Research Article
BibTex RIS Cite
Year 2020, Volume: 8 Issue: 2, 263 - 267, 27.10.2020

Abstract

References

  • [1] J. Alaya and P. Maroni, Symmetric Laguerre-Hahn forms of class s = 1. Integral Transforms Spec. Funct. 4, (4), (1996), 301-320.
  • [2] W. Al-Salam, Characterization theorems for orthogonal polynomials, in: P. Nevai (Ed.), Orthogonal Polynomials: Theory and Practice, in: NATO ASI Ser. C Math. Phys. Sci., vol. 294, Kluwer Academic Publishers, Dordrecht, 1990, pp. 1-24.
  • [3] A. Angelesco, Sur les polynomes orthogonaux en rapport avec d’autre polynomes, Buletinul Societˆatii din Cluj, 1(1921), 44-59.
  • [4] Y. Ben Cheikh and M. Gaied, Characterization of the Dunkl-classical symmetric orthogonal polynomials. Appl. Math. Comput., 187 (2007), 105-114.
  • [5] Y. Ben Cheikh and M. Gaied, Dunkl-Appell d-orthogonal polynomials. Integral Transforms Spec. Funct. 18 (8), (2007) 581-597.
  • [6] L. Carlitz, Characterization of certain sequences of orthogonal polynomials, Portugaliae Math., 20 (1961), 43-46.
  • [7] T. S. Chihara, An introduction to orthogonal polynomials. Gordon and Breach, New York, 1978.
  • [8] C.F. Dunkl, Integral kernels with reflection group invariance, Canad. J. Math. 43 (1991), 1213-1227.
  • [9] A. Ghressi and L. Kheriji, A new characterization of the generalized Hermite form. Bull Belg Math Soc Simon Stevin. 15 (3) (2008), 561-567.
  • [10] L. Kheriji, P. Maroni, The Hq-classical orthogonal polynomials,Acta Appl. Math. 71 (2002), 49-115.
  • [11] P. Maroni, Une theorie algebrique des polynomes orthogonaux. Application aux polynˆomes orthogonaux semi-classiques, in: Orthogonal Polynomials and their applications. (C. Brezinski et al Editors.) IMACS, Ann. Comput. Appl. Math. 9, ( Baltzer, Basel) (1991), 95-130.
  • [12] M. Sghaier, A note on the Dunkl-classical orthogonal polynomials, Integral Transforms Spec. Funct. 23 (10), (2012) 753-760.
  • [13] J. Shohat, The relation of the classical orthogonal polmomials to the polmomials of Appell, Amer. J. Math., 58 (1936), 453-464.

A Note on the Dunkl-Appell Orthogonal Polynomials

Year 2020, Volume: 8 Issue: 2, 263 - 267, 27.10.2020

Abstract

This paper deals with the problem of finding all orthogonal polynomial sets which are also $T_{\mu}$-Appell where $T_{\mu}, \mu \in \mathbb{C}$ is the Dunkl operator. The resulting polynomials reduce to Generalized Hermite polynomials $\{{{H}}_n(\mu)\}_{n\geq0}$.                                                                                                                                                                                                                                                                                                            

References

  • [1] J. Alaya and P. Maroni, Symmetric Laguerre-Hahn forms of class s = 1. Integral Transforms Spec. Funct. 4, (4), (1996), 301-320.
  • [2] W. Al-Salam, Characterization theorems for orthogonal polynomials, in: P. Nevai (Ed.), Orthogonal Polynomials: Theory and Practice, in: NATO ASI Ser. C Math. Phys. Sci., vol. 294, Kluwer Academic Publishers, Dordrecht, 1990, pp. 1-24.
  • [3] A. Angelesco, Sur les polynomes orthogonaux en rapport avec d’autre polynomes, Buletinul Societˆatii din Cluj, 1(1921), 44-59.
  • [4] Y. Ben Cheikh and M. Gaied, Characterization of the Dunkl-classical symmetric orthogonal polynomials. Appl. Math. Comput., 187 (2007), 105-114.
  • [5] Y. Ben Cheikh and M. Gaied, Dunkl-Appell d-orthogonal polynomials. Integral Transforms Spec. Funct. 18 (8), (2007) 581-597.
  • [6] L. Carlitz, Characterization of certain sequences of orthogonal polynomials, Portugaliae Math., 20 (1961), 43-46.
  • [7] T. S. Chihara, An introduction to orthogonal polynomials. Gordon and Breach, New York, 1978.
  • [8] C.F. Dunkl, Integral kernels with reflection group invariance, Canad. J. Math. 43 (1991), 1213-1227.
  • [9] A. Ghressi and L. Kheriji, A new characterization of the generalized Hermite form. Bull Belg Math Soc Simon Stevin. 15 (3) (2008), 561-567.
  • [10] L. Kheriji, P. Maroni, The Hq-classical orthogonal polynomials,Acta Appl. Math. 71 (2002), 49-115.
  • [11] P. Maroni, Une theorie algebrique des polynomes orthogonaux. Application aux polynˆomes orthogonaux semi-classiques, in: Orthogonal Polynomials and their applications. (C. Brezinski et al Editors.) IMACS, Ann. Comput. Appl. Math. 9, ( Baltzer, Basel) (1991), 95-130.
  • [12] M. Sghaier, A note on the Dunkl-classical orthogonal polynomials, Integral Transforms Spec. Funct. 23 (10), (2012) 753-760.
  • [13] J. Shohat, The relation of the classical orthogonal polmomials to the polmomials of Appell, Amer. J. Math., 58 (1936), 453-464.
There are 13 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Mabrouk Sghaier

Publication Date October 27, 2020
Submission Date April 22, 2019
Acceptance Date September 22, 2020
Published in Issue Year 2020 Volume: 8 Issue: 2

Cite

APA Sghaier, M. (2020). A Note on the Dunkl-Appell Orthogonal Polynomials. Konuralp Journal of Mathematics, 8(2), 263-267.
AMA Sghaier M. A Note on the Dunkl-Appell Orthogonal Polynomials. Konuralp J. Math. October 2020;8(2):263-267.
Chicago Sghaier, Mabrouk. “A Note on the Dunkl-Appell Orthogonal Polynomials”. Konuralp Journal of Mathematics 8, no. 2 (October 2020): 263-67.
EndNote Sghaier M (October 1, 2020) A Note on the Dunkl-Appell Orthogonal Polynomials. Konuralp Journal of Mathematics 8 2 263–267.
IEEE M. Sghaier, “A Note on the Dunkl-Appell Orthogonal Polynomials”, Konuralp J. Math., vol. 8, no. 2, pp. 263–267, 2020.
ISNAD Sghaier, Mabrouk. “A Note on the Dunkl-Appell Orthogonal Polynomials”. Konuralp Journal of Mathematics 8/2 (October 2020), 263-267.
JAMA Sghaier M. A Note on the Dunkl-Appell Orthogonal Polynomials. Konuralp J. Math. 2020;8:263–267.
MLA Sghaier, Mabrouk. “A Note on the Dunkl-Appell Orthogonal Polynomials”. Konuralp Journal of Mathematics, vol. 8, no. 2, 2020, pp. 263-7.
Vancouver Sghaier M. A Note on the Dunkl-Appell Orthogonal Polynomials. Konuralp J. Math. 2020;8(2):263-7.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.