Research Article
BibTex RIS Cite

Oxidant-Antioxidant Balance Changes in Adipose Tissues of High Fat Diet-Induced Obese Rats: Depot-Specific Manner and Ineffectiveness of N-Acetylcysteine

Year 2019, , 66 - 71, 20.05.2019
https://doi.org/10.30934/kusbed.498189

Abstract

Objective: The aims of study
were to investigate effects of both N-acetylcysteine (NAC, an antioxidant) and
high fat diet (HFD) to oxidative stress in differently located adipose tissues
and the liver.


Methods: Our study is created from control,
HFD and NAC groups (n=6). Control group was fed with only standard diet. HFD
group was fed with only HFD. NAC group was fed with HFD, and additionally that
group received NAC (2 g/L). All groups were fed with designated diets for 85
days. Antioxidant enzyme activities, glutathione, and malondialdehyde were
measured in epididymal, perirenal, subcutaneous adipose tissues, and liver.


Results: In the HFD group, malondialdehyde
(MDA) levels increased in perirenal adipose tissue and liver. In addition,
superoxide dismutase (SOD) and catalase activities in the HFD group were lower
both epididymal and perirenal adipose tissue, whereas glutathione peroxidase
activities were lower in subcutaneous and epididymal adipose tissue.
Glutathione was lower in liver tissue alone. In subcutan adipose tissue, the
glutathione and SOD activities increased due to NAC administration.








Conclusion: The present findings showed that
oxidative stress and antioxidant enzyme profiles were variable in localized
adipose tissue in different regions. Thought antioxidant enzyme activities in
some tissues increased due to NAC application, these increases were
insignificant in terms of oxidant-antioxidant balance.

Supporting Institution

TUBITAK

Project Number

111S252

Thanks

The financial fund of this study was provided by TUBITAK (111S252).

References

  • Caruso C, Balistreri CR, Candore G. The role of adipose tissue and adipokines in obesity-related inflammatory diseases. Mediators Inflamm. 2010. doi:10.1155/2010/802078
  • Fernández-Sánchez A, Madrigal-Santillán E, Bautista M, et al. Inflammation, oxidative stress, and obesity. Int J Mol Sci. 2011. doi:10.3390/ijms12053117
  • Furukawa S, Fujita T, Shimabukuro M, et al. Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest. 2004. doi:10.1172/JCI21625
  • Kwok KHM, Lam KSL, Xu A. Heterogeneity of white adipose tissue: Molecular basis and clinical implications. Exp Mol Med. 2016. doi:10.1038/emm.2016.5
  • Ibrahim MM. Subcutaneous and visceral adipose tissue: Structural and functional differences. Obes Rev. 2010. doi:10.1111/j.1467-789X.2009.00623.x
  • Deveaud C, Beauvoit B, Salin B, Schaeffer J, Rigoulet M. Regional differences in oxidative capacity of rat white adipose tissue are linked to the mitochondrial content of mature adipocytes. Mol Cell Biochem. 2004.
  • Galinier A, Carriere A, Fernandez Y, et al. Site specific changes of redox metabolism in adipose tissue of obese Zucker rats. FEBS Lett. 2006. doi:10.1016/j.febslet.2006.10.052
  • Long EK, Olson DM, Bernlohr DA. High-fat diet induces changes in adipose tissue trans-4-oxo-2-nonenal and trans-4-hydroxy-2-nonenal levels in a depot-specific manner. Free Radic Biol Med. 2013. doi:10.1016/j.freeradbiomed.2013.05.030
  • Amirkhizi F, Siassi F, Minaie S, Djalali M, Rahimi A, Chamari M. Is obesity associated with increased plasma lipid peroxidation and oxidative stress in women? ARYA Atheroscler. 2007.
  • Ozata M, Mergen M, Oktenli C, et al. Increased oxidative stress and hypozincemia in male obesity. Clin Biochem. 2002. doi:10.1016/S0009-9120(02)00363-6
  • Vincent HK, Vincent KR, Bourguignon C, Braith RW. Obesity and postexercise oxidative stress in older women. Med Sci Sports Exerc. 2005. doi:10.1249/01.MSS.0000152705.77073.B3
  • Ma Y, Gao M, Liu D. N-acetylcysteine Protects Mice from High Fat Diet-induced Metabolic Disorders. Pharm Res. 2016. doi:10.1007/s11095-016-1941-1
  • Jones DA, Prior SL, Barry JD, Caplin S, Baxter JN, Stephens JW. Changes in markers of oxidative stress and DNA damage in human visceral adipose tissue from subjects with obesity and type 2 diabetes. Diabetes Res Clin Pract. 2014. doi:10.1016/j.diabres.2014.09.054
  • Song D, Hutchings S, Pang CCY. Chronic N-acetylcysteine prevents fructose-induced insulin resistance and hypertension in rats. Eur J Pharmacol. 2005. doi:10.1016/j.ejphar.2004.12.018
  • Talior I, Yarkoni M, Bashan N, Eldar-Finkelman H. Increased glucose uptake promotes oxidative stress and PKC-δ activation in adipocytes of obese, insulin-resistant mice. Am J Physiol Metab. 2015. doi:10.1152/ajpendo.00044.2003
  • Tanaka Y, Gleason CE, Tran POT, Harmon JS, Robertson RP. Prevention of glucose toxicity in HIT-T15 cells and Zucker diabetic fatty rats by antioxidants. Proc Natl Acad Sci. 1999. doi:10.1073/pnas.96.19.10857
  • Yang RL, Le G, Li A, Zheng J, Shi Y. Effect of antioxidant capacity on blood lipid metabolism and lipoprotein lipase activity of rats fed a high-fat diet. Nutrition. 2006. doi:10.1016/j.nut.2006.08.018
  • Mihara M, Uchiyama M. Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Anal Biochem. 1978. doi:10.1016/0003-2697(78)90342-1.
  • Sun Y, Oberley LW, Li Y. A simple method for clinical assay of superoxide dismutase. Clin Chem. 1988.
  • Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976. doi:10.1016/0003-2697(76)90527-3
  • Aebi H. [13] Catalase in Vitro. Methods Enzymol. 1984. doi:10.1016/S0076-6879(84)05016-3
  • Garcia SC, Schott K, Charão M, et al. Quantification of reduced gluthatione by HPLC-UV in erythrocytes of hemodialysis patients. Biomed Chromatogr. 2008. doi:10.1002/bmc.954
  • Bjørndal B, Burri L, Staalesen V, Skorve J, Berge RK. Different Adipose Depots: Their Role in the Development of Metabolic Syndrome and Mitochondrial Response to Hypolipidemic Agents. J Obes. 2011. doi:10.1155/2011/490650
  • Lin Y, Berg AH, Iyengar P, et al. The hyperglycemia-induced inflammatory response in adipocytes: The role of reactive oxygen species. J Biol Chem. 2005. doi:10.1074/jbc.M411863200
  • Galinier A, Carrière A, Fernandez Y, et al. Adipose tissue proadipogenic redox changes in obesity. J Biol Chem. 2006. doi:10.1074/jbc.M506949200
  • Parish R, Petersen KF. Mitochondrial dysfunction and type 2 diabetes. Curr Diab Rep. 2005. doi:10.1007/s11892-005-0006-3
  • Lowell BB, Shulman GI. Mitochondrial dysfunction and type 2 diabetes. Science 2005;307(5708):384-387. doi:10.1126/science.1104343.
  • Matsuzawa-Nagata N, Takamura T, Ando H, et al. Increased oxidative stress precedes the onset of high-fat diet-induced insulin resistance and obesity. Metabolism. 2008. doi:10.1016/j.metabol.2008.03.010
  • Findeisen HM, Gizard F, Zhao Y, et al. Glutathione depletion prevents diet-induced obesity and enhances insulin sensitivity. Obesity. 2011. doi:10.1038/oby.2011.298
  • Ogihara T, Asano T, Katagiri H, et al. Oxidative stress induces insulin resistance by activating the nuclear factor-κB pathway and disrupting normal subcellular distribution of phosphatidylinositol 3-kinase. Diabetologia. 2004. doi:10.1007/s00125-004-1391-x
  • Malcolm GT, Bhattacharyya AK, Velez-Duran M, Guzman MA, Oalmann MC, Strong JP. Fatty acid composition of adipose tissue in humans: Differences between subcutaneous sites. Am J Clin Nutr. 1989. doi:10.1093/ajcn/50.2.288.
  • Garaulet M, Pérez-Llamas F, Pérez-Ayala M, et al. Site-specific differences in the fatty acid composition of abdominal adipose tissue in an obese population from a mediterranean area: Relation with dietary fatty acids, plasma lipid profile, serum insulin, and central obesity. Am J Clin Nutr. 2001.doi:10.1093/ajcn/74.5.585.

Yüksek Yağlı Diyetle İndüklenmiş Obez Sıçanların Yağ Dokularındakı Oksidan-Antioksidan Denge Değişiklikleri: Depoya Özgü Tutum ve N-Asetilsisteinin Etkisizliği

Year 2019, , 66 - 71, 20.05.2019
https://doi.org/10.30934/kusbed.498189

Abstract

Amaç: Çalışmanın
amacı karaciğer ve farklı yerleşimli yağ dokularındaki oksidatif strese
N-asetilsisteinin (NAC, antioksidan) ve yüksek yağlı diyetin (HFD) etkilerini
araştırmaktır.




Yöntem: Çalışmamız
kontrol, HFD ve NAC gruplarından oluşmaktadır (n=6). Kontrol grubu standart diyetle,
HFD grubu yüksek yağ içeren diyetle, NAC grubu ise yüksek yağlı yem ve
  içme suyuna katılan antioksidan molekül olan
NAC ile beslendi (2 g/L). Tüm gruplar 85 gün boyunca ad libitum olarak
beslendi. Beslenme periodunun sonunda karaciğer, subkutan, epididimal ve
perirenal yağ dokularında antioksidan enzimler (süperoksit dismutaz, katalaz,
glutatyon peroksidaz), glutatyon ve malondialdehit seviyeleri ölçüldü.




Bulgular: HFD
grubunda malondialdehit (MDA) seviyesi karaciğer ve perirenal yağ dokusunda
yüksekti. Ayrıca HFD grubunda süperoksit dismutaz (SOD) ve katalaz aktivitesi
hem epididimal hemde perirenal yağ dokusunda, glutatyon peroksidaz aktivitesi
epididimal ve subkutan yağ dokusunda düşüktü. Glutatyon ise sadece karaciğer
dokusunda düşük tesbit edildi.
  NAC
uygulaması subkutan yağ dokusunda SOD ve glutatyonu yükseltti.
 




Sonuç: Mevcut
bulgular oksidatif stres ve antioksidan enzim profillerinin farklı bölgelerde
yerleşmiş adipoz dokusunda değişken olduğunu, NAC uygulamasının bazı dokularda
antioksidan enzim aktivitelerini artırmasına rağmen oksidan-antioksidan denge
açısından önemli bir etkisinin olmadığını göstermektedir.

Project Number

111S252

References

  • Caruso C, Balistreri CR, Candore G. The role of adipose tissue and adipokines in obesity-related inflammatory diseases. Mediators Inflamm. 2010. doi:10.1155/2010/802078
  • Fernández-Sánchez A, Madrigal-Santillán E, Bautista M, et al. Inflammation, oxidative stress, and obesity. Int J Mol Sci. 2011. doi:10.3390/ijms12053117
  • Furukawa S, Fujita T, Shimabukuro M, et al. Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest. 2004. doi:10.1172/JCI21625
  • Kwok KHM, Lam KSL, Xu A. Heterogeneity of white adipose tissue: Molecular basis and clinical implications. Exp Mol Med. 2016. doi:10.1038/emm.2016.5
  • Ibrahim MM. Subcutaneous and visceral adipose tissue: Structural and functional differences. Obes Rev. 2010. doi:10.1111/j.1467-789X.2009.00623.x
  • Deveaud C, Beauvoit B, Salin B, Schaeffer J, Rigoulet M. Regional differences in oxidative capacity of rat white adipose tissue are linked to the mitochondrial content of mature adipocytes. Mol Cell Biochem. 2004.
  • Galinier A, Carriere A, Fernandez Y, et al. Site specific changes of redox metabolism in adipose tissue of obese Zucker rats. FEBS Lett. 2006. doi:10.1016/j.febslet.2006.10.052
  • Long EK, Olson DM, Bernlohr DA. High-fat diet induces changes in adipose tissue trans-4-oxo-2-nonenal and trans-4-hydroxy-2-nonenal levels in a depot-specific manner. Free Radic Biol Med. 2013. doi:10.1016/j.freeradbiomed.2013.05.030
  • Amirkhizi F, Siassi F, Minaie S, Djalali M, Rahimi A, Chamari M. Is obesity associated with increased plasma lipid peroxidation and oxidative stress in women? ARYA Atheroscler. 2007.
  • Ozata M, Mergen M, Oktenli C, et al. Increased oxidative stress and hypozincemia in male obesity. Clin Biochem. 2002. doi:10.1016/S0009-9120(02)00363-6
  • Vincent HK, Vincent KR, Bourguignon C, Braith RW. Obesity and postexercise oxidative stress in older women. Med Sci Sports Exerc. 2005. doi:10.1249/01.MSS.0000152705.77073.B3
  • Ma Y, Gao M, Liu D. N-acetylcysteine Protects Mice from High Fat Diet-induced Metabolic Disorders. Pharm Res. 2016. doi:10.1007/s11095-016-1941-1
  • Jones DA, Prior SL, Barry JD, Caplin S, Baxter JN, Stephens JW. Changes in markers of oxidative stress and DNA damage in human visceral adipose tissue from subjects with obesity and type 2 diabetes. Diabetes Res Clin Pract. 2014. doi:10.1016/j.diabres.2014.09.054
  • Song D, Hutchings S, Pang CCY. Chronic N-acetylcysteine prevents fructose-induced insulin resistance and hypertension in rats. Eur J Pharmacol. 2005. doi:10.1016/j.ejphar.2004.12.018
  • Talior I, Yarkoni M, Bashan N, Eldar-Finkelman H. Increased glucose uptake promotes oxidative stress and PKC-δ activation in adipocytes of obese, insulin-resistant mice. Am J Physiol Metab. 2015. doi:10.1152/ajpendo.00044.2003
  • Tanaka Y, Gleason CE, Tran POT, Harmon JS, Robertson RP. Prevention of glucose toxicity in HIT-T15 cells and Zucker diabetic fatty rats by antioxidants. Proc Natl Acad Sci. 1999. doi:10.1073/pnas.96.19.10857
  • Yang RL, Le G, Li A, Zheng J, Shi Y. Effect of antioxidant capacity on blood lipid metabolism and lipoprotein lipase activity of rats fed a high-fat diet. Nutrition. 2006. doi:10.1016/j.nut.2006.08.018
  • Mihara M, Uchiyama M. Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Anal Biochem. 1978. doi:10.1016/0003-2697(78)90342-1.
  • Sun Y, Oberley LW, Li Y. A simple method for clinical assay of superoxide dismutase. Clin Chem. 1988.
  • Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976. doi:10.1016/0003-2697(76)90527-3
  • Aebi H. [13] Catalase in Vitro. Methods Enzymol. 1984. doi:10.1016/S0076-6879(84)05016-3
  • Garcia SC, Schott K, Charão M, et al. Quantification of reduced gluthatione by HPLC-UV in erythrocytes of hemodialysis patients. Biomed Chromatogr. 2008. doi:10.1002/bmc.954
  • Bjørndal B, Burri L, Staalesen V, Skorve J, Berge RK. Different Adipose Depots: Their Role in the Development of Metabolic Syndrome and Mitochondrial Response to Hypolipidemic Agents. J Obes. 2011. doi:10.1155/2011/490650
  • Lin Y, Berg AH, Iyengar P, et al. The hyperglycemia-induced inflammatory response in adipocytes: The role of reactive oxygen species. J Biol Chem. 2005. doi:10.1074/jbc.M411863200
  • Galinier A, Carrière A, Fernandez Y, et al. Adipose tissue proadipogenic redox changes in obesity. J Biol Chem. 2006. doi:10.1074/jbc.M506949200
  • Parish R, Petersen KF. Mitochondrial dysfunction and type 2 diabetes. Curr Diab Rep. 2005. doi:10.1007/s11892-005-0006-3
  • Lowell BB, Shulman GI. Mitochondrial dysfunction and type 2 diabetes. Science 2005;307(5708):384-387. doi:10.1126/science.1104343.
  • Matsuzawa-Nagata N, Takamura T, Ando H, et al. Increased oxidative stress precedes the onset of high-fat diet-induced insulin resistance and obesity. Metabolism. 2008. doi:10.1016/j.metabol.2008.03.010
  • Findeisen HM, Gizard F, Zhao Y, et al. Glutathione depletion prevents diet-induced obesity and enhances insulin sensitivity. Obesity. 2011. doi:10.1038/oby.2011.298
  • Ogihara T, Asano T, Katagiri H, et al. Oxidative stress induces insulin resistance by activating the nuclear factor-κB pathway and disrupting normal subcellular distribution of phosphatidylinositol 3-kinase. Diabetologia. 2004. doi:10.1007/s00125-004-1391-x
  • Malcolm GT, Bhattacharyya AK, Velez-Duran M, Guzman MA, Oalmann MC, Strong JP. Fatty acid composition of adipose tissue in humans: Differences between subcutaneous sites. Am J Clin Nutr. 1989. doi:10.1093/ajcn/50.2.288.
  • Garaulet M, Pérez-Llamas F, Pérez-Ayala M, et al. Site-specific differences in the fatty acid composition of abdominal adipose tissue in an obese population from a mediterranean area: Relation with dietary fatty acids, plasma lipid profile, serum insulin, and central obesity. Am J Clin Nutr. 2001.doi:10.1093/ajcn/74.5.585.
There are 32 citations in total.

Details

Primary Language English
Subjects Biochemistry and Cell Biology (Other)
Journal Section Original Article | Basic Medical Sciences
Authors

Cemil Kahraman 0000-0002-4494-6063

Ahmet Alver 0000-0002-9617-6689

Akın Bodur 0000-0001-7413-2717

İmran İnce Akça This is me 0000-0003-2232-3444

Diler Us Altay This is me 0000-0002-0465-8403

Sinan Canpolat 0000-0002-1951-3987

Project Number 111S252
Publication Date May 20, 2019
Submission Date December 17, 2018
Acceptance Date February 15, 2019
Published in Issue Year 2019

Cite

APA Kahraman, C., Alver, A., Bodur, A., İnce Akça, İ., et al. (2019). Oxidant-Antioxidant Balance Changes in Adipose Tissues of High Fat Diet-Induced Obese Rats: Depot-Specific Manner and Ineffectiveness of N-Acetylcysteine. Kocaeli Üniversitesi Sağlık Bilimleri Dergisi, 5(2), 66-71. https://doi.org/10.30934/kusbed.498189
AMA Kahraman C, Alver A, Bodur A, İnce Akça İ, Us Altay D, Canpolat S. Oxidant-Antioxidant Balance Changes in Adipose Tissues of High Fat Diet-Induced Obese Rats: Depot-Specific Manner and Ineffectiveness of N-Acetylcysteine. KOU Sag Bil Derg. May 2019;5(2):66-71. doi:10.30934/kusbed.498189
Chicago Kahraman, Cemil, Ahmet Alver, Akın Bodur, İmran İnce Akça, Diler Us Altay, and Sinan Canpolat. “Oxidant-Antioxidant Balance Changes in Adipose Tissues of High Fat Diet-Induced Obese Rats: Depot-Specific Manner and Ineffectiveness of N-Acetylcysteine”. Kocaeli Üniversitesi Sağlık Bilimleri Dergisi 5, no. 2 (May 2019): 66-71. https://doi.org/10.30934/kusbed.498189.
EndNote Kahraman C, Alver A, Bodur A, İnce Akça İ, Us Altay D, Canpolat S (May 1, 2019) Oxidant-Antioxidant Balance Changes in Adipose Tissues of High Fat Diet-Induced Obese Rats: Depot-Specific Manner and Ineffectiveness of N-Acetylcysteine. Kocaeli Üniversitesi Sağlık Bilimleri Dergisi 5 2 66–71.
IEEE C. Kahraman, A. Alver, A. Bodur, İ. İnce Akça, D. Us Altay, and S. Canpolat, “Oxidant-Antioxidant Balance Changes in Adipose Tissues of High Fat Diet-Induced Obese Rats: Depot-Specific Manner and Ineffectiveness of N-Acetylcysteine”, KOU Sag Bil Derg, vol. 5, no. 2, pp. 66–71, 2019, doi: 10.30934/kusbed.498189.
ISNAD Kahraman, Cemil et al. “Oxidant-Antioxidant Balance Changes in Adipose Tissues of High Fat Diet-Induced Obese Rats: Depot-Specific Manner and Ineffectiveness of N-Acetylcysteine”. Kocaeli Üniversitesi Sağlık Bilimleri Dergisi 5/2 (May 2019), 66-71. https://doi.org/10.30934/kusbed.498189.
JAMA Kahraman C, Alver A, Bodur A, İnce Akça İ, Us Altay D, Canpolat S. Oxidant-Antioxidant Balance Changes in Adipose Tissues of High Fat Diet-Induced Obese Rats: Depot-Specific Manner and Ineffectiveness of N-Acetylcysteine. KOU Sag Bil Derg. 2019;5:66–71.
MLA Kahraman, Cemil et al. “Oxidant-Antioxidant Balance Changes in Adipose Tissues of High Fat Diet-Induced Obese Rats: Depot-Specific Manner and Ineffectiveness of N-Acetylcysteine”. Kocaeli Üniversitesi Sağlık Bilimleri Dergisi, vol. 5, no. 2, 2019, pp. 66-71, doi:10.30934/kusbed.498189.
Vancouver Kahraman C, Alver A, Bodur A, İnce Akça İ, Us Altay D, Canpolat S. Oxidant-Antioxidant Balance Changes in Adipose Tissues of High Fat Diet-Induced Obese Rats: Depot-Specific Manner and Ineffectiveness of N-Acetylcysteine. KOU Sag Bil Derg. 2019;5(2):66-71.