods, Based on Near Earth Remote Sensing,” Remote Sens (Basel), vol. 14, no. 4, 2022, doi: 10.3390/rs14040945.
  • U. Afzaal, B. Bhattarai, Y. R. Pandeya, and J. Lee, “An Instance Segmentation Model for Strawberry Diseases Based on Mask R-CNN,” Sensors, vol. 21, no. 19, 2021, doi: 10.3390/s21196565.
  • M. A. khan, T. Akram, M. Sharif, and T. Saba, “Fruits diseases classification: exploiting a hierarchical framework for deep features fusion and selection,” Multimed Tools Appl, vol. 79, no. 35, pp. 25763–25783, 2020, doi: 10.1007/s11042-020-09244-3.
  • K. Sathya and M. Rajalakshmi, “RDA-CNN: Enhanced Super Resolution Method for Rice Plant Disease Classification,” Computer Systems Science and Engineering, vol. 42, no. 1, pp. 33–47, 2022, doi: 10.32604/CSSE.2022.022206.
  • S. H. Lee, H. Goëau, P. Bonnet, and A. Joly, “Attention-Based Recurrent Neural Network for Plant Disease Classification,” Front Plant Sci, vol. 11, Dec. 2020, doi: 10.3389/fpls.2020.601250.
  • R. Moreira, L. F. Rodrigues Moreira, P. L. A. Munhoz, E. A. Lopes, and R. A. A. Ruas, “AgroLens: A low-cost and green-friendly Smart Farm Architecture to support real-time leaf disease diagnostics,” Internet of Things, vol. 19, p. 100570, 2022, doi: https://doi.org/10.1016/j.iot.2022.100570.
  • K. Demir and V. Tümen, “Drone-assisted automated plant diseases identification using spiking deep conventional neural learning,” AI Communications, vol. 34, no. 2, pp. 147–162, 2021, doi: 10.3233/AIC-210009.
  • C. Nguyen, V. Sagan, M. Maimaitiyiming, M. Maimaitijiang, S. Bhadra, and M. T. Kwasniewski, “Early Detection of Plant Viral Disease Using Hyperspectral Imaging and Deep Learning,” Sensors, vol. 21, no. 3, 2021, doi: 10.3390/s21030742.
  • L. P. Osco et al., “A CNN approach to simultaneously count plants and detect plantation-rows from UAV imagery,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 174, pp. 1–17, 2021, doi: https://doi.org/10.1016/j.isprsjprs.2021.01.024.
  • M. S. Islam et al., “Multimodal Hybrid Deep Learning Approach to Detect Tomato Leaf Disease Using Attention Based Dilated Convolution Feature Extractor with Logistic Regression Classification,” Sensors, vol. 22, no. 16, 2022, doi: 10.3390/s22166079.
  • J. Gao, A. P. French, M. P. Pound, Y. He, T. P. Pridmore, and J. G. Pieters, “Deep convolutional neural networks for image-based Convolvulus sepium detection in sugar beet fields,” Plant Methods, vol. 16, no. 1, p. 29, 2020, doi: 10.1186/s13007-020-00570-z.
  • M. Maray et al., “Artificial intelligence-enabled coconut tree disease detection and classification model for smart agriculture,” Computers and Electrical Engineering, vol. 104, p. 108399, 2022, doi: https://doi.org/10.1016/j.compeleceng.2022.108399.
  • F. N. Al-Wesabi, A. A. Albraikan, A. M. Hilal, M. M. Eltahir, M. A. Hamza, and A. S. Zamani, “Artificial intelligence enabled apple leaf disease classification for precision agriculture,” Computers, Materials and Continua, vol. 70, no. 3, pp. 6223–6238, 2022, doi: 10.32604/cmc.2022.021299.
  • X. Li, Y. Zhou, J. Liu, L. Wang, J. Zhang, and X. Fan, “The Detection Method of Potato Foliage Diseases in Complex Background Based on Instance Segmentation and Semantic Segmentation,” Front Plant Sci, vol. 13, Jul. 2022, doi: 10.3389/fpls.2022.899754.
  • F. Lu et al., “LeafConvNeXt: Enhancing plant disease classification for the future of unmanned farming,” Comput Electron Agric, vol. 233, p. 110165, 2025, doi: https://doi.org/10.1016/j.compag.2025.110165.
  • P. Mhala, A. Bilandani, and S. Sharma, “Enhancing crop productivity with fined-tuned deep convolution neural network for Potato leaf disease detection,” Expert Syst Appl, vol. 267, p. 126066, 2025, doi: https://doi.org/10.1016/j.eswa.2024.126066.
  • C. A. Elinisa, C. Wa Maina, A. Vodacek, and N. Mduma, “Image Segmentation Deep Learning Model for Early Detection of Banana Diseases,” Applied Artificial Intelligence, vol. 39, no. 1, p. 2440837, Dec. 2025, doi: 10.1080/08839514.2024.2440837.
  • A. Salam, M. Naznine, N. Jahan, E. Nahid, M. Nahiduzzaman, and M. E. H. Chowdhury, “Mulberry Leaf Disease Detection Using CNN-Based Smart Android Application,” IEEE Access, vol. 12, pp. 83575–83588, 2024, doi: 10.1109/ACCESS.2024.3407153.
  • B. Padmavathi, A. BhagyaLakshmi, G. Vishnupriya, and K. Datchanamoorthy, “IoT-based prediction and classification framework for smart farming using adaptive multi-scale deep networks,” Expert Syst Appl, vol. 254, p. 124318, 2024, doi: https://doi.org/10.1016/j.eswa.2024.124318.
  • D. Bırant and C. İ. Sofuoğlu, “Potato Plant Leaf Disease Detection Using Deep Learning Method,” J Agric Sci (Belihuloya), vol. 30, no. 1, pp. 153–165, 2024, doi: 10.15832/ankutbd.1276722.
  • A. Batool, J. Kim, S. J. Lee, J. H. Yang, and Y. C. Byun, “An enhanced lightweight T-Net architecture based on convolutional neural network (CNN) for tomato plant leaf disease classification,” PeerJ Comput Sci, vol. 10, 2024, doi: 10.7717/peerj-cs.2495.
  • X. Wu et al., “SAW-YOLO: A Multi-Scale YOLO for Small Target Citrus Pests Detection,” Agronomy, vol. 14, no. 7, 2024, doi: 10.3390/agronomy14071571.
  • Z. D. Daşkın, M. S. Alam, and M. U. Khan, “Ensemble transfer learning using MaizeSet: A dataset for weed and maize crop recognition at different growth stages,” Crop Protection, vol. 184, p. 106849, 2024, doi: https://doi.org/10.1016/j.cropro.2024.106849.
  • A. Saygılı and G. Irmak, “A Novel Approach for Tomato Leaf Disease Classification with Deep Convolutional Neural Networks,” J Agric Sci (Belihuloya), vol. 30, no. 2, pp. 367–385, 2024, doi: 10.15832/ankutbd.1332675.
  • T. H. Kim et al., “ANFIS Fuzzy convolutional neural network model for leaf disease detection,” Front Plant Sci, vol. 15, 2024, doi: 10.3389/fpls.2024.1465960.
  • J. S. Prashanth, N. R. Moparthi, G. B. Krishna, A. V. K. Prasad, B. Sravankumar, and P. R. Rao, “MPCSAR-AHH: A hybrid deep learning model for real-time detection of cassava leaf diseases and fertilizer recommendation,” Computers and Electrical Engineering, vol. 119, p. 109628, 2024, doi: https://doi.org/10.1016/j.compeleceng.2024.109628.
  • M. Chilakalapudi and S. Jayachandran, “Multi-classification of disease induced in plant leaf using chronological Flamingo search optimization with transfer learning,” PeerJ Comput Sci, vol. 10, 2024, doi: 10.7717/peerj-cs.1972.
  • P. Johri et al., “Advanced deep transfer learning techniques for efficient detection of cotton plant diseases,” Front Plant Sci, vol. 15, 2024, doi: 10.3389/fpls.2024.1441117.
  • A. Menshchikov et al., “Real-Time Detection of Hogweed: UAV Platform Empowered by Deep Learning,” IEEE Transactions on Computers, vol. 70, no. 8, pp. 1175–1188, 2021, doi: 10.1109/TC.2021.3059819.
  • D. Su, Y. Qiao, H. Kong, and S. Sukkarieh, “Real time detection of inter-row ryegrass in wheat farms using deep learning,” Biosyst Eng, vol. 204, pp. 198–211, 2021, doi: https://doi.org/10.1016/j.biosystemseng.2021.01.019.
  • S. Shorewala, A. Ashfaque, R. Sidharth, and U. Verma, “Weed Density and Distribution Estimation for Precision Agriculture Using Semi-Supervised Learning,” IEEE Access, vol. 9, pp. 27971–27986, 2021, doi: 10.1109/ACCESS.2021.3057912.
  • T. M. Shah, D. P. B. Nasika, and R. Otterpohl, “Plant and Weed Identifier Robot as an Agroecological Tool Using Artificial Neural Networks for Image Identification,” Agriculture, vol. 11, no. 3, 2021, doi: 10.3390/agriculture11030222.
  • R. Punithavathi, A. Delphin Carolina Rani, K. R. Sughashini, C. Kurangi, M. Nirmala, H. F. Thariq Ahmed, and S. P. Balamurugan, “Computer Vision and Deep Learning-enabled Weed Detection Model for Precision Agriculture,” Comput. Syst. Sci. Eng., vol. 44, no. 3, 2023, doi: 10.32604/csse.2023.027647.
  • G. G. Peteinatos, P. Reichel, J. Karouta, D. Andújar, and R. Gerhards, “Weed Identification in Maize, Sunflower, and Potatoes with the Aid of Convolutional Neural Networks,” Remote Sens (Basel), vol. 12, no. 24, 2020, doi: 10.3390/rs12244185.
  • A. S. M. M. Hasan, D. Diepeveen, H. Laga, M. G. K. Jones, and F. Sohel, “Image patch-based deep learning approach for crop and weed recognition,” Ecol Inform, vol. 78, Dec. 2023, doi: 10.1016/j.ecoinf.2023.102361.
  • R. Goyal, A. Nath, and U. Niranjan, “Weed detection using deep learning in complex and highly occluded potato field environment,” Crop Protection, vol. 187, p. 106948, 2025, doi: https://doi.org/10.1016/j.cropro.2024.106948.
  • J. Gao et al., “Cross-domain transfer learning for weed segmentation and mapping in precision farming using ground and UAV images,” Expert Syst Appl, vol. 246, p. 122980, 2024, doi: https://doi.org/10.1016/j.eswa.2023.122980.
  • A. S. M. M. Hasan, D. Diepeveen, H. Laga, M. G. K. Jones, A. A. M. Muzahid, and F. Sohel, “Morphology-based weed type recognition using Siamese network,” European Journal of Agronomy, vol. 163, p. 127439, 2025, doi: https://doi.org/10.1016/j.eja.2024.127439.
  • S. Kamalesh Kanna, R. Kumaraperumal, P. Pazhanivelan, R. Jagadeeswaran, and P. C. Prabu, “YOLO deep learning algorithm for object detection in agriculture: a review,” 2024, Page Press Publications. doi: 10.4081/jae.2024.1641.
  • I. Abbas et al., “Different sensor based intelligent spraying systems in Agriculture,” Sens Actuators A Phys, vol. 316, p. 112265, 2020, doi: https://doi.org/10.1016/j.sna.2020.112265.
  • A. Kayad, D. S. Paraforos, F. Marinello, and S. Fountas, “Latest Advances in Sensor Applications in Agriculture,” Agriculture, vol. 10, no. 8, 2020, doi: 10.3390/agriculture10080362.
  • A. Botta, P. Cavallone, L. Baglieri, G. Colucci, L. Tagliavini, and G. Quaglia, “A Review of Robots, Perception, and Tasks in Precision Agriculture,” Applied Mechanics, vol. 3, no. 3, pp. 830–854, 2022, doi: 10.3390/applmech3030049.
  • A. Bechar and C. Vigneault, “Agricultural robots for field operations: Concepts and components,” Biosyst Eng, vol. 149, pp. 94–111, 2016, doi: https://doi.org/10.1016/j.biosystemseng.2016.06.014.
  • V. A. H. Higuti, A. E. B. Velasquez, D. V. Magalhaes, M. Becker, and G. Chowdhary, “Under canopy light detection and ranging-based autonomous navigation,” J Field Robot, vol. 36, no. 3, pp. 547–567, May 2019, doi: 10.1002/rob.21852.
  • B. H. Y. Alsalam, K. Morton, D. Campbell, and F. Gonzalez, “Autonomous UAV with vision based on-board decision making for remote sensing and precision agriculture,” in 2017 IEEE Aerospace Conference, 2017, pp. 1–12. doi: 10.1109/AERO.2017.7943593.
  • S. Kanagasingham, M. Ekpanyapong, and R. Chaihan, “Integrating machine vision-based row guidance with GPS and compass-based routing to achieve autonomous navigation for a rice field weeding robot,” Precis Agric, vol. 21, no. 4, pp. 831–855, 2020, doi: 10.1007/s11119-019-09697-z.
  • P. K. Reddy Maddikunta et al., “Unmanned Aerial Vehicles in Smart Agriculture: Applications, Requirements, and Challenges,” IEEE Sens J, vol. 21, no. 16, pp. 17608–17619, 2021, doi: 10.1109/JSEN.2021.3049471.
  • A. D. Boursianis et al., “Internet of Things (IoT) and Agricultural Unmanned Aerial Vehicles (UAVs) in smart farming: A comprehensive review,” Internet of Things, vol. 18, p. 100187, 2022, doi: https://doi.org/10.1016/j.iot.2020.100187.
  • D. C. Tsouros, S. Bibi, and P. G. Sarigiannidis, “A Review on UAV-Based Applications for Precision Agriculture,” Information, vol. 10, no. 11, 2019, doi: 10.3390/info10110349.
  • J. Kim, S. Kim, C. Ju, and H. Il Son, “Unmanned Aerial Vehicles in Agriculture: A Review of Perspective of Platform, Control, and Applications,” IEEE Access, vol. 7, pp. 105100–105115, 2019, doi: 10.1109/ACCESS.2019.2932119.
  • J. de Wit, W. Pieters, and P. van Gelder, “Sources of security risk information: What do professionals rely on for their risk assessment?,” Information Society, vol. 41, no. 3, pp. 157–172, 2025, doi: 10.1080/01972243.2025.2475311.
  • M. Fraiwan, E. Faouri, and N. Khasawneh, “Multiclass Classification of Grape Diseases Using Deep Artificial Intelligence,” Agriculture, vol. 12, no. 10, 2022, doi: 10.3390/agriculture12101542.
  • W. Zhao et al., “Using infrared thermal imaging technology to estimate the transpiration rate of citrus trees and evaluate plant water status,” J Hydrol (Amst), vol. 615, Dec. 2022, doi: 10.1016/j.jhydrol.2022.128671.
  • D. Chen, P. Wawrzynski, and Z. Lv, “Cyber security in smart cities: A review of deep learning-based applications and case studies,” Sustain Cities Soc, vol. 66, Mar. 2021, doi: 10.1016/j.scs.2020.102655.
  • M. S. Islam et al., “Multimodal Hybrid Deep Learning Approach to Detect Tomato Leaf Disease Using Attention Based Dilated Convolution Feature Extractor with Logistic Regression Classification,” Sensors, vol. 22, no. 16, 2022, doi: 10.3390/s22166079.
  • M. A. Alohali, F. N. Al-Wesabi, A. M. Hilal, S. Goel, D. Gupta, and A. Khanna, “Artificial intelligence enabled intrusion detection systems for cognitive cyber-physical systems in industry 4.0 environment,” Cogn Neurodyn, vol. 16, no. 5, pp. 1045–1057, Oct. 2022, doi: 10.1007/s11571-022-09780-8.
  • V. Tiwari, R. C. Joshi, and M. K. Dutta, “Deep neural network for multi-class classification of medicinal plant leaves,” Expert Syst, vol. 39, no. 8, Sep. 2022, doi: 10.1111/exsy.13041.
  • S. Khaki, H. Pham, Y. Han, A. Kuhl, W. Kent, and L. Wang, “DeepCorn: A semi-supervised deep learning method for high-throughput image-based corn kernel counting and yield estimation,” Knowl Based Syst, vol. 218, p. 106874, 2021, doi: https://doi.org/10.1016/j.knosys.2021.106874.
  • N. Ali, A. Mohammed, A. Bais, J. S. Sangha, Y. Ruan, and R. D. Cuthbert, “LodgeNet: an automated framework for precise detection and classification of wheat lodging severity levels in precision farming,” Front Plant Sci, vol. 14, 2023, doi: 10.3389/fpls.2023.1255961.
  • V. Blanco, N. Willsea, T. Campbell, O. Howe, and L. Kalcsits, “Combining thermal imaging and soil water content sensors to assess tree water status in pear trees,” Front Plant Sci, vol. 14, 2023, doi: 10.3389/fpls.2023.1197437.
  • I. Attri, L. K. Awasthi, T. P. Sharma, and P. Rathee, “A review of deep learning techniques used in agriculture,” Ecol Inform, vol. 77, p. 102217, 2023, doi: https://doi.org/10.1016/j.ecoinf.2023.102217.
  • J. G. A. Barbedo, “A review on the combination of deep learning techniques with proximal hyperspectral images in agriculture,” Comput Electron Agric, vol. 210, p. 107920, 2023, doi: https://doi.org/10.1016/j.compag.2023.107920.
  • L. Shuai, Z. Li, Z. Chen, D. Luo, and J. Mu, “A research review on deep learning combined with hyperspectral Imaging in multiscale agricultural sensing,” Comput Electron Agric, vol. 217, p. 108577, 2024, doi: https://doi.org/10.1016/j.compag.2023.108577.
  • X. Deng et al., “Estimation of photosynthetic parameters from hyperspectral images using optimal deep learning architecture,” Comput Electron Agric, vol. 216, p. 108540, 2024, doi: https://doi.org/10.1016/j.compag.2023.108540.
There are 147 citations in total.

Details

Primary Language English
Subjects Precision Agriculture Technologies
Journal Section Review
Authors

Ahmet Albayrak 0000-0002-2166-1102

Emre Can Kuran 0000-0002-0987-3866

Fatih Kayaalp 0000-0002-8752-3335

Publication Date December 1, 2025
Submission Date November 11, 2024
Acceptance Date August 2, 2025
Published in Issue Year 2025 Volume: 13 Issue: 4

Cite

IEEE A. Albayrak, E. C. Kuran, and F. Kayaalp, “DEEP LEARNING APPROACHES IN PRECISION AGRICULTURE: A COMPREHENSIVE REVIEW OF CROP CLASSIFICATION, DISEASE DETECTION, AND WEED DETECTION TECHNIQUES”, KONJES, vol. 13, no. 4, pp. 1318–1370, 2025, doi: 10.36306/konjes.1583103.