The necessity of classifying the data according to the categorical variable is quite common in earth sciences. Especially in mining, classification regarding to the metal content, which is covered in the study, classification of geological zones for mineral resource estimation or classification of blocks in the mining production phase can be given as an example of classification problems. Geostatistical estimations methods such as kriging cannot be regarded as solution for classification, and in this study it is clearly shown by comparative case study example. In the study, support vector machines algorithm is coded that classifies depending upon position of the data, based on the statistical learning theory, which can classify multiple and binary classes. The parameter selection is automatically integrated into the algorithm. By using the categorical variables depending on the continuous independent variables from collected data, algorithm reveals the categories in the unknown locations by using only the distance based information. Through introduced algorithm in the study, categorical variables related to independent variables can be classified with respected to the definition of the problem.
Verilerin kategorik değişkenliğe göre sınıflandırılması gerekliliği madencilikte oldukça sık rastlanan durumdur. Bu çalışma kapsamında ele alınan metal içeriğine göre sınıflandırma veya jeolojik zonların maden kaynak kestirimi için sınıflandırılması, madencilik üretim aşamasında
blokların sınıflandırılması örnek olarak sayılabilir. Krigleme gibi jeoistatistiksel kestirim yöntemleri, sınıflandırma için çözüm üreten bir araç değildir ve çalışmada karşılaştırmalı olarak neden kullanılmaması gerektiği açıkça ortaya konmuştur. Çalışmada, ikili sınıftan fazla, çoklu
sınıfların etkin bir şekilde sınıflandırmaya yarayan, istatistiksel öğrenme teorisine dayalı, verilerin konumuna bağlı olarak sınıflandırma yapan ve parametre seçimi otomatik halde algoritmaya entegre edilen bir destek vektör makinesi programı kodlanmıştır. Bu program sayesinde bağımsız
değişkenlere bağlı kategorik değişkenler problemin tanımına göre sınıflandırılabilmektedir. Algoritma girdisi olarak sahada toplanan verilerin devamlı bağımsız değişkenlerine göre var olan kategorik değişkenlerin, sahada bilinmeyen lokasyonlardaki kategorileri, sadece uzaklığa bağlı
konumları kullanılarak ortaya konabilmektedir.
Primary Language | Turkish |
---|---|
Journal Section | Research Article |
Authors | |
Publication Date | December 1, 2017 |
Submission Date | May 17, 2017 |
Published in Issue | Year 2017 Volume: 56 Issue: 4 |