Araştırma Makalesi
BibTex RIS Kaynak Göster

Using Special Rules for Transformation of the Finding Exact Solutions of the Singular Schrödinger Differential Equation

Yıl 2008, Cilt: 11 Sayı: 1, 33 - 36, 30.06.2008

Öz

In this article we give a very brief outline of one way of carrying out the spectral analysis of a boundary value problem with specified singularities and investigating the corresponding inverse problem. We find out the solutions of equation satisfying the boundary condition
y¢(0) - aly(0) = 0
where V is a real valued function, λ is a spectral parameter and a is a natural number. As the mention above, these solutions of a singular boundary value problem were made of our premises which
results came out the solutions of a non singular boundary value problem
¢¢ - ( ) + 2 = 0, Î = [0,¥), y V x y l y x R+
y¢(0) - aly(0) = 0.

Kaynakça

  • Agranovich, Z.S., Marchenko, V.A., 1963.The Inverse Problem of Scattering Theory, Science Publishers New York and London. 9. 147-153.
  • Bairamov, E., Çakar, Ö., Çelebi, A.O., 1997. Quadratic pencil of Schrödinger operators with spectral singularities: Discrete spectrum and principal functions, J.Math. Anal. Appl. 216 , 303-320.
  • Bairamov, E., Çakar, Ö., Krall, A.M., 1999. Spectrum and spectral singularities of a quadratic pencil of a Schrödinger operator with a general boundary condition, J. Differential Equations, 151, 252-267.
  • Bairamov, E., Çakar, Ö., Krall, A.M., 1999.An eigenfunction expansion for a quadratic pencil of a Schrödinger operator with spectral singularities, J. Differential Equations, 151, 268-289.
  • Bairamov, E., Çelebi, A.O., 1997. Spectral properties of the Klein-Gordon s-wave equation with complex potential, Indian J. Pure Appl. Math., 28 (6), 813-824..
  • Naimark, M.A.,1968. Linear Differential Operators II, Ungar, New York. P.260-265.
  • Karaman, Ö., Yanık, C., 2000. On the Solutions of Klein- Gordon Equation, Comm. Fac. Sci. Univ., Ank., Vol 49, 139-144.

Singülerliğe Sahip Schrödinger Diferansiyel Denkleminin Çözümlerinin Özel Bir Dönüsüm Yardımı ile Bulunması

Yıl 2008, Cilt: 11 Sayı: 1, 33 - 36, 30.06.2008

Öz

Bu makalede özel bir singüleriteye sahip sınır değer probleminin, spektral analizinin
incelenmesinde kısa bir yöntemi verilecektir.
singüler diferansiyel denkleminin
y¢(0) - aly(0) = 0
sınır kosulunu gerçekleyen çözümlerini
¢¢ - ( ) + 2 = 0, Î = [0,¥), y V x y l y x R+
y¢(0) - aly(0) = 0
singüler olmayan diferansiyel denkleminin sınır değer problemini gerçekleyen çözümleri yardımı ile
bulunduğu gösterilecektir. Burada V kompleks değerli bir fonksiyon, a bir doğal sayı ve λ bir
parametredir.

Kaynakça

  • Agranovich, Z.S., Marchenko, V.A., 1963.The Inverse Problem of Scattering Theory, Science Publishers New York and London. 9. 147-153.
  • Bairamov, E., Çakar, Ö., Çelebi, A.O., 1997. Quadratic pencil of Schrödinger operators with spectral singularities: Discrete spectrum and principal functions, J.Math. Anal. Appl. 216 , 303-320.
  • Bairamov, E., Çakar, Ö., Krall, A.M., 1999. Spectrum and spectral singularities of a quadratic pencil of a Schrödinger operator with a general boundary condition, J. Differential Equations, 151, 252-267.
  • Bairamov, E., Çakar, Ö., Krall, A.M., 1999.An eigenfunction expansion for a quadratic pencil of a Schrödinger operator with spectral singularities, J. Differential Equations, 151, 268-289.
  • Bairamov, E., Çelebi, A.O., 1997. Spectral properties of the Klein-Gordon s-wave equation with complex potential, Indian J. Pure Appl. Math., 28 (6), 813-824..
  • Naimark, M.A.,1968. Linear Differential Operators II, Ungar, New York. P.260-265.
  • Karaman, Ö., Yanık, C., 2000. On the Solutions of Klein- Gordon Equation, Comm. Fac. Sci. Univ., Ank., Vol 49, 139-144.
Toplam 7 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Makaleler
Yazarlar

Özkan Karaman Bu kişi benim

Mehmet Korkmaz Bu kişi benim

Yaşar Aslan Bu kişi benim

Yayımlanma Tarihi 30 Haziran 2008
Kabul Tarihi 3 Ocak 2008
Yayımlandığı Sayı Yıl 2008 Cilt: 11 Sayı: 1

Kaynak Göster

APA Karaman, Ö., Korkmaz, M., & Aslan, Y. (2008). Using Special Rules for Transformation of the Finding Exact Solutions of the Singular Schrödinger Differential Equation. KSÜ Doğa Bilimleri Dergisi, 11(1), 33-36.
AMA Karaman Ö, Korkmaz M, Aslan Y. Using Special Rules for Transformation of the Finding Exact Solutions of the Singular Schrödinger Differential Equation. KSÜ Doğa Bilimleri Dergisi. Haziran 2008;11(1):33-36.
Chicago Karaman, Özkan, Mehmet Korkmaz, ve Yaşar Aslan. “Using Special Rules for Transformation of the Finding Exact Solutions of the Singular Schrödinger Differential Equation”. KSÜ Doğa Bilimleri Dergisi 11, sy. 1 (Haziran 2008): 33-36.
EndNote Karaman Ö, Korkmaz M, Aslan Y (01 Haziran 2008) Using Special Rules for Transformation of the Finding Exact Solutions of the Singular Schrödinger Differential Equation. KSÜ Doğa Bilimleri Dergisi 11 1 33–36.
IEEE Ö. Karaman, M. Korkmaz, ve Y. Aslan, “Using Special Rules for Transformation of the Finding Exact Solutions of the Singular Schrödinger Differential Equation”, KSÜ Doğa Bilimleri Dergisi, c. 11, sy. 1, ss. 33–36, 2008.
ISNAD Karaman, Özkan vd. “Using Special Rules for Transformation of the Finding Exact Solutions of the Singular Schrödinger Differential Equation”. KSÜ Doğa Bilimleri Dergisi 11/1 (Haziran 2008), 33-36.
JAMA Karaman Ö, Korkmaz M, Aslan Y. Using Special Rules for Transformation of the Finding Exact Solutions of the Singular Schrödinger Differential Equation. KSÜ Doğa Bilimleri Dergisi. 2008;11:33–36.
MLA Karaman, Özkan vd. “Using Special Rules for Transformation of the Finding Exact Solutions of the Singular Schrödinger Differential Equation”. KSÜ Doğa Bilimleri Dergisi, c. 11, sy. 1, 2008, ss. 33-36.
Vancouver Karaman Ö, Korkmaz M, Aslan Y. Using Special Rules for Transformation of the Finding Exact Solutions of the Singular Schrödinger Differential Equation. KSÜ Doğa Bilimleri Dergisi. 2008;11(1):33-6.