Research Article
BibTex RIS Cite

Phytocomponent Profile, Antimicrobial, Antibiofilm, Antioxidant and Cytotoxic Activities of Gum Acanthus Obtained From Gundelia Tournefortii L. (Kenger) Plant

Year 2026, Volume: 12 Issue: 1, 33 - 40, 20.01.2026
https://doi.org/10.30934/kusbed.1716652

Abstract

Objective: In our study, we aimed to investigate the phytoconstitutions of the mastic gum extract obtained from the seeds of the Gundelia tournefortii L. (Kenger) plant, which has many beneficial activities on human health, in terms of antimicrobial, antibiofilm, antioxidant activities and cytotoxic activities on SK-MEL-30 and A2058 human melanoma cell lines.
Methods: In the study where phytoconstitutions were determined by GC-MS analysis, the antimicrobial activity of the extract was determined by the well diffusion method. While the DPPH method was used in the antioxidant activity study, cytotoxic activity was investigated on SK-MEL-30 and A2058 human melanoma cell lines with MTT test kit.
Results: Mastic extract showed low MIC value compared to control group with strong antimicrobial activity. It was determined that the mastic extract showed 62.18% biofilm inhibition on E. coli ATCC 25922 strain and 48.24% biofilm inhibition on P. aeruginosa ATCC 278533 strain at the highest concentration of 20 mg/ml in antibiofilm activity. In our study where we investigated antioxidant activity with the DPPH method, the IC50 value of the mastic extract was determined as 35.70 mg/mL. In terms of cytotoxic activity, it was determined that the extract showed a strong growth inhibitory effect with an IC50 value of 11.07 μg/ml in SK-MEL-30 cells and showed high cytotoxic effect at doses of 50-1.8125 mg/mL in the A2058 cell line.
Conclusion: These data contain valuable information as it is the first study to evaluate some biological activities of Kenger gum and will shed light on future studies.

Project Number

Çalışmanın tamamlanması aşamasında herhangi maddi destek kullanılmamıştır.

References

  • Purohit V, Brenner DA. Mechanisms of alcohol-induced Morrison L, Zembower TR. Antimicrobial Resistance. Gastrointest. Endosc. Clin. N. Am. 2020;30(4):619-635. doi.org/10.1016/j.giec.2020.06.004
  • Sánchez E, Morales CR, Castillo S, Leos-Rivas C, García-Becerra L, Mizael D, Martínez M. Antibacterial and Antibiofilm Activity of Methanolic Plant Extracts against Nosocomial Microorganisms. Evid Based Complement Alternat Med. 2016;27:1572697. doi: 10.1155/2016/1572697
  • Musk DJ, Banko DA, Hergenrother PJ. Iron salts perturb biofilm formation and disrupt existing biofilms of Pseudomonas aeruginosa. Chem. Biol. 2005;12(7):789–796. doi: 10.1016/j.chembiol.2005.05.007.
  • Rasmussen TB, Givskov M. Quorum-sensing inhibitors as anti-pathogenic drugs. International. J. Med. Microbiol. 2006;296(2-3):149–161. doi: 10.1016/j.ijmm.2006.02.005.
  • Goktas O, Gıdık B. Areas of Use of Medicinal and Aromatic Plants. BUFBD. 2019; 2(1):145-151.
  • Anik R. Master’s Thesis. Istanbul Aydın University; Istanbul, Turkey. Akbaldir (Ornithogalum narbonense L.) Also Used as a Food Product in Şanliurfa and Kenger (Gundelia tournefortii L.) the Effect of the Most Widely Used Cooking Methods of Plants on Phenolic Compound, Vitamin C Amount and Antioxidant Activity Values. 2019.
  • Darwish RM, Aburjai TA. Effect of ethnomedicinal plants used in folklore medicine in Jordan as antibiotic resistant inhibitors on Escherichia coli. BMC Complement Altern Med. 2010;10:9. doi: 10.1186/1472-6882-10-9.9
  • Samani MA, Rafieian-Kopaei M, Azimi N. Gundelia: a systematic review of medicinal and molecular perspective. Pak J Biol Sci. 2013;16(21):1238-47. doi: 10.3923/pjbs.2013.1238.1247.
  • Kadan S, Sasson Y, Saad B, Zaid H. Gundelia tournefortii Antidiabetic Efficacy: Chemical Composition and GLUT4 Translocation. J. Evid.-Based Complement. Altern. Med. 2018; 26;2018:8294320. doi: 10.1155/2018/8294320
  • Ceylan S, Cetin S, Camadan Y, Saral O, Ozsen O, Tutus A. Antibacterial and antioxidant activities of traditional medicinal plants from the Erzurum region of Turkey. Ir. J. Med. Sci. 2019;188:1303-1309.
  • Lopes J, Rodrigues CMP, Gaspar MM, Reis CP. Melanoma management: from epidemiology to treatment and latest advances. Cancers Basel. 2022;14. doi: 10.3390/cancers14194652
  • Mu X, Zhou Y, Yu Y, Zhang M, Liu J. The roles of cancer stem cells and therapeutic implications in melanoma. Front Immunol. 2024;14(15):1486680. doi: 10.3389/fimmu.2024.1486680
  • Newman DJ, Cragg GM. Natural products as sources of new drugs over the nearly four decades from 1981 to 2019. J. Nat. Prod. 2020;83:770-803. doi: 10.1021/acs.jnatprod.9b01285
  • Amer J, Salhab A, Jaradat N, Abdallah S, Aburas H, Hattab S, Alqub M. Gundelia tournefortii inhibits hepatocellular carcinoma progression by lowering gene expression of the cell cycle and hepatocyte proliferation in immunodeficient mice. Biomed Pharmacother. 2022;156:113885.
  • Keles ÖF, Bati B. Histopathological Evaluation of the Anti-Obesity Effects of the Plant Kenger (Gundelia tournefortii L.) in an Experimental Model of Obesity Induced in Rats. Van Vet J. 2024;35(3):213-217.
  • Cinarli M, Kıray E, Yüksektepe Ataol C. Synthesis, characterization, antimicrobial and anti-biofilm studies of Ni(II) complex with Schiff base derived from 2-thiophene carboxaldehyde and phenyl acetic hydrazide. J. Mol. Struct. 2024;1307:138007.
  • Kowalska-Krochmal B. Dudek-Wicher R. The Minimum Inhibitory Concentration of Antibiotics: Methods, Interpretation, Clinical Relevance. Pathogens. 2021;10(2):165. doi: 10.3390/pathogens10020165.
  • Theodora NA, Dominika V, Waturangi DE Screening and quantification of anti-quorum sensing and antibiofilm activities of Phyllo sphere bacteria. BMC Res Notes. 2019;12(1)-732. https://doi: 10.1186/s13104-019-4775-1.
  • Brand-Williams W, Cuvelier ME, Berset CLWT. Use of a Free Radical Method to Evaluate Antioxidant Activity. Lwt-Food Scı Technol. 1995;28:25-30. doi.org/10.1016/S0023-6438(95)80008-5
  • Ahuatzin-Flores OE, Torres E, Chávez-Bravo E. Acinetobacter baumannii, a Multidrug-Resistant Opportunistic Pathogen in New Habitats: A Systematic Review. Microorganisms. 2024;12(4):644. doi: 10.3390/microorganisms12040644
  • Irfan M, Bagherpour S, Munir H, Perez-Garcia L, Abelha TF, Afroz A, Rashid U. GC–MS metabolomics profile of methanol extract of Acacia modesta gum and gum-assisted fabrication and characterization of gold nanoparticles through green synthesis approach. Int. J. Biol. Macromol. 2023;252:126215.
  • Akçiçek A, Bozkurt F, Akgül C, Karasu S. Encapsulation of olive pomace extract in rocket seed gum and chia seed gum nanoparticles: Characterization, antioxidant activity and oxidative stability. Foods. 2021;10(8):1735.
  • Saraç H, Demirbaș A, Daștan SD, Ataș M, Çevik Ö, Eruygur N. Evaluation of nutrients and biological activities of Kenger (Gundellia tournefortii L.) seeds cultivated in Sivas province. TURJAF. 2019; 7(2):52-58. doi.org/10.24925/turjaf.v7isp2.52-58.3126
  • Abu-Lafi S, Rayan B, Kadan S, Abu-Lafi M, Rayan A. Anticancer activity and phytochemical composition of wild Gundelia tournefortii. Oncol Lett. 2019;17(1):713-717.
  • Ertas A, Firat M, Yener I, Akdeniz M, Yigitkan S, Bakir D, Kolak U. Phytochemical fingerprints and bioactivities of ripe disseminules (fruit‐seeds) of seventeen Gundelia (Kenger‐Kereng Dikeni) species from Anatolia with chemometric approach. Chem. Biodiversity. 2021;18(8):e2100207.
  • Saleem M. Lupeol, a novel anti-inflammatory and anti-cancer dietary triterpene. Cancer Lett. 2009;285(2):109-15.
  • Liu K, Zhang X, Xie L, Deng M, Chen H, Song J, Luo, J. Lupeol and its derivatives as anticancer and anti-inflammatory agents: Molecular mechanisms and therapeutic efficacy. Pharmacol. Res. 2021;164:105373.
  • Javed S, Mahmood Z, Khan KM, Sarker SD, Javaid A, Khan IH, Shoaib A. Lupeol acetate as a potent antifungal compound against opportunistic human and phytopathogenic mold Macrophomina phaseolina. Sci Rep. 2021;19,11(1):8417. doi: 10.1038/s41598-021-87725-7.
  • Muktar B, Bello IA, Sallau MS. Isolation, characterization and antimicrobial study of lupeol acetate from the root bark of Fig-Mulberry Sycamore (Ficus sycomorus LINN). J. Appl. Sci. Envir. Manag. 2018;22(7):1129-1133.
  • Musa NM, Sallau MS, Oyewale AO, Ali T. Antimicrobial activity of lupeol and β-amyrin (triterpenoids) isolated from the rhizome of Dolichos pachyrhizus harm. Adv. J. Chem. A. 2024;7(1):1-14.
  • Thammasut W, Intaraphairot T, Chantadee T, Senarat S, Patomchaiviwat V, Chuenbarn T, Phaechamud T. Antimicrobial and antitumoral activities of saturated fatty acid solutions. Materials Today: Proceedings. 2023. 10.1016/j.matpr.2023.03.769
  • Ozaltun B, Dastan T. Evaluation of antimicrobial activities and in vitro cytotoxic activities of Gundelia tournefortii L. Plant extracts. Med J SDU. 2019; 26(4):436-442.
  • Gezici S, Sekeroglu N. Comparative biological analyses on kenger and kenger coffee as novel functional food products. J. Food Sci. Technol. 2021:1-11. doi:10.1007/s13197-021-05248-5
  • Kalkan I, Eyupoglu OE, Karatas S, Aissaoui ZEM, Anık R. Impact of cooking on nutritional contents of kenger in terms of antioxidants. Food Prod Process Nu. 2025;7(1):2. 025) 7:2. doi: 10.1186/s43014-024-00274-0
  • Coruh N, Celep AGS, Özgökçe F, İşcan M. Antioxidant capacities of Gundelia tournefortii L. extracts and inhibition on glutathione-S-transferase activity. Food Chemistry. 2007;100(3):1249-1253. doi:10.1016/j.foodchem.2005.12.008.
  • Jamilah J, Sharifa AA, Sharifah NRSA. GC/MS analisis of vaious extracts from leaf of Plantago majör used as tradional medicine. World App. Sci. J. 2012;17:67-70.
  • Topcuoglu N, Lacin CC, Erguven M, Bilir A, Sutlupinar N, Kulekci G. K. 2015;13(2):157-62. doi: 10.3290/j.ohpd.a32666.
  • Sauer K, Stoodley P, Goeres DM, Hall-Stoodley L, Burmølle M, Stewart PS, Bjarnsholt T. The biofilm life cycle: expanding the conceptual model of biofilm formation. Nat Rev Microbiol. 2022;20(10):608-620. doi: 10.1038/s41579-022-00767-0
  • Olawuwo OS, Famuyide IM, McGaw LJ. Antibacterial and antibiofilm activity of selected medicinal plant leaf extracts against pathogens implicated in poultry diseases. Front. Vet. Sci. 2022;9:820304. doi: 10.3389/fvets.2022.820304

Gundelia tournefortii L. (Kenger) Bitkisinden Elde Edilen Kenger Sakızının Fitokomponent Profili, Antimikrobiyal, Antibiyofilm, Antioksidan ve Sitotoksik Aktiviteleri

Year 2026, Volume: 12 Issue: 1, 33 - 40, 20.01.2026
https://doi.org/10.30934/kusbed.1716652

Abstract

Amaç: Geçmişten günümüze tıbbi bitkilerin hastalıklar ve insan sağlığı üzerindeki yararlı etkileri bilim insanları tarafından araştırılmaya devam etmektedir. Bu bağlamda Gundelia tournefortii L. (Kenger) yüksek fenolik içeriği ve güçlü anti-inflamatuar, antioksidan ve potansiyel antikanser etkileri nedeniyle dikkat çekmektedir. Çalışmamızda, G. tournefortii L. bitkisinin tohumlarından elde edilen sakız özütünün fitokonstitüentleri, SK-MEL-30 ve A2058 insan melanoma hücre hatları üzerinde antimikrobiyal, antibiyofilm, antioksidan aktiviteleri ve sitotoksik aktiviteleri açısından araştırılması amaçlanmıştır.
Gereç ve Yöntem: Fitokonstitüentlerin GC-MS analizi ile belirlendiği çalışmada, ekstratın antimikrobiyal aktivitsi kuyu difüzyon yöntemi ile antibiyofilm ve MIC değerleri 96 kuyucuklu mikroplatelerde seri dilüsyonlar yapılarak belirlenmiştir. Antioxidant aktivite çalışmasında DPPH yöntemi kullanılırken sitotoksik akitvitesi MTT test kiti ile SK-MEL-30 ve A2058 insan melanoma hücre hattı üzerinde araştırılmıştır.
Bulgular: Sakız ekstratı, test edilen patojen mikroorganizmalar üzerinde güçlü antimikrobiyal aktivite göstermiş ve kontrol grubuna kıyasla düşük MİK değerleri göstermiştir. Sakız özütünün antibiyofilm aktivitesinde en yüksek 20 mg/ml konsantrasyonunda E. coli ATCC 25922 suşu üzerinde %62,18, P. aeruginosa ATCC 278533 suşu üzerinde ise %48,24 biyofilm inhibisyonu gösterdiği belirlenmiştir. DPPH yöntemi ile antioksidan aktiviteyi araştırdığımız çalışmamızda, sakız özütünün IC50 değeri 35,70 mg/mL olarak belirlenmiştir. Sitotoksik aktivite açısından ise, özütün SK-MEL-30 hücrelerinde 11,07 μg/ml IC50 değeri ile güçlü bir büyüme inhibitör etkisi gösterdiği, A2058 hücre hattında ise 50-1,8125 mg/mL dozlarında yüksek sitotoksik etki gösterdiği belirlenmiştir.
Sonuç: Elde edilen bu veriler, kenger sakızının bazı biyolojik aktivitelerinin değerlendirildiği ilk çalışma olması nedeniyle değerli bilgiler içermekte olup, gelecekteki çalışmalara ışık tutacaktır.

Project Number

Çalışmanın tamamlanması aşamasında herhangi maddi destek kullanılmamıştır.

References

  • Purohit V, Brenner DA. Mechanisms of alcohol-induced Morrison L, Zembower TR. Antimicrobial Resistance. Gastrointest. Endosc. Clin. N. Am. 2020;30(4):619-635. doi.org/10.1016/j.giec.2020.06.004
  • Sánchez E, Morales CR, Castillo S, Leos-Rivas C, García-Becerra L, Mizael D, Martínez M. Antibacterial and Antibiofilm Activity of Methanolic Plant Extracts against Nosocomial Microorganisms. Evid Based Complement Alternat Med. 2016;27:1572697. doi: 10.1155/2016/1572697
  • Musk DJ, Banko DA, Hergenrother PJ. Iron salts perturb biofilm formation and disrupt existing biofilms of Pseudomonas aeruginosa. Chem. Biol. 2005;12(7):789–796. doi: 10.1016/j.chembiol.2005.05.007.
  • Rasmussen TB, Givskov M. Quorum-sensing inhibitors as anti-pathogenic drugs. International. J. Med. Microbiol. 2006;296(2-3):149–161. doi: 10.1016/j.ijmm.2006.02.005.
  • Goktas O, Gıdık B. Areas of Use of Medicinal and Aromatic Plants. BUFBD. 2019; 2(1):145-151.
  • Anik R. Master’s Thesis. Istanbul Aydın University; Istanbul, Turkey. Akbaldir (Ornithogalum narbonense L.) Also Used as a Food Product in Şanliurfa and Kenger (Gundelia tournefortii L.) the Effect of the Most Widely Used Cooking Methods of Plants on Phenolic Compound, Vitamin C Amount and Antioxidant Activity Values. 2019.
  • Darwish RM, Aburjai TA. Effect of ethnomedicinal plants used in folklore medicine in Jordan as antibiotic resistant inhibitors on Escherichia coli. BMC Complement Altern Med. 2010;10:9. doi: 10.1186/1472-6882-10-9.9
  • Samani MA, Rafieian-Kopaei M, Azimi N. Gundelia: a systematic review of medicinal and molecular perspective. Pak J Biol Sci. 2013;16(21):1238-47. doi: 10.3923/pjbs.2013.1238.1247.
  • Kadan S, Sasson Y, Saad B, Zaid H. Gundelia tournefortii Antidiabetic Efficacy: Chemical Composition and GLUT4 Translocation. J. Evid.-Based Complement. Altern. Med. 2018; 26;2018:8294320. doi: 10.1155/2018/8294320
  • Ceylan S, Cetin S, Camadan Y, Saral O, Ozsen O, Tutus A. Antibacterial and antioxidant activities of traditional medicinal plants from the Erzurum region of Turkey. Ir. J. Med. Sci. 2019;188:1303-1309.
  • Lopes J, Rodrigues CMP, Gaspar MM, Reis CP. Melanoma management: from epidemiology to treatment and latest advances. Cancers Basel. 2022;14. doi: 10.3390/cancers14194652
  • Mu X, Zhou Y, Yu Y, Zhang M, Liu J. The roles of cancer stem cells and therapeutic implications in melanoma. Front Immunol. 2024;14(15):1486680. doi: 10.3389/fimmu.2024.1486680
  • Newman DJ, Cragg GM. Natural products as sources of new drugs over the nearly four decades from 1981 to 2019. J. Nat. Prod. 2020;83:770-803. doi: 10.1021/acs.jnatprod.9b01285
  • Amer J, Salhab A, Jaradat N, Abdallah S, Aburas H, Hattab S, Alqub M. Gundelia tournefortii inhibits hepatocellular carcinoma progression by lowering gene expression of the cell cycle and hepatocyte proliferation in immunodeficient mice. Biomed Pharmacother. 2022;156:113885.
  • Keles ÖF, Bati B. Histopathological Evaluation of the Anti-Obesity Effects of the Plant Kenger (Gundelia tournefortii L.) in an Experimental Model of Obesity Induced in Rats. Van Vet J. 2024;35(3):213-217.
  • Cinarli M, Kıray E, Yüksektepe Ataol C. Synthesis, characterization, antimicrobial and anti-biofilm studies of Ni(II) complex with Schiff base derived from 2-thiophene carboxaldehyde and phenyl acetic hydrazide. J. Mol. Struct. 2024;1307:138007.
  • Kowalska-Krochmal B. Dudek-Wicher R. The Minimum Inhibitory Concentration of Antibiotics: Methods, Interpretation, Clinical Relevance. Pathogens. 2021;10(2):165. doi: 10.3390/pathogens10020165.
  • Theodora NA, Dominika V, Waturangi DE Screening and quantification of anti-quorum sensing and antibiofilm activities of Phyllo sphere bacteria. BMC Res Notes. 2019;12(1)-732. https://doi: 10.1186/s13104-019-4775-1.
  • Brand-Williams W, Cuvelier ME, Berset CLWT. Use of a Free Radical Method to Evaluate Antioxidant Activity. Lwt-Food Scı Technol. 1995;28:25-30. doi.org/10.1016/S0023-6438(95)80008-5
  • Ahuatzin-Flores OE, Torres E, Chávez-Bravo E. Acinetobacter baumannii, a Multidrug-Resistant Opportunistic Pathogen in New Habitats: A Systematic Review. Microorganisms. 2024;12(4):644. doi: 10.3390/microorganisms12040644
  • Irfan M, Bagherpour S, Munir H, Perez-Garcia L, Abelha TF, Afroz A, Rashid U. GC–MS metabolomics profile of methanol extract of Acacia modesta gum and gum-assisted fabrication and characterization of gold nanoparticles through green synthesis approach. Int. J. Biol. Macromol. 2023;252:126215.
  • Akçiçek A, Bozkurt F, Akgül C, Karasu S. Encapsulation of olive pomace extract in rocket seed gum and chia seed gum nanoparticles: Characterization, antioxidant activity and oxidative stability. Foods. 2021;10(8):1735.
  • Saraç H, Demirbaș A, Daștan SD, Ataș M, Çevik Ö, Eruygur N. Evaluation of nutrients and biological activities of Kenger (Gundellia tournefortii L.) seeds cultivated in Sivas province. TURJAF. 2019; 7(2):52-58. doi.org/10.24925/turjaf.v7isp2.52-58.3126
  • Abu-Lafi S, Rayan B, Kadan S, Abu-Lafi M, Rayan A. Anticancer activity and phytochemical composition of wild Gundelia tournefortii. Oncol Lett. 2019;17(1):713-717.
  • Ertas A, Firat M, Yener I, Akdeniz M, Yigitkan S, Bakir D, Kolak U. Phytochemical fingerprints and bioactivities of ripe disseminules (fruit‐seeds) of seventeen Gundelia (Kenger‐Kereng Dikeni) species from Anatolia with chemometric approach. Chem. Biodiversity. 2021;18(8):e2100207.
  • Saleem M. Lupeol, a novel anti-inflammatory and anti-cancer dietary triterpene. Cancer Lett. 2009;285(2):109-15.
  • Liu K, Zhang X, Xie L, Deng M, Chen H, Song J, Luo, J. Lupeol and its derivatives as anticancer and anti-inflammatory agents: Molecular mechanisms and therapeutic efficacy. Pharmacol. Res. 2021;164:105373.
  • Javed S, Mahmood Z, Khan KM, Sarker SD, Javaid A, Khan IH, Shoaib A. Lupeol acetate as a potent antifungal compound against opportunistic human and phytopathogenic mold Macrophomina phaseolina. Sci Rep. 2021;19,11(1):8417. doi: 10.1038/s41598-021-87725-7.
  • Muktar B, Bello IA, Sallau MS. Isolation, characterization and antimicrobial study of lupeol acetate from the root bark of Fig-Mulberry Sycamore (Ficus sycomorus LINN). J. Appl. Sci. Envir. Manag. 2018;22(7):1129-1133.
  • Musa NM, Sallau MS, Oyewale AO, Ali T. Antimicrobial activity of lupeol and β-amyrin (triterpenoids) isolated from the rhizome of Dolichos pachyrhizus harm. Adv. J. Chem. A. 2024;7(1):1-14.
  • Thammasut W, Intaraphairot T, Chantadee T, Senarat S, Patomchaiviwat V, Chuenbarn T, Phaechamud T. Antimicrobial and antitumoral activities of saturated fatty acid solutions. Materials Today: Proceedings. 2023. 10.1016/j.matpr.2023.03.769
  • Ozaltun B, Dastan T. Evaluation of antimicrobial activities and in vitro cytotoxic activities of Gundelia tournefortii L. Plant extracts. Med J SDU. 2019; 26(4):436-442.
  • Gezici S, Sekeroglu N. Comparative biological analyses on kenger and kenger coffee as novel functional food products. J. Food Sci. Technol. 2021:1-11. doi:10.1007/s13197-021-05248-5
  • Kalkan I, Eyupoglu OE, Karatas S, Aissaoui ZEM, Anık R. Impact of cooking on nutritional contents of kenger in terms of antioxidants. Food Prod Process Nu. 2025;7(1):2. 025) 7:2. doi: 10.1186/s43014-024-00274-0
  • Coruh N, Celep AGS, Özgökçe F, İşcan M. Antioxidant capacities of Gundelia tournefortii L. extracts and inhibition on glutathione-S-transferase activity. Food Chemistry. 2007;100(3):1249-1253. doi:10.1016/j.foodchem.2005.12.008.
  • Jamilah J, Sharifa AA, Sharifah NRSA. GC/MS analisis of vaious extracts from leaf of Plantago majör used as tradional medicine. World App. Sci. J. 2012;17:67-70.
  • Topcuoglu N, Lacin CC, Erguven M, Bilir A, Sutlupinar N, Kulekci G. K. 2015;13(2):157-62. doi: 10.3290/j.ohpd.a32666.
  • Sauer K, Stoodley P, Goeres DM, Hall-Stoodley L, Burmølle M, Stewart PS, Bjarnsholt T. The biofilm life cycle: expanding the conceptual model of biofilm formation. Nat Rev Microbiol. 2022;20(10):608-620. doi: 10.1038/s41579-022-00767-0
  • Olawuwo OS, Famuyide IM, McGaw LJ. Antibacterial and antibiofilm activity of selected medicinal plant leaf extracts against pathogens implicated in poultry diseases. Front. Vet. Sci. 2022;9:820304. doi: 10.3389/fvets.2022.820304
There are 39 citations in total.

Details

Primary Language English
Subjects Microbiology (Other)
Journal Section Research Article
Authors

Esin Kıray 0000-0002-6908-5909

İbrahim Seyfettin Çelik 0000-0001-6946-4477

Esen Çakmak 0000-0001-8805-3315

Project Number Çalışmanın tamamlanması aşamasında herhangi maddi destek kullanılmamıştır.
Submission Date June 10, 2025
Acceptance Date October 6, 2025
Publication Date January 20, 2026
Published in Issue Year 2026 Volume: 12 Issue: 1

Cite

APA Kıray, E., Çelik, İ. S., & Çakmak, E. (2026). Phytocomponent Profile, Antimicrobial, Antibiofilm, Antioxidant and Cytotoxic Activities of Gum Acanthus Obtained From Gundelia Tournefortii L. (Kenger) Plant. Kocaeli Üniversitesi Sağlık Bilimleri Dergisi, 12(1), 33-40. https://doi.org/10.30934/kusbed.1716652
AMA Kıray E, Çelik İS, Çakmak E. Phytocomponent Profile, Antimicrobial, Antibiofilm, Antioxidant and Cytotoxic Activities of Gum Acanthus Obtained From Gundelia Tournefortii L. (Kenger) Plant. KOU Sag Bil Derg. January 2026;12(1):33-40. doi:10.30934/kusbed.1716652
Chicago Kıray, Esin, İbrahim Seyfettin Çelik, and Esen Çakmak. “Phytocomponent Profile, Antimicrobial, Antibiofilm, Antioxidant and Cytotoxic Activities of Gum Acanthus Obtained From Gundelia Tournefortii L. (Kenger) Plant”. Kocaeli Üniversitesi Sağlık Bilimleri Dergisi 12, no. 1 (January 2026): 33-40. https://doi.org/10.30934/kusbed.1716652.
EndNote Kıray E, Çelik İS, Çakmak E (January 1, 2026) Phytocomponent Profile, Antimicrobial, Antibiofilm, Antioxidant and Cytotoxic Activities of Gum Acanthus Obtained From Gundelia Tournefortii L. (Kenger) Plant. Kocaeli Üniversitesi Sağlık Bilimleri Dergisi 12 1 33–40.
IEEE E. Kıray, İ. S. Çelik, and E. Çakmak, “Phytocomponent Profile, Antimicrobial, Antibiofilm, Antioxidant and Cytotoxic Activities of Gum Acanthus Obtained From Gundelia Tournefortii L. (Kenger) Plant”, KOU Sag Bil Derg, vol. 12, no. 1, pp. 33–40, 2026, doi: 10.30934/kusbed.1716652.
ISNAD Kıray, Esin et al. “Phytocomponent Profile, Antimicrobial, Antibiofilm, Antioxidant and Cytotoxic Activities of Gum Acanthus Obtained From Gundelia Tournefortii L. (Kenger) Plant”. Kocaeli Üniversitesi Sağlık Bilimleri Dergisi 12/1 (January2026), 33-40. https://doi.org/10.30934/kusbed.1716652.
JAMA Kıray E, Çelik İS, Çakmak E. Phytocomponent Profile, Antimicrobial, Antibiofilm, Antioxidant and Cytotoxic Activities of Gum Acanthus Obtained From Gundelia Tournefortii L. (Kenger) Plant. KOU Sag Bil Derg. 2026;12:33–40.
MLA Kıray, Esin et al. “Phytocomponent Profile, Antimicrobial, Antibiofilm, Antioxidant and Cytotoxic Activities of Gum Acanthus Obtained From Gundelia Tournefortii L. (Kenger) Plant”. Kocaeli Üniversitesi Sağlık Bilimleri Dergisi, vol. 12, no. 1, 2026, pp. 33-40, doi:10.30934/kusbed.1716652.
Vancouver Kıray E, Çelik İS, Çakmak E. Phytocomponent Profile, Antimicrobial, Antibiofilm, Antioxidant and Cytotoxic Activities of Gum Acanthus Obtained From Gundelia Tournefortii L. (Kenger) Plant. KOU Sag Bil Derg. 2026;12(1):33-40.