QUANTITATIVE ASSESSMENT OF RENAL STEATOSIS AND ITS RELATIONSHIP WITH CLINICAL STAGE IN CHRONIC RENAL FAILURE USING CHEMICAL SHIFT MRI
Year 2022,
Volume: 24 Issue: 1, 93 - 101, 30.04.2022
Hüseyin Aydın
,
Abdulkerim Şalkacı
,
Adnan Karaibrahimoğlu
,
Alper Dilli
Abstract
Objective: Quantitative measurement of renal parenchymal lipid accumulation in chronic renal disease using chemical shift magnetic resonance imaging and evaluation of its relationship with clinical stages.
Material and Methods: In this retrospective study, the groups were designed as in chronic renal disease (n=46), diabetes without chronic renal disease (n=31), and control (n=59). Chronic renal disease group also divided into two subgroups as diabetic chronic renal disease (n=25) and non-diabetic chronic renal disease (n=21). A total of 272 kidneys of 136 patients were evaluated. Chronic renal disease clinical staging was performed according to e-GFR values. All magnetic resonance imaging examinations were performed with a 1.5 Tesla device. Chemical shift imaging was used in this study to quantify fat in the renal parenchyma (in-phase, out-of-phase, Dixon-water and Dixon-fat). Measurements were made from kidney and spleen by two different methods as whole parenchyma (first method) and focal parenchymal (second method). The fat fraction, and spleen-to-renal chemical shift imaging ratio were calculated.
Results: In the control group, parenchymal fat fraction according to first and second measurement methods were calculated as 0.05±0.01 and 0.05 ± 0.02, respectively. In the chronic renal disease groups, fat fraction measurements were 0.07±0.02 and 0.07±0.04, respectively, and they were found to be significantly higher from chronic renal disease stage 3 compared to the control group (p<0.001). No significant difference was observed in fat fraction and spleen-to-renal chemical shift imaging ratio values in diabetes patients (p>0.05).
Conclusion: In chronic renal disease, starting from stage 3, there is a significant renal parenchymal lipid accumulation compared to the control group and diabetic patients.
Supporting Institution
YOK
Thanks
We are grateful to Uğur Toprak (Professor, Department Radiology, Faculty of Medicine, Osmangazi University, Eskişehir), Ozgur Pirgon (Professor, Department of Pediatric Endocrinology and Diabetes, Faculty of Medicine, S.Demirel University, Isparta), and Murat Korkmaz (Professor, Department of Gastroenterology, Faculty of Medicine, Istinye University, Istanbul) for careful reading of the manuscript and helpful comments and suggestions.
References
- 1. Druilhet RE, Overturf ML, Kirkendall WM. Structure of neutral glycerides and phosphoglycerides of human kidney. Int J Biochem. 1975;6(12):893-901.
- 2. Bobulescu IA. Renal lipid metabolism and lipotoxicity. Curr Opin Nephrol Hypertens. 2010;19(4):393.
- 3. De Vries APJ, Ruggenenti P, Ruan XZ, Praga M, Cruzado JM, Bajema IM et al. Fatty kidney: emerging role of ectopic lipid in obesity-related renal disease. Lancet Diabetes Endocrinol. 2014;2(5):417-26.
- 4. Escasany E, Izquierdo-Lahuerta A, Medina-Gomez G. Underlying mechanisms of renal lipotoxicity in obesity. Nephron. 2019;143(1):29-33.
- 5. Garofalo C, Borrelli S, Minutolo R, Chiodini P, De Nicola L, Conte G. A systematic review and meta-analysis suggests obesity predicts onset of chronic kidney disease in the general population. Kidney Int. 2017;91(5):1224-35.
- 6. Mende C, Einhorn D. Fatty kidney disease: The importance of ectopic fat deposition and the potential value of imaging. J Diabetes. 2022;14(1):73-8.
- 7. Spit KA, Muskiet MHA, Tonneijck L, Smits MM, Kramer MHH, Joles JA et al. Renal sinus fat and renal hemodynamics: a cross-sectional analysis. Magn Reson Mater Physics, Biol Med. 2020;33(1):73-80.
- 8. Mende CW, Einhorn D. Fatty kidney disease: A new renal and endocrine clinical entity? Describing the role of the kidney in obesity, metabolic syndrome, and type 2 diabetes. Endocr Pract. 2019;25(8):854-8.
- 9. Yokoo T, Clark HR, Pedrosa I, Yuan Q, Dimitrov I, Zhang Y et al. Quantification of renal steatosis in type II diabetes mellitus using dixon‐based MRI. J Magn Reson Imaging. 2016;44(5):1312-9.
10. Dixon WT. Simple proton spectroscopic imaging. Radiology. 1984;153(1):189-94.
- 11. Pretorius ES, Solomon JA. Radiology secrets plus E-book. Elsevier Health Sciences, 2010.
- 12. Pacifico L, Nobili V, Anania C, Verdecchia P, Chiesa C. Pediatric nonalcoholic fatty liver disease, metabolic syndrome and cardiovascular risk. World J Gastroenterol. 2011;17(26):3082.
- 13. Sijens PE, Edens MA, Bakker SJL, Stolk RP. MRI-determined fat content of human liver, pancreas and kidney. World J Gastroenterol. 2010;16(16):1993.
- 14. Moorhead JF, El-Nahas M, Chan MK, Varghese Z. Lipid nephrotoxicity in chronic progressive glomerular and tubulo-interstitial disease. Lancet. 1982;320(8311):1309-11.
- 15. Levin A, Stevens PE, Bilous RW, Coresh J, De Francisco ALM, De Jong PE et al. Kidney disease: Improving global outcomes (KDIGO) CKD work group. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney International Supplements. 2013;3(1):1-150.
- 16. Kidney Disease: Improving Global Outcomes (KDIGO) CKD-MBD Work Group. KDIGO clinical practice guideline for the diagnosis, evaluation, prevention, and treatment of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD). Kidney Int Suppl. 2009;(113):S1-130.
- 17. Outwater EK, Siegelman ES, Huang AB, Birnbaum BA. Adrenal masses: correlation between CT attenuation value and chemical shift ratio at MR imaging with in-phase and opposed-phase sequences. Radiology. 1996;200(3):749-52.
- 18. Hsu C, McCulloch CE, Iribarren C, Darbinian J, Go AS. Body mass index and risk for end-stage renal disease. Ann Intern Med. 2006;144(1):21-8.
- 19. Kim JJ, Wilbon SS, Fornoni A. Podocyte Lipotoxicity in CKD. Kidney360. 2021;2(4):755-62.
- 20. Pei K, Gui T, Li C, Zhang Q, Feng H, Li Y et al. Recent progress on lipid intake and chronic kidney disease. Biomed Res Int. 2020;2020:3680397.
- 21. Byrne CD, Targher G. NAFLD as a driver of chronic kidney disease. J Hepatol. 2020;72(4):785-801.
- 22. Targher G, Byrne CD, Lonardo A, Zoppini G, Barbui C. Non-alcoholic fatty liver disease and risk of incident cardiovascular disease: a meta-analysis. J Hepatol. 2016;65(3):589-600.
Kronik Böbrek Hastalığında Renal Steatozun ve Klinik Evre ile İlişkisinin Kimyasal Şift MRG ile Kantitatif Olarak Değerlendirilmesi
Year 2022,
Volume: 24 Issue: 1, 93 - 101, 30.04.2022
Hüseyin Aydın
,
Abdulkerim Şalkacı
,
Adnan Karaibrahimoğlu
,
Alper Dilli
Abstract
Amaç: Kronik böbrek hastalığında renal parankimal lipid birikiminin kantitatif olarak kimyasal şift manyetik rezonans görüntüleme ile ölçülmesi ve klinik evreler ile ilişkisinin değerlendirilmesi amaçlandı
Gereç ve Yöntemler: Bu retrospektif çalışmada gruplar kronik böbrek hastalığı (n=46), kronik böbrek hastalığı olmayan diyabet hastaları (n=31) ve kontrol (n=59) olarak tasarlandı. Kronik böbrek hastalığı grubu kendi içinde diyabetik kronik böbrek hastalığı (n=25) ve non-diyabetik kronik böbrek hastalığı (n=21) olarak iki alt gruba ayrıldı. Yüz otuz altı hastanın toplam 272 böbreği değerlendirildi. Kronik böbrek yetmezliği klinik evrelemesi e-GFR değerlerine göre yapıldı. Tüm manyetik rezonans incelemeleri 1.5 Tesla cihazla yapıldı. Böbrek parankimindeki yağ miktarını ölçmek için, kimyasal şift görüntüleme (Faz içi, faz dışı, Dixon-su ve Dixon-yağ) sekansları kullanıldı. Böbrek ve dalaktan, tüm parankim (Birinci yöntem) ve fokal parankimal (İkinci yöntem) olmak üzere, iki farklı yöntemle ölçümler yapıldı. Yağ fraksiyonu ve dalak-böbrek kimyasal şift görüntüleme oranı hesaplandı.
Bulgular: Birinci ve ikinci ölçüm yöntemlerine göre, kontrol grubunda parankimal yağ fraksiyonu değerleri sırasıyla 0.05±0.01 ve 0.05±0.02 olarak hesaplandı. Kronik böbrek hastalığı gruplarında ise yağ fraksiyonu ölçümleri sırasıyla 0.07±0.02 ve 0.07±0.04 olup, kontrol grubuna göre kronik böbrek hastalığı Evre 3’ten itibaren anlamlı yüksek bulundu (p<0.001). Diyabet hastalarında yağ fraksiyonu ve dalak-böbrek kimyasal şift görüntüleme oranı değerlerinde anlamlı farklılık gözlenmedi (p>0.05).
Sonuç: Kronik böbrek hastalığında renal parankimde evre 3’ten itibaren, kontrol grubu ve diyabetik hastalara göre anlamlı lipid birikimi olmaktadır.
References
- 1. Druilhet RE, Overturf ML, Kirkendall WM. Structure of neutral glycerides and phosphoglycerides of human kidney. Int J Biochem. 1975;6(12):893-901.
- 2. Bobulescu IA. Renal lipid metabolism and lipotoxicity. Curr Opin Nephrol Hypertens. 2010;19(4):393.
- 3. De Vries APJ, Ruggenenti P, Ruan XZ, Praga M, Cruzado JM, Bajema IM et al. Fatty kidney: emerging role of ectopic lipid in obesity-related renal disease. Lancet Diabetes Endocrinol. 2014;2(5):417-26.
- 4. Escasany E, Izquierdo-Lahuerta A, Medina-Gomez G. Underlying mechanisms of renal lipotoxicity in obesity. Nephron. 2019;143(1):29-33.
- 5. Garofalo C, Borrelli S, Minutolo R, Chiodini P, De Nicola L, Conte G. A systematic review and meta-analysis suggests obesity predicts onset of chronic kidney disease in the general population. Kidney Int. 2017;91(5):1224-35.
- 6. Mende C, Einhorn D. Fatty kidney disease: The importance of ectopic fat deposition and the potential value of imaging. J Diabetes. 2022;14(1):73-8.
- 7. Spit KA, Muskiet MHA, Tonneijck L, Smits MM, Kramer MHH, Joles JA et al. Renal sinus fat and renal hemodynamics: a cross-sectional analysis. Magn Reson Mater Physics, Biol Med. 2020;33(1):73-80.
- 8. Mende CW, Einhorn D. Fatty kidney disease: A new renal and endocrine clinical entity? Describing the role of the kidney in obesity, metabolic syndrome, and type 2 diabetes. Endocr Pract. 2019;25(8):854-8.
- 9. Yokoo T, Clark HR, Pedrosa I, Yuan Q, Dimitrov I, Zhang Y et al. Quantification of renal steatosis in type II diabetes mellitus using dixon‐based MRI. J Magn Reson Imaging. 2016;44(5):1312-9.
10. Dixon WT. Simple proton spectroscopic imaging. Radiology. 1984;153(1):189-94.
- 11. Pretorius ES, Solomon JA. Radiology secrets plus E-book. Elsevier Health Sciences, 2010.
- 12. Pacifico L, Nobili V, Anania C, Verdecchia P, Chiesa C. Pediatric nonalcoholic fatty liver disease, metabolic syndrome and cardiovascular risk. World J Gastroenterol. 2011;17(26):3082.
- 13. Sijens PE, Edens MA, Bakker SJL, Stolk RP. MRI-determined fat content of human liver, pancreas and kidney. World J Gastroenterol. 2010;16(16):1993.
- 14. Moorhead JF, El-Nahas M, Chan MK, Varghese Z. Lipid nephrotoxicity in chronic progressive glomerular and tubulo-interstitial disease. Lancet. 1982;320(8311):1309-11.
- 15. Levin A, Stevens PE, Bilous RW, Coresh J, De Francisco ALM, De Jong PE et al. Kidney disease: Improving global outcomes (KDIGO) CKD work group. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney International Supplements. 2013;3(1):1-150.
- 16. Kidney Disease: Improving Global Outcomes (KDIGO) CKD-MBD Work Group. KDIGO clinical practice guideline for the diagnosis, evaluation, prevention, and treatment of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD). Kidney Int Suppl. 2009;(113):S1-130.
- 17. Outwater EK, Siegelman ES, Huang AB, Birnbaum BA. Adrenal masses: correlation between CT attenuation value and chemical shift ratio at MR imaging with in-phase and opposed-phase sequences. Radiology. 1996;200(3):749-52.
- 18. Hsu C, McCulloch CE, Iribarren C, Darbinian J, Go AS. Body mass index and risk for end-stage renal disease. Ann Intern Med. 2006;144(1):21-8.
- 19. Kim JJ, Wilbon SS, Fornoni A. Podocyte Lipotoxicity in CKD. Kidney360. 2021;2(4):755-62.
- 20. Pei K, Gui T, Li C, Zhang Q, Feng H, Li Y et al. Recent progress on lipid intake and chronic kidney disease. Biomed Res Int. 2020;2020:3680397.
- 21. Byrne CD, Targher G. NAFLD as a driver of chronic kidney disease. J Hepatol. 2020;72(4):785-801.
- 22. Targher G, Byrne CD, Lonardo A, Zoppini G, Barbui C. Non-alcoholic fatty liver disease and risk of incident cardiovascular disease: a meta-analysis. J Hepatol. 2016;65(3):589-600.