Araştırma Makalesi
BibTex RIS Kaynak Göster

Juncus compressus’ un Saplarından İlk Kez Doğal Selüloz Lif İzolasyonu ve Karakterizasyonu

Yıl 2023, Cilt: 3 Sayı: 1, 37 - 48, 30.06.2023

Öz

Bu çalışmada Türkiye ve dünya sulak alanlarında geniş yayılış alanına sahip Juncus compressus türünün saplarına asit/alkali uygulaması yapılarak ilk kez selüloz izolasyonu gerçekleştirilmiştir. Elde edilen doğal selüloz liflerinin polimer kompozitler için potansiyel olma durumu gözden geçirilmiştir. Bu doğrultuda selüloz liflerinin kimyasal, fiziksel ve morfolojik özellikleri FT-IR, TGA, XRD, SEM, elemental analiz (EA) yapılarak belirlenmiştir. J. compressus liflerinin % 43.51 selüloz içeriğine sahip olduğu bulunmuştur. Termogravimetrik analiz sonuçları selüloz liflerinin termal bozunmasının üç aşamada gerçekleştiğini ortaya koymuş ve 337.5°C’ de selülozun bozunma sıcaklığını ortaya çıkarmıştır. XRD sonuçları iki ana piki göstermiş, kristallik indeksi (Crl) 27.2 olarak hesaplanmıştır. Liflerin yüzeyinin pürüzlü olduğu görülmüştür. Bu çalışmanın sonuçları J. compressus selüloz liflerinin farklı Juncus türleri ile fiziksel, kimyasal ve morfolojik olarak benzer özelliklere sahip olduğunu ve potansiyel uygulamalar için biyokompozit malzemeler geliştirilmesi için uygun olabileceğini göstermiştir.

Teşekkür

Bu çalışma Aksaray Üniversitesi Fen Bilimleri Enstitüsü öğrencisi Harun METİN’in Doktora Tezinin bir kısmından yararlanılarak hazırlanmıştır.

Kaynakça

  • Bizim Bitkiler (2022). http://www.bizimbitkiler.org.tr/v3/demo/details.php?id=8105&t=1. Erişim tarihi: 10 Haziran 2022.
  • Candiotti S, Mantari J L, Flores C E, Charca S (2020). Assessment of the mechanical properties of peruvian Stipa Obtusa fibers for their use as reinforcement in composite materials. Composites Part A: Applied Science and Manufacturing, 135(May), 105950. https://doi.org/10.1016/j.compositesa.2020.105950
  • Ceylan Z, Taşar Ş, Kaya F, Özer A (2020). Farklı Biyokütle Atıklarının Alkali Ön İşlem Etkinliklerinin İncelenmesi. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 8, 2296–2312. https://doi.org/10.29130/dubited.702096
  • El Ghali A, Marzoug I Ben, Baouab M H V, Roudesli M S (2012). Separation and characterization of new cellulosic fibres from the Juncus acutus L plant. BioResources, 7(2), 2002–2018. https://doi.org/10.15376/biores.7.2.2002-2018
  • Ganapathy T, Sathiskumar R, Senthamaraikannan P, Saravanakumar S S, Khan A (2019). Characterization of raw and alkali treated new natural cellulosic fibres extracted from the aerial roots of banyan tree. International Journal of Biological Macromolecules, 138, 573–581. https://doi.org/10.1016/j.ijbiomac.2019.07.136
  • Indran S, Edwin Raj R, Sreenivasan V S (2014). Characterization of new natural cellulosic fiber from Cissus quadrangularis root. Carbohydrate Polymers, 110, 423–429. https://doi.org/10.1016/j.carbpol.2014.04.051
  • Khan A, Raghunathan V, Singaravelu D L, Sanjay M R, Siengchin S, Jawaid M, Alamry K A, Asiri A M (2022). Extraction and Characterization of Cellulose Fibers from the Stem of Momordica Charantia. Journal of Natural Fibers, 19(6), 2232–2242. https://doi.org/10.1080/15440478.2020.1807442
  • Kumar A, Negi Y S, Bhardwaj N K, Choudhary V (2012). Synthesis and characterization of methylcellulose/PVA based porous composite. Carbohydrate Polymers, 88(4), 1364–1372. https://doi.org/10.1016/j.carbpol.2012.02.019
  • Li W, Wu Q, Zhao X, Huang Z, Cao J, Li J, Liu S (2014). Enhanced thermal and mechanical properties of PVA composites formed with filamentous nanocellulose fibrils. Carbohydrate Polymers, 113, 403–410. https://doi.org/10.1016/j.carbpol.2014.07.031
  • López-Linares J C, García-Cubero M T, Lucas S, Coca M (2020). Integral valorization of cellulosic and hemicellulosic sugars for biobutanol production: ABE fermentation of the whole slurry from microwave pretreated brewer’s spent grain. Biomass and Bioenergy, 135(October 2019). https://doi.org/10.1016/j.biombioe.2020.105524
  • Maache M, Bezazi A, Amroune S, Scarpa F, Dufresne A (2017). Characterization of a novel natural cellulosic fiber from Juncus effusus L. Carbohydrate Polymers, 171, 163–172. https://doi.org/10.1016/j.carbpol.2017.04.096
  • Manimaran P, Saravanakumar S S, Mithun N K, Senthamaraikannan P (2016). Physicochemical properties of new cellulosic fibers from the bark of Acacia arabica. International Journal of Polymer Analysis and Characterization, 21(6), 548–553. https://doi.org/10.1080/1023666X.2016.1177699
  • Manimaran P, Senthamaraikannan P, Sanjay M R, Marichelvam M K, Jawaid M (2018) Study on characterization of Furcraea foetida new natural fiber as composite reinforcement for lightweight applications. Carbohydrate Polymers, 181:650-658. doi:10.1016/j.carbpol.2017.11.099
  • Naili H, Jelidi A, Limam O, Khiari R (2017). Extraction process optimization of Juncus plant fibers for its use in a green composite. Industrial Crops and Products, 107(June 2016), 172–183. https://doi.org/10.1016/j.indcrop.2017.05.006
  • Özbek B. (2015). Türkiye’nin İç Anadolu bölgesindeki Juncus L. (Juncaceae) cinsinin revizyonu. Hacettepe Üniversitesi Fen Bilimleri Enstitüsü Doktora tezi, sayfa no:90, Ankara, Türkiye.
  • Reddy K O, Shukla M, Maheswari C U, Rajulu A V (2012). Evaluation of mechanical behavior of chemically modified Borassus fruit short fiber/unsaturated polyester composites. Journal of Composite Materials, 46(23), 2987–2998. https://doi.org/10.1177/0021998312454032
  • Segal L, Creely J J, Martin A E, Conrad C M (1959). An Empirical Method for Estimating the Degree of Crystallinity of Native Cellulose Using the X-Ray Diffractometer. Textile Research Journal, 29(10), 786–794. https://doi.org/10.1177/004051755902901003
  • Sharma A, Mandal T, Goswami S (2017).Cellulose nanofibers from rice straw: process development for improved delignification and better crystallinity index, Trends Carbohydrate, Res., 9 , pp. 16-27
  • Singh A, Ranawat B, Meena R (2019). Extraction and characterization of cellulose from halophytes: next generation source of cellulose fibre. SN Applied Sciences, 1(11), 1–10. https://doi.org/10.1007/s42452-019-1160-6
  • Vijay R, James Dhilip J D, Gowtham S, Harikrishnan S, Chandru B, Amarnath M, Khan A (2022). Characterization of Natural Cellulose Fiber from the Barks of Vachellia farnesiana. Journal of Natural Fibers, 19(4), 1343–1352. https://doi.org/10.1080/15440478.2020.1764457
  • Vyas K D, Ranawat B, Singh A (2021). Development of high frequency cost-effective micropropagation protocol for Juncus rigidus using liquid culture medium and extraction of cellulose from their in vitro shoots - An important rush. Biocatalysis and Agricultural Biotechnology, 35(March), 102099. https://doi.org/10.1016/j.bcab.2021.102099
  • Zhu W, Liu L, Liao Q, Chen X, Qian Z, Shen J, Liang J, Yao J (2016). Functionalization of cellulose with hyperbranched polyethylenimine for selective dye adsorption and separation. Cellulose, 23(6), 3785–3797. https://doi.org/10.1007/s10570-016-1045-4

First Time Natural Cellulose Fiber Isolation and Characterization From The Stalks of Juncus compressus

Yıl 2023, Cilt: 3 Sayı: 1, 37 - 48, 30.06.2023

Öz

In this study, cellulose isolation was carried out for the first time by applying acid/alkali to the stalks of Juncus compressus species, which has a wide distribution in Turkey and the world's wetlands. The potential of the obtained natural cellulose fibers for polymer composites has been reviewed. In this direction, chemical, physical and morphological properties of cellulose fibers were determined by FT-IR, TGA, XRD, SEM, elemental analysis (EA). J. compressus fibers were found to have a cellulose content of 43.51%. Thermogravimetric analysis revealed that the thermal degradation of the obtained cellulose fibers occurred in three stages and revealed the degradation temperature of cellulose at 337.5 °C. XRD results showed two main peaks, the crystallinity index (Crl) was calculated as 27.2. It was observed that the surface of the fibers was rough. The results of this study showed that J. compressus cellulose fibers have similar properties with different Juncus species and are suitable for the development of biocomposite materials for potential applications.

Kaynakça

  • Bizim Bitkiler (2022). http://www.bizimbitkiler.org.tr/v3/demo/details.php?id=8105&t=1. Erişim tarihi: 10 Haziran 2022.
  • Candiotti S, Mantari J L, Flores C E, Charca S (2020). Assessment of the mechanical properties of peruvian Stipa Obtusa fibers for their use as reinforcement in composite materials. Composites Part A: Applied Science and Manufacturing, 135(May), 105950. https://doi.org/10.1016/j.compositesa.2020.105950
  • Ceylan Z, Taşar Ş, Kaya F, Özer A (2020). Farklı Biyokütle Atıklarının Alkali Ön İşlem Etkinliklerinin İncelenmesi. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 8, 2296–2312. https://doi.org/10.29130/dubited.702096
  • El Ghali A, Marzoug I Ben, Baouab M H V, Roudesli M S (2012). Separation and characterization of new cellulosic fibres from the Juncus acutus L plant. BioResources, 7(2), 2002–2018. https://doi.org/10.15376/biores.7.2.2002-2018
  • Ganapathy T, Sathiskumar R, Senthamaraikannan P, Saravanakumar S S, Khan A (2019). Characterization of raw and alkali treated new natural cellulosic fibres extracted from the aerial roots of banyan tree. International Journal of Biological Macromolecules, 138, 573–581. https://doi.org/10.1016/j.ijbiomac.2019.07.136
  • Indran S, Edwin Raj R, Sreenivasan V S (2014). Characterization of new natural cellulosic fiber from Cissus quadrangularis root. Carbohydrate Polymers, 110, 423–429. https://doi.org/10.1016/j.carbpol.2014.04.051
  • Khan A, Raghunathan V, Singaravelu D L, Sanjay M R, Siengchin S, Jawaid M, Alamry K A, Asiri A M (2022). Extraction and Characterization of Cellulose Fibers from the Stem of Momordica Charantia. Journal of Natural Fibers, 19(6), 2232–2242. https://doi.org/10.1080/15440478.2020.1807442
  • Kumar A, Negi Y S, Bhardwaj N K, Choudhary V (2012). Synthesis and characterization of methylcellulose/PVA based porous composite. Carbohydrate Polymers, 88(4), 1364–1372. https://doi.org/10.1016/j.carbpol.2012.02.019
  • Li W, Wu Q, Zhao X, Huang Z, Cao J, Li J, Liu S (2014). Enhanced thermal and mechanical properties of PVA composites formed with filamentous nanocellulose fibrils. Carbohydrate Polymers, 113, 403–410. https://doi.org/10.1016/j.carbpol.2014.07.031
  • López-Linares J C, García-Cubero M T, Lucas S, Coca M (2020). Integral valorization of cellulosic and hemicellulosic sugars for biobutanol production: ABE fermentation of the whole slurry from microwave pretreated brewer’s spent grain. Biomass and Bioenergy, 135(October 2019). https://doi.org/10.1016/j.biombioe.2020.105524
  • Maache M, Bezazi A, Amroune S, Scarpa F, Dufresne A (2017). Characterization of a novel natural cellulosic fiber from Juncus effusus L. Carbohydrate Polymers, 171, 163–172. https://doi.org/10.1016/j.carbpol.2017.04.096
  • Manimaran P, Saravanakumar S S, Mithun N K, Senthamaraikannan P (2016). Physicochemical properties of new cellulosic fibers from the bark of Acacia arabica. International Journal of Polymer Analysis and Characterization, 21(6), 548–553. https://doi.org/10.1080/1023666X.2016.1177699
  • Manimaran P, Senthamaraikannan P, Sanjay M R, Marichelvam M K, Jawaid M (2018) Study on characterization of Furcraea foetida new natural fiber as composite reinforcement for lightweight applications. Carbohydrate Polymers, 181:650-658. doi:10.1016/j.carbpol.2017.11.099
  • Naili H, Jelidi A, Limam O, Khiari R (2017). Extraction process optimization of Juncus plant fibers for its use in a green composite. Industrial Crops and Products, 107(June 2016), 172–183. https://doi.org/10.1016/j.indcrop.2017.05.006
  • Özbek B. (2015). Türkiye’nin İç Anadolu bölgesindeki Juncus L. (Juncaceae) cinsinin revizyonu. Hacettepe Üniversitesi Fen Bilimleri Enstitüsü Doktora tezi, sayfa no:90, Ankara, Türkiye.
  • Reddy K O, Shukla M, Maheswari C U, Rajulu A V (2012). Evaluation of mechanical behavior of chemically modified Borassus fruit short fiber/unsaturated polyester composites. Journal of Composite Materials, 46(23), 2987–2998. https://doi.org/10.1177/0021998312454032
  • Segal L, Creely J J, Martin A E, Conrad C M (1959). An Empirical Method for Estimating the Degree of Crystallinity of Native Cellulose Using the X-Ray Diffractometer. Textile Research Journal, 29(10), 786–794. https://doi.org/10.1177/004051755902901003
  • Sharma A, Mandal T, Goswami S (2017).Cellulose nanofibers from rice straw: process development for improved delignification and better crystallinity index, Trends Carbohydrate, Res., 9 , pp. 16-27
  • Singh A, Ranawat B, Meena R (2019). Extraction and characterization of cellulose from halophytes: next generation source of cellulose fibre. SN Applied Sciences, 1(11), 1–10. https://doi.org/10.1007/s42452-019-1160-6
  • Vijay R, James Dhilip J D, Gowtham S, Harikrishnan S, Chandru B, Amarnath M, Khan A (2022). Characterization of Natural Cellulose Fiber from the Barks of Vachellia farnesiana. Journal of Natural Fibers, 19(4), 1343–1352. https://doi.org/10.1080/15440478.2020.1764457
  • Vyas K D, Ranawat B, Singh A (2021). Development of high frequency cost-effective micropropagation protocol for Juncus rigidus using liquid culture medium and extraction of cellulose from their in vitro shoots - An important rush. Biocatalysis and Agricultural Biotechnology, 35(March), 102099. https://doi.org/10.1016/j.bcab.2021.102099
  • Zhu W, Liu L, Liao Q, Chen X, Qian Z, Shen J, Liang J, Yao J (2016). Functionalization of cellulose with hyperbranched polyethylenimine for selective dye adsorption and separation. Cellulose, 23(6), 3785–3797. https://doi.org/10.1007/s10570-016-1045-4
Toplam 22 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Yapısal Biyoloji
Bölüm Araştırma Makaleleri
Yazarlar

Harun Metin 0000-0001-7036-9354

Seher Karaman Erkul 0000-0003-1239-8266

Yayımlanma Tarihi 30 Haziran 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 3 Sayı: 1

Kaynak Göster

APA Metin, H., & Karaman Erkul, S. (2023). Juncus compressus’ un Saplarından İlk Kez Doğal Selüloz Lif İzolasyonu ve Karakterizasyonu. Kırşehir Ahi Evran Üniversitesi Ziraat Fakültesi Dergisi, 3(1), 37-48.
AMA Metin H, Karaman Erkul S. Juncus compressus’ un Saplarından İlk Kez Doğal Selüloz Lif İzolasyonu ve Karakterizasyonu. KUZFAD. Haziran 2023;3(1):37-48.
Chicago Metin, Harun, ve Seher Karaman Erkul. “Juncus compressus’ Un Saplarından İlk Kez Doğal Selüloz Lif İzolasyonu Ve Karakterizasyonu”. Kırşehir Ahi Evran Üniversitesi Ziraat Fakültesi Dergisi 3, sy. 1 (Haziran 2023): 37-48.
EndNote Metin H, Karaman Erkul S (01 Haziran 2023) Juncus compressus’ un Saplarından İlk Kez Doğal Selüloz Lif İzolasyonu ve Karakterizasyonu. Kırşehir Ahi Evran Üniversitesi Ziraat Fakültesi Dergisi 3 1 37–48.
IEEE H. Metin ve S. Karaman Erkul, “Juncus compressus’ un Saplarından İlk Kez Doğal Selüloz Lif İzolasyonu ve Karakterizasyonu”, KUZFAD, c. 3, sy. 1, ss. 37–48, 2023.
ISNAD Metin, Harun - Karaman Erkul, Seher. “Juncus compressus’ Un Saplarından İlk Kez Doğal Selüloz Lif İzolasyonu Ve Karakterizasyonu”. Kırşehir Ahi Evran Üniversitesi Ziraat Fakültesi Dergisi 3/1 (Haziran 2023), 37-48.
JAMA Metin H, Karaman Erkul S. Juncus compressus’ un Saplarından İlk Kez Doğal Selüloz Lif İzolasyonu ve Karakterizasyonu. KUZFAD. 2023;3:37–48.
MLA Metin, Harun ve Seher Karaman Erkul. “Juncus compressus’ Un Saplarından İlk Kez Doğal Selüloz Lif İzolasyonu Ve Karakterizasyonu”. Kırşehir Ahi Evran Üniversitesi Ziraat Fakültesi Dergisi, c. 3, sy. 1, 2023, ss. 37-48.
Vancouver Metin H, Karaman Erkul S. Juncus compressus’ un Saplarından İlk Kez Doğal Selüloz Lif İzolasyonu ve Karakterizasyonu. KUZFAD. 2023;3(1):37-48.