Research Article
BibTex RIS Cite

DİJİTAL ÇAĞDA EBEVEYNLİK: MOBİL ÖNERİ SİSTEMİNİNE YÖNELİK GERİ BİLDİRİMLER

Year 2025, Volume: 15 Issue: 1, 195 - 222, 31.01.2025

Abstract

Bu çalışmanın amacı, dijital ebeveynliğe yönelik geliştirilen mobil bir öneri sistemi hakkında ebeveyn görüşlerini değerlendirmektir. Çalışma kapsamında, dijital ebeveynlik becerilerini desteklemek için geliştirilen mobil öneri sistemini bir hafta boyunca kullanan 10 ebeveynin görüşleri toplanmış ve bu görüşler detaylı bir şekilde incelenerek raporlanmıştır. Elde edilen bulgular incelendiğinde; katılımcıların sistemde kendilerine önerilen içerikleri incelediklerini belirttikleri görülmüştür. İnceleme sebepleri arasında, içeriklerin önemli olması, kişisel ilgi alanlarına hitap etmesi ve uygulamalı anlatımları içermesi bulunmaktadır. Katılımcıların çoğunluğu, önerilen içerikleri diğer içeriklerden önce ve daha fazla görüntülediklerini belirtmiştir. Bu tercihin nedenleri arasında, içeriklerin ilgi çekici olması ve ihtiyaçlarına yönelik olması öne çıkmaktadır. Katılımcıların büyük çoğunluğu, önerilerin dijital ebeveynlik alanında ihtiyaçlarını yansıttığını düşünmektedir. Bu durum, önerilerin katılımcıların önceliklerine ve sorularına cevap verebilme yeteneğiyle açıklanmıştır. Katılımcılar, sistem tarafından sunulan hem kişisel önerilerin hem de popüler önerilerin çoğunlukla uygun olduğunu ifade etmiştir. Katılımcılar, dijital ayak izi, siber zorbalık ve dijital mahremiyet gibi konularda daha fazla içerik önerilmesini istemektedir. Ayrıca, meslek grubu ve çocukların yaşına göre kişiselleştirilmiş öneriler sunulması gibi iyileştirme önerileri getirilmiştir. Bunlara ek olarak, katılımcılar, uygulamanın içerik ve yazılım geliştirmeleri hakkında çeşitli önerilerde bulunmuşlardır. Gerçek ebeveyn deneyimlerini içeren içerikler, benzer uygulamalara bağlantılar ve interaktif oyunlar gibi ek iyileştirmelerin faydalı olacağını dile getirmişlerdir.

References

  • Akan, S., Keskin, S., & Şener, K. (2024). Ebeveynlerin Dijital Ebeveynlik Yeterlikleri: Sosyoekonomik Farklılıklar ve Teknoloji Deneyimi Bağlamında bir İnceleme. Educational Academic Research, (53), 40-54.
  • An, Y. J., & Reigeluth, C. M. (2008). Problem-based learning in online environments. Quarterly Review of Distance Education, 9(1), 1-16.
  • Azis, A., Nuzulismah, R. S., Sensuse, D. I., & Suryono, R. R. (2021, October). Using Gamification and Andragogy Principle in Mobile Online Discussion to Improve User Engagement. In 2021 2nd International Conference on ICT for Rural Development (IC-ICTRuDev) (pp. 1-6). IEEE.
  • Brik, M., & Touahria, M. (2020). Contextual information retrieval within recommender system: sase study" E-learning system". TEM Journal, 9(3), 1150.
  • Cerna, L. (2019). Refugee education: Integration models and practices in OECD countries. https://www.oecd-ilibrary.org/education/refugee-education_a3251a00-en sayfasından erişilmiştir.
  • Chakraverty, S., Chakraborty, P., Agnihotri, S., Mohapatra, S., & Bansal, P. (2019, June). KELDEC: A recommendation system for extending classroom learning with visual environmental cues. In Proceedings of the 2019 3rd International Conference on Natural Language Processing and Information Retrieval (pp. 99-103). ACM.
  • Creswell, J. W., & Miller, D. L. (2000). Determining validity in qualitative inquiry. Theory into practice, 39(3), 124-130.
  • Drachsler, H., Hummel, H., van den Berg, B., Eshuis, J., Waterink, W., Nadolski, R., ... & Koper, R. (2009). Evaluating the effectiveness of personalised recommender systems in learning networks. Learning Network Services for Professional Development, 95-113.
  • De Meo, P., Messina, F., Rosaci, D., & Sarné, G. M. (2017). Combining trust and skills evaluation to form e-Learning classes in online social networks. Information Sciences, 405, 107-122.
  • Durak, A. (2019). Ebeveyn Arabuluculuğunun Bazı Değişkenlere Göre İncelenmesi. Yayınlanmamış Yüksek Lisans Tezi, Bartın Üniversitesi, Bartın.
  • Dursun, G. D., Ektik, D., & Tutcu, B. (2019). Mesleğin dijitalleşmesi: muhasebe 4.0. Avrasya Sosyal ve Ekonomi Araştırmaları Dergisi, 6(6), 263-271.
  • Elçiçek, M. (2022). Kesintisiz öğrenme, Mobil öğrenme. Eğitimde Dijitalleşme ve Yeni Yaklaşımlar, 155. Fernández-García, A. J., Iribarne, L., Corral, A., Criado, J., & Wang, J. Z. (2019). A recommender system for component-based applications using machine learning techniques. Knowledge-Based Systems, 164, 68-84.
  • Güzelçoban, F. (2023). Dijital Ebeveynlik ve TRT Çocuk Uygulamaları. TRT Akademi, 8(19), 992-1007.
  • Huang, G., Li, X., Chen, W., & Straubhaar, J. D. (2018). Fall-behind parents? The ınfluential factors on digital parenting self-efficacy in disadvantaged communities. American Behavioral Scientist, 62(9), 1186-1206.
  • Huang, Z., Liu, Q., Zhai, C., Yin, Y., Chen, E., Gao, W., & Hu, G. (2019, November). Exploring multi-objective exercise recommendations in online education systems. In Proceedings of the 28th ACM International Conference on Information and Knowledge Management (pp. 1261-1270).
  • Hui, H., & Xiao, L. (2022, July). The design of the english teaching resource management system based on collaborative recommendation. In EAI International Conference, BigIoT-EDU (pp. 446-454). Cham: Springer Nature Switzerland.
  • Jiang, X., Bai, L., Yan, X., & Wang, Y. (2023). LDA-based online intelligent courses recommendation system. Evolutionary Intelligence, 16(5), 1619-1625.
  • Kabakçı-Yurdakul, I. K., Dönmez, O., Yaman, F., & Odabaşı, H. F. (2013). Dijital ebeveynlik ve değişen roller. Gaziantep Üniversitesi Sosyal Bilimler Dergisi, 12(4), 883-896.
  • Keller, J. M., & Keller, J. M. (2010). The Arcs model of motivational design. Motivational design for learning and performance: The ARCS model approach, 43-74.
  • Klašnja-Milićević, A. (2013). Personalized eecommendation based on collaborative tagging techniques for an e‐learning system (Doctoral dissertation, University of Novi Sad (Serbia).
  • Knowles, M. S. (1978). Andragogy: Adult learning theory in perspective. Community College Review, 5(3), 9-20.
  • Kuhl, J. (1984). Volitional aspects of achievement motivation and learned helplessness: Toward a comprehensive theory of action control. In Progress in experimental personality research (Vol. 13, pp. 99-171). Elsevier.
  • Li, H., Li, H., Zhang, S., Zhong, Z., & Cheng, J. (2019). Intelligent learning system based on personalized recommendation technology. Neural Computing and Applications, 31(9), 4455-4462.
  • Li, J., Ye, Z. (2020). Course recommendations in online education based on collaborative filtering recommendation algorithm. Complexity. https://doi.org/10.1155/2020/6619249.
  • Lieb, S., & Goodlad, J. (2005). Principles of adult learning.
  • Livingstone, S., & Byrne, J. (2018). Parenting in the digital age: The challenges of parental responsibility in comparative perspective.
  • Livingstone, S., & Helsper, E. J. (2008). Parental mediation of children's internet use. Journal of broadcasting & electronic media, 52(4), 581-599.
  • Lupton, D., Pedersen, S., & Thomas, G. M. (2016). Parenting and digital media: from the early web to contemporary digital society. Sociology Compass, 10(8), 730-743.
  • Ma, B., Lu, M., Taniguchi, Y., & Konomi, S. I. (2021). CourseQ: the impact of visual and interactive course recommendation in university environments. Research and practice in technology enhanced learning, 16, 1-24.
  • Miles, M, B., & Huberman, A. M. (1994). Qualitative data analysis: An expanded Sourcebook. (2nded). Thousand Oaks, CA: Sage.
  • Milovidov, E. (2020). Parenting in The Digital Age Positive parenting strategies for different scenarios. Council of Europe. https://rm.coe.int/0900001680a0855a sayfasından erişilmiştir.
  • Masters, J. (2005). ExplaNet: A learning tool and hybrid recommender system for student-authored explanations. University of California, Santa Cruz.
  • Nikken, P., & Jansz, J. (2014). Developing scales to measure parental mediation of young children's internet use. Learning, Media and technology, 39(2), 250-266.
  • OECD (2016). Beceriler önemlidir: Yetişkin becerileri araştırmasının kapsamlı sonuçları- Türkiye ülke notu. http://www.oecd.org/skills/piaac/Skills-Matter-Turkey-Turkish-version.pdf sayfasından erişilmiştir.
  • PIAAC. (2015). Survey of Adult Skills. https://www.oecd.org/skills/piaac/ sayfasından erişilmiştir.
  • Rafaeli, S., Dan-Gur, Y., & Barak, M. (2005). Social recommender systems: recommendations in support of e-learning. International Journal of Distance Education Technologies (IJDET), 3(2), 30-47.
  • Rahayu, N. W., Ferdiana, R., & Kusumawardani, S. S. (2023). A systematic review of learning path recommender systems. Education and Information Technologies, 28(6), 7437-7460.
  • Ricci, F., Rokach, L., & Shapira, B. (2011). Introduction to recommender systems handbook. In Recommender systems handbook (pp. 1-35): Springer.
  • Ricci, F., Rokach, L., & Shapira, B. (2015). Recommender systems: introduction and challenges. In Recommender systems handbook (pp. 1-34). Springer, Boston, MA.
  • Posner, M. I., Snyder, C. R., & Davidson, B. J. (1980). Attention and the detection of signals. Journal of experimental psychology: General, 109(2), 160.
  • Sağlam, T. (2024). Çocuklarda Teknoloji Kullanımı ve Dijital Ebeveynlik. Birey ve Toplum Sosyal Bilimler Dergisi, 14(1), 123-129.
  • Saputra, N. A. B., & Sunindyo, W. D. (2019, November). Maximum coverage method modification with timeliness in non-personalized recommendation for pure cold-start users. In 2019 International Conference on Data and Software Engineering (ICoDSE) (pp. 1-6). IEEE.
  • Su, X., & Khoshgoftaar, T. M. (2009). A survey of collaborative filtering techniques. Advances in artificial intelligence, 2009.
  • Tejeda-Lorente, Á., Bernabé-Moreno, J., Porcel, C., Galindo-Moreno, P., & Herrera-Viedma, E. (2015). A dynamic recommender system as reinforcement for personalized education by a fuzzly linguistic web system. Procedia Computer Science, 55, 1143-1150.
  • Tiryaki, S. (2023). Riskler ve olanaklar arasında dijital ebeveynlik: Bibliyometrik bir analiz. TRT Akademi, 8(19), 746-765.
  • Türk Dil Kurumu (TDK) (2023). Güncel Türkçe Sözlük. https://sozluk.gov.tr/ sayfasından erişilmiştir.
  • Türkiye İstatistik Kurumu (TÜİK) (2019). Hanehalkı Bilişim Teknolojileri (BT) Kullanım Araştırması, 2019. https://data.tuik.gov.tr/Bulten/Index?p=Hanehalki-Bilisim-Teknolojileri-(BT)-Kullanim-Arastirmasi-2019-30574 sayfasından erişilmiştir.
  • Türkiye İstatistik Kurumu (TÜİK) (2021). Hanehalkı Bilişim Teknolojileri (BT) Kullanım Araştırması, 2021 https://shorturl.at/ADIU7 sayfasından erişilmiştir.
  • Walker, A. E. (2002). An educational recommender system: New territory for collaborative filtering. Doctor of Philosophy Utah State University, USA.
  • Wang, X. L. (2008). Penalized maximal F test for detecting undocumented mean shift without trend change. Journal of Atmospheric and Oceanic Technology, 25(3), 368-384.
  • Wang, C., Zhu, H., Zhu, C., Zhang, X., Chen, E., & Xiong, H. (2020, April). Personalized employee training course recommendation with career development awareness. In Proceedings of the Web Conference 2020 (pp. 1648-1659).
  • Yaman, F. (2018). Türkiye’deki ebeveynlerin dijital ebeveynlik öz yeterliklerinin incelenmesi. Doktora Tezi. Anadolu Üniversitesi. Eğitim Bilimleri Enstitüsü. Search in.
  • Yıldırım, A ve Şimşek, H. (2016). Sosyal bilimlerde nitel araştırma yöntemleri (11.Baskı), Çankaya, Ankara: Seçkin Yayıncılık.
  • Zhang, J. (2023, January). Course recommendation method and system of education platform based on deep learning. In Application of Big Data, Blockchain, and Internet of Things for Education.
  • Zhang, Q., Lu, J., & Zhang, G. (2021). Recommender systems in e-learning. Journal of Smart Environments and Green Computing, 1(2), 76-89.
  • Zhou, Y., Huang, C., Hu, Q., Zhu, J., & Tang, Y. (2018). Personalized learning full-path recommendation model based on LSTM neural networks. Information Sciences, 444, 135-152.

Parenting in the Digital Age: Feedback on the Mobile Recommendation System

Year 2025, Volume: 15 Issue: 1, 195 - 222, 31.01.2025

Abstract

The aim of this study is to gain insight into the perceptions of parents regarding a mobile recommendation system designed for digital parenting. In the course of this study, we had the opportunity to gain insight into the experiences of 10 parents who had the chance to engage with the mobile recommendation system, which was developed with the aim of supporting digital parenting skills. We were able to examine these experiences in detail and present our findings. Upon examination of the findings, it became evident that the participants had indeed examined the content that had been recommended to them within the system. The reasons for this examination include the importance of the content, the relevance to their personal interests, and the inclusion of practical explanations. The majority of participants indicated that they viewed the recommended content in addition to other content. It seems that the content is perceived as interesting and relevant to the users' needs. The majority of the participants believe that the recommendations align with their needs in the field of digital parenting. It was suggested that this situation may be explained by the ability of the recommendations to answer the priorities and questions of the participants. The participants indicated that the personal recommendations and popular recommendations offered by the system were generally perceived as appropriate. The participants expressed interest in seeing more content suggestions on topics such as digital footprint, cyberbullying, and digital privacy. Additionally, they suggested that the app could benefit from personalized recommendations tailored to the specific occupational group and age of the children. They also provided valuable insights on potential content and software enhancements, suggesting the inclusion of content that reflects real parent experiences, links to similar apps, and interactive games.

References

  • Akan, S., Keskin, S., & Şener, K. (2024). Ebeveynlerin Dijital Ebeveynlik Yeterlikleri: Sosyoekonomik Farklılıklar ve Teknoloji Deneyimi Bağlamında bir İnceleme. Educational Academic Research, (53), 40-54.
  • An, Y. J., & Reigeluth, C. M. (2008). Problem-based learning in online environments. Quarterly Review of Distance Education, 9(1), 1-16.
  • Azis, A., Nuzulismah, R. S., Sensuse, D. I., & Suryono, R. R. (2021, October). Using Gamification and Andragogy Principle in Mobile Online Discussion to Improve User Engagement. In 2021 2nd International Conference on ICT for Rural Development (IC-ICTRuDev) (pp. 1-6). IEEE.
  • Brik, M., & Touahria, M. (2020). Contextual information retrieval within recommender system: sase study" E-learning system". TEM Journal, 9(3), 1150.
  • Cerna, L. (2019). Refugee education: Integration models and practices in OECD countries. https://www.oecd-ilibrary.org/education/refugee-education_a3251a00-en sayfasından erişilmiştir.
  • Chakraverty, S., Chakraborty, P., Agnihotri, S., Mohapatra, S., & Bansal, P. (2019, June). KELDEC: A recommendation system for extending classroom learning with visual environmental cues. In Proceedings of the 2019 3rd International Conference on Natural Language Processing and Information Retrieval (pp. 99-103). ACM.
  • Creswell, J. W., & Miller, D. L. (2000). Determining validity in qualitative inquiry. Theory into practice, 39(3), 124-130.
  • Drachsler, H., Hummel, H., van den Berg, B., Eshuis, J., Waterink, W., Nadolski, R., ... & Koper, R. (2009). Evaluating the effectiveness of personalised recommender systems in learning networks. Learning Network Services for Professional Development, 95-113.
  • De Meo, P., Messina, F., Rosaci, D., & Sarné, G. M. (2017). Combining trust and skills evaluation to form e-Learning classes in online social networks. Information Sciences, 405, 107-122.
  • Durak, A. (2019). Ebeveyn Arabuluculuğunun Bazı Değişkenlere Göre İncelenmesi. Yayınlanmamış Yüksek Lisans Tezi, Bartın Üniversitesi, Bartın.
  • Dursun, G. D., Ektik, D., & Tutcu, B. (2019). Mesleğin dijitalleşmesi: muhasebe 4.0. Avrasya Sosyal ve Ekonomi Araştırmaları Dergisi, 6(6), 263-271.
  • Elçiçek, M. (2022). Kesintisiz öğrenme, Mobil öğrenme. Eğitimde Dijitalleşme ve Yeni Yaklaşımlar, 155. Fernández-García, A. J., Iribarne, L., Corral, A., Criado, J., & Wang, J. Z. (2019). A recommender system for component-based applications using machine learning techniques. Knowledge-Based Systems, 164, 68-84.
  • Güzelçoban, F. (2023). Dijital Ebeveynlik ve TRT Çocuk Uygulamaları. TRT Akademi, 8(19), 992-1007.
  • Huang, G., Li, X., Chen, W., & Straubhaar, J. D. (2018). Fall-behind parents? The ınfluential factors on digital parenting self-efficacy in disadvantaged communities. American Behavioral Scientist, 62(9), 1186-1206.
  • Huang, Z., Liu, Q., Zhai, C., Yin, Y., Chen, E., Gao, W., & Hu, G. (2019, November). Exploring multi-objective exercise recommendations in online education systems. In Proceedings of the 28th ACM International Conference on Information and Knowledge Management (pp. 1261-1270).
  • Hui, H., & Xiao, L. (2022, July). The design of the english teaching resource management system based on collaborative recommendation. In EAI International Conference, BigIoT-EDU (pp. 446-454). Cham: Springer Nature Switzerland.
  • Jiang, X., Bai, L., Yan, X., & Wang, Y. (2023). LDA-based online intelligent courses recommendation system. Evolutionary Intelligence, 16(5), 1619-1625.
  • Kabakçı-Yurdakul, I. K., Dönmez, O., Yaman, F., & Odabaşı, H. F. (2013). Dijital ebeveynlik ve değişen roller. Gaziantep Üniversitesi Sosyal Bilimler Dergisi, 12(4), 883-896.
  • Keller, J. M., & Keller, J. M. (2010). The Arcs model of motivational design. Motivational design for learning and performance: The ARCS model approach, 43-74.
  • Klašnja-Milićević, A. (2013). Personalized eecommendation based on collaborative tagging techniques for an e‐learning system (Doctoral dissertation, University of Novi Sad (Serbia).
  • Knowles, M. S. (1978). Andragogy: Adult learning theory in perspective. Community College Review, 5(3), 9-20.
  • Kuhl, J. (1984). Volitional aspects of achievement motivation and learned helplessness: Toward a comprehensive theory of action control. In Progress in experimental personality research (Vol. 13, pp. 99-171). Elsevier.
  • Li, H., Li, H., Zhang, S., Zhong, Z., & Cheng, J. (2019). Intelligent learning system based on personalized recommendation technology. Neural Computing and Applications, 31(9), 4455-4462.
  • Li, J., Ye, Z. (2020). Course recommendations in online education based on collaborative filtering recommendation algorithm. Complexity. https://doi.org/10.1155/2020/6619249.
  • Lieb, S., & Goodlad, J. (2005). Principles of adult learning.
  • Livingstone, S., & Byrne, J. (2018). Parenting in the digital age: The challenges of parental responsibility in comparative perspective.
  • Livingstone, S., & Helsper, E. J. (2008). Parental mediation of children's internet use. Journal of broadcasting & electronic media, 52(4), 581-599.
  • Lupton, D., Pedersen, S., & Thomas, G. M. (2016). Parenting and digital media: from the early web to contemporary digital society. Sociology Compass, 10(8), 730-743.
  • Ma, B., Lu, M., Taniguchi, Y., & Konomi, S. I. (2021). CourseQ: the impact of visual and interactive course recommendation in university environments. Research and practice in technology enhanced learning, 16, 1-24.
  • Miles, M, B., & Huberman, A. M. (1994). Qualitative data analysis: An expanded Sourcebook. (2nded). Thousand Oaks, CA: Sage.
  • Milovidov, E. (2020). Parenting in The Digital Age Positive parenting strategies for different scenarios. Council of Europe. https://rm.coe.int/0900001680a0855a sayfasından erişilmiştir.
  • Masters, J. (2005). ExplaNet: A learning tool and hybrid recommender system for student-authored explanations. University of California, Santa Cruz.
  • Nikken, P., & Jansz, J. (2014). Developing scales to measure parental mediation of young children's internet use. Learning, Media and technology, 39(2), 250-266.
  • OECD (2016). Beceriler önemlidir: Yetişkin becerileri araştırmasının kapsamlı sonuçları- Türkiye ülke notu. http://www.oecd.org/skills/piaac/Skills-Matter-Turkey-Turkish-version.pdf sayfasından erişilmiştir.
  • PIAAC. (2015). Survey of Adult Skills. https://www.oecd.org/skills/piaac/ sayfasından erişilmiştir.
  • Rafaeli, S., Dan-Gur, Y., & Barak, M. (2005). Social recommender systems: recommendations in support of e-learning. International Journal of Distance Education Technologies (IJDET), 3(2), 30-47.
  • Rahayu, N. W., Ferdiana, R., & Kusumawardani, S. S. (2023). A systematic review of learning path recommender systems. Education and Information Technologies, 28(6), 7437-7460.
  • Ricci, F., Rokach, L., & Shapira, B. (2011). Introduction to recommender systems handbook. In Recommender systems handbook (pp. 1-35): Springer.
  • Ricci, F., Rokach, L., & Shapira, B. (2015). Recommender systems: introduction and challenges. In Recommender systems handbook (pp. 1-34). Springer, Boston, MA.
  • Posner, M. I., Snyder, C. R., & Davidson, B. J. (1980). Attention and the detection of signals. Journal of experimental psychology: General, 109(2), 160.
  • Sağlam, T. (2024). Çocuklarda Teknoloji Kullanımı ve Dijital Ebeveynlik. Birey ve Toplum Sosyal Bilimler Dergisi, 14(1), 123-129.
  • Saputra, N. A. B., & Sunindyo, W. D. (2019, November). Maximum coverage method modification with timeliness in non-personalized recommendation for pure cold-start users. In 2019 International Conference on Data and Software Engineering (ICoDSE) (pp. 1-6). IEEE.
  • Su, X., & Khoshgoftaar, T. M. (2009). A survey of collaborative filtering techniques. Advances in artificial intelligence, 2009.
  • Tejeda-Lorente, Á., Bernabé-Moreno, J., Porcel, C., Galindo-Moreno, P., & Herrera-Viedma, E. (2015). A dynamic recommender system as reinforcement for personalized education by a fuzzly linguistic web system. Procedia Computer Science, 55, 1143-1150.
  • Tiryaki, S. (2023). Riskler ve olanaklar arasında dijital ebeveynlik: Bibliyometrik bir analiz. TRT Akademi, 8(19), 746-765.
  • Türk Dil Kurumu (TDK) (2023). Güncel Türkçe Sözlük. https://sozluk.gov.tr/ sayfasından erişilmiştir.
  • Türkiye İstatistik Kurumu (TÜİK) (2019). Hanehalkı Bilişim Teknolojileri (BT) Kullanım Araştırması, 2019. https://data.tuik.gov.tr/Bulten/Index?p=Hanehalki-Bilisim-Teknolojileri-(BT)-Kullanim-Arastirmasi-2019-30574 sayfasından erişilmiştir.
  • Türkiye İstatistik Kurumu (TÜİK) (2021). Hanehalkı Bilişim Teknolojileri (BT) Kullanım Araştırması, 2021 https://shorturl.at/ADIU7 sayfasından erişilmiştir.
  • Walker, A. E. (2002). An educational recommender system: New territory for collaborative filtering. Doctor of Philosophy Utah State University, USA.
  • Wang, X. L. (2008). Penalized maximal F test for detecting undocumented mean shift without trend change. Journal of Atmospheric and Oceanic Technology, 25(3), 368-384.
  • Wang, C., Zhu, H., Zhu, C., Zhang, X., Chen, E., & Xiong, H. (2020, April). Personalized employee training course recommendation with career development awareness. In Proceedings of the Web Conference 2020 (pp. 1648-1659).
  • Yaman, F. (2018). Türkiye’deki ebeveynlerin dijital ebeveynlik öz yeterliklerinin incelenmesi. Doktora Tezi. Anadolu Üniversitesi. Eğitim Bilimleri Enstitüsü. Search in.
  • Yıldırım, A ve Şimşek, H. (2016). Sosyal bilimlerde nitel araştırma yöntemleri (11.Baskı), Çankaya, Ankara: Seçkin Yayıncılık.
  • Zhang, J. (2023, January). Course recommendation method and system of education platform based on deep learning. In Application of Big Data, Blockchain, and Internet of Things for Education.
  • Zhang, Q., Lu, J., & Zhang, G. (2021). Recommender systems in e-learning. Journal of Smart Environments and Green Computing, 1(2), 76-89.
  • Zhou, Y., Huang, C., Hu, Q., Zhu, J., & Tang, Y. (2018). Personalized learning full-path recommendation model based on LSTM neural networks. Information Sciences, 444, 135-152.
There are 56 citations in total.

Details

Primary Language Turkish
Subjects Sociology of Science and Information, Sociology and Social Studies of Science and Technology
Journal Section Research Article
Authors

Yıldız Özaydın Aydoğdu 0000-0002-7433-3057

Sibel Somyürek 0000-0001-7803-1438

Publication Date January 31, 2025
Submission Date November 8, 2024
Acceptance Date December 24, 2024
Published in Issue Year 2025 Volume: 15 Issue: 1

Cite

APA Özaydın Aydoğdu, Y., & Somyürek, S. (2025). DİJİTAL ÇAĞDA EBEVEYNLİK: MOBİL ÖNERİ SİSTEMİNİNE YÖNELİK GERİ BİLDİRİMLER. Kırıkkale Üniversitesi Sosyal Bilimler Dergisi, 15(1), 195-222.

İletişim

Telefon Numarası: +90 0318 357 35 92

Faks Numarası: +90 0318 357 35 97

e-mail: sbd@kku.edu.tr

Posta Adresi: Kırıkkale Üniversitesi Sosyal Bilimler Enstitüsü Müdürlüğü, Merkez Yerleşke, 71450, Yahşihan-KIRIKKALE

Creative Commons Lisansı
Bu eser Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.