Derleme
BibTex RIS Kaynak Göster

Immune Checkpoint Inhibitors: Ctla-4 and Pd-1/Pd-l1 in Immunotherapy

Yıl 2019, , 210 - 218, 20.12.2019
https://doi.org/10.29048/makufebed.569375

Öz

Cancer immunotherapy aims to strengthen the human
immune system to combat cancer and is based on the ability of the immune system
to detect the finest biochemical differences between cancer and normal cells.
Immunotherapy's advantages among conventional methods are specificity to cancer
cells, long-term effects and contribution to healing. Tumors use inhibitory
receptors, also known as immune control points, to inhibit anti-tumor immune
responses. In many individuals, immunosuppression is mediated by Cytotoxic
T-Lymphocyte-Associated Antigen-4 (CTLA-4) and Programmed Death-1 (PD-1)
receptors. Monoclonal antibody (mAb) based therapies targeting CTLA-4 and/or
PD-1 control point inhibitors have been observed to provide significant
benefits to patients of many different types of malignancies. This study aims
to examine the scientific studies on the role of CTLA-4 and PD-1 / PD-L1 in
cancer therapy and immunotherapy.

Kaynakça

  • A Shenoy, J. L. (2016). Cancer cells remodel themselves and vasculature to overcome the endothelial barrier. Cancer Lett., 380(2), 534–544. https://doi.org/10.1186/s40945-017-0033-9.Using
  • Apte, S. S., & Parks, W. C. (2015). Metalloproteinases: A parade of functions in matrix biology and an outlook for the future. Matrix Biology, 44–46, 1–6. https://doi.org/10.1016/j.matbio.2015.04.005
  • Aspeslagh, S., Solinas, C., Routy, B., Allard, B., Dupont, F. A., Buisseret, L., … Kok, M. (2018). Immuno-oncology-101: overview of major concepts and translational perspectives. Seminars in Cancer Biology, 52(February), 1–11. https://doi.org/10.1016/j.semcancer.2018.02.005
  • Baxter, E., Windloch, K., Gannon, F., & Lee, J. S. (2014). Epigenetic regulation in cancer progression. Cell and Bioscience, 4(1). https://doi.org/10.1186/2045-3701-4-45
  • Blomberg, O. S., Spagnuolo, L., & de Visser, K. E. (2018). Immune regulation of metastasis: mechanistic insights and therapeutic opportunities. Disease Models & Mechanisms, 11(10), dmm036236. https://doi.org/10.1242/dmm.036236
  • Bourboulia, D., & Stetler-Stevenson, W. G. (2010). Matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs): Positive and negative regulators in tumor cell adhesion. Seminars in Cancer Biology, 20(3), 161–168. https://doi.org/10.1016/j.semcancer.2010.05.002
  • Boussiotis, V. A. (2016). Molecular and Biochemical Aspects of the PD-1 Checkpoint Pathway. The New England Journal of Medicine, 375(18), 1767–1778. https://doi.org/10.1056/NEJMra1514296
  • Campbell, R. (2013). Biyoloji (9th ed.). Istanbul: Palme Yayıncılık.
  • Caroline Bonnans, Jonathan Chou, Z. W. (2014). Remodelling the extracellular matrix in development and disease. Nat Rev Mol Cell Biol., 15(12), 786–801. https://doi.org/10.1038/nrm3904.Remodelling
  • Catalano, V., Turdo, A., Di Franco, S., Dieli, F., Todaro, M., & Stassi, G. (2013). Tumor and its microenvironment: A synergistic interplay. Seminars in Cancer Biology, 23(6), 522–532. https://doi.org/10.1016/j.semcancer.2013.08.007
  • Chiarugi, P., & Cirri, P. (2016). Metabolic exchanges within tumor microenvironment. Cancer Letters, 380(1), 272–280. https://doi.org/10.1016/j.canlet.2015.10.027
  • Chowdhury, F., Dunn, S., Mitchell, S., Mellows, T., Ashton-Key, M., & Gray, J. C. (2015). PD-L1 and CD8 + PD1 + lymphocytes exist as targets in the pediatric tumor microenvironment for immunomodulatory therapy. OncoImmunology, 4(10), e1029701. https://doi.org/10.1080/2162402X.2015.1029701
  • Church, S. E., & Galon, J. (2015). Tumor Microenvironment and Immunotherapy: The Whole Picture Is Better Than a Glimpse. Immunity, 43(4), 631–633. https://doi.org/10.1016/j.immuni.2015.10.004
  • Deryugina, E. I., & Quigley, J. P. (2015). Tumor angiogenesis: MMP-mediated induction of intravasation- and metastasis-sustaining neovasculature. Matrix Biology, 44–46, 94–112. https://doi.org/10.1016/j.matbio.2015.04.004
  • Doan, M. V. W. (2017). İmmünoloji (2nd ed.). Istanbul: Nobel Tıp Kitabevleri.
  • Erdogan, B., & Webb, D. J. (2017). Cancer-associated fibroblasts modulate growth factor signaling and extracellular matrix remodeling to regulate tumor metastasis. Biochem Soc Trans., 45(1), 229–236. https://doi.org/10.1042/BST20160387.Cancer-associated
  • Foy, S. P., Mandl, S. J., dela Cruz, T., Cote, J. J., Gordon, E. J., Trent, E., … Rountree, R. B. (2016). Poxvirus-based active immunotherapy synergizes with CTLA-4 blockade to increase survival in a murine tumor model by improving the magnitude and quality of cytotoxic T cells. Cancer Immunology, Immunotherapy, 65(5), 537–549. https://doi.org/10.1007/s00262-016-1816-7
  • Gibney, G. T., Weiner, P. L. M., Atkins, P. M. B., & Comprehensive, L. (2016). Predictive biomarkers for checkpoint inhibitor-based immunotherapy. Lancet Oncol., 17(12), 542–551. https://doi.org/10.1016/S1470-2045(16)30406-5.Predictive
  • Hamanishi, J., Mandai, M., Matsumura, N., Abiko, K., Baba, T., & Konishi, I. (2016). PD-1/PD-L1 blockade in cancer treatment: perspectives and issues. International Journal of Clinical Oncology, 21(3), 462–473. https://doi.org/10.1007/s10147-016-0959-z
  • Hirata, E., & Sahai, E. (2017). Tumor Microenvironment and Differential. Cold Spring Harb Perspect Med Doi: https://doi.org/10.1101/cshperspect.a026781
  • Hui, L., & Chen, Y. (2015). Tumor microenvironment: Sanctuary of the devil. Cancer Letters, 368(1), 7–13. https://doi.org/10.1016/j.canlet.2015.07.039
  • Ivey, J. W., Bonakdar, M., Kanitkar, A., Davalos, R. V., & Verbridge, S. S. (2016). Improving cancer therapies by targeting the physical and chemical hallmarks of the tumor microenvironment. Cancer Letters, 380(1), 330–339. https://doi.org/10.1016/j.canlet.2015.12.019
  • Joosse, S. A., Gorges, T. M., & Pantel, K. (2015). Biology, detection, and clinical implications of circulating tumor cells. EMBO Molecular Medicine, 7(1), 1–11. https://doi.org/10.15252/emmm.201303698
  • Kenny, P. A., Lee, G. Y., & Bissell, M. J. (2007). Targeting the tumor microenvironment. Frontiers in Bioscience, 12, 3468–3474.
  • Li, Y., Li, F., Jiang, F., Lv, X., Zhang, R., Lu, A., & Zhang, G. (2016). A mini-review for cancer immunotherapy: Molecular understanding of PD-1/ PD-L1 pathway & translational blockade of immune checkpoints. International Journal of Molecular Sciences, 17(7), 1–22. https://doi.org/10.3390/ijms17071151
  • Lo, B., & Abdel-Motal, U. M. (2017, December 1). Lessons from CTLA-4 deficiency and checkpoint inhibition. Current Opinion in Immunology. Elsevier Ltd. https://doi.org/10.1016/j.coi.2017.07.014
  • Madigan, J. M. M. (2012). Mikroorganizmaların Biyolojisi (11th ed.). Istanbul: Palme Yayıncılık.
  • Majzner, R. G., Simon, J. S., Grosso, J. F., Martinez, D., Pawel, B. R., Santi, M., … Maris, J. M. (2017). Assessment of programmed death-ligand 1 expression and tumor-associated immune cells in pediatric cancer tissues. Cancer, 123(19), 3807–3815. https://doi.org/10.1002/cncr.30724
  • Malik, R., Lelkes, P. I., & Cukierman, E. (2015). BIOMECHANICAL and BIOCHEMICAL REMODELING of STROMAL EXTRACELLULAR MATRIX IN CANCER. Trends Biotechnol., 33(4), 230–236. https://doi.org/10.1016/j.tibtech.2015.01.004.BIOMECHANICAL
  • Marcucci, F., Rumio, C., & Corti, A. (2017). Tumor cell-associated immune checkpoint molecules – Drivers of malignancy and stemness. Biochimica et Biophysica Acta - Reviews on Cancer, 1868(2), 571–583. https://doi.org/10.1016/j.bbcan.2017.10.006
  • Masuda, T., Hayashi, N., Iguchi, T., Ito, S., Eguchi, H., & Mimori, K. (2016). Clinical and biological significance of circulating tumor cells in cancer. Molecular Oncology, 10(3), 408–417. https://doi.org/10.1016/j.molonc.2016.01.010
  • Melo, F. H. M. de, Oliveira, J. S., Sartorelli, V. O. B., & Montor, W. R. (2018). Cancer Chemoprevention: Classic and Epigenetic Mechanisms Inhibiting Tumorigenesis. What Have We Learned So Far? Frontiers in Oncology, 8(December), 1–15. https://doi.org/10.3389/fonc.2018.00644
  • Meng, Y., Liang, H., Hu, J., Liu, S., Hao, X., Wong, M. S. K., … Hu, L. (2018). PD-L1 Expression Correlates With Tumor Infiltrating Lymphocytes And Response To Neoadjuvant Chemotherapy In Cervical Cancer. Journal of Cancer, 9(16), 2938–2945. https://doi.org/10.7150/jca.22532
  • Michael W Pickup, Janna K Mouw, V. M. W. (2014). The extracellular matrix modulates the hallmarks of cancer. EMBO Reports, 15, 1243–1253. https://doi.org/10.15252/embr.201439246
  • Missiaen, R., Mazzone, M., & Bergers, G. (2018). The reciprocal function and regulation of tumor vessels and immune cells offers new therapeutic opportunities in cancer. Seminars in Cancer Biology, 52(June), 107–116. https://doi.org/10.1016/j.semcancer.2018.06.002
  • Multhaupt, H. A. B., Leitinger, B., Gullberg, D., & Couchman, J. R. (2016). Extracellular matrix component signaling in cancer. Advanced Drug Delivery Reviews, 97, 28–40. https://doi.org/10.1016/j.addr.2015.10.013
  • Nallasamy, P., Chava, S., Verma, S. S., Mishra, S., Gorantla, S., Coulter, D. W., … Challagundla, K. B. (2018). PD-L1, inflammation, non-coding RNAs, and neuroblastoma: Immuno-oncology perspective. Seminars in Cancer Biology, 52(July 2017), 53–65. https://doi.org/10.1016/j.semcancer.2017.11.009
  • Okazaki, T., Chikuma, S., Iwai, Y., Fagarasan, S., & Honjo, T. (2013). A rheostat for immune responses: The unique properties of PD-1 and their advantages for clinical application. Nature Immunology, 14(12), 1212–1218. https://doi.org/10.1038/ni.2762
  • Ott, P. A., Hodi, F. S., & Robert, C. (2013). CTLA-4 and PD-1/PD-L1 blockade: New immunotherapeutic modalities with durable clinical benefit in melanoma patients. Clinical Cancer Research, 19(19), 5300–5309. https://doi.org/10.1158/1078-0432.CCR-13-0143
  • Parkin, D. M., Bray, F., Ferlay, J., & Pisani, P. (2005). Global Cancer Statistics, 2002. CA: A Cancer Journal for Clinicians, 55(2), 74–108. https://doi.org/10.3322/canjclin.55.2.74
  • Potapova T, Zhu J, L. R. (2013). Aneuploidy and chromosomal instability: a vicious cycle driving cellular evolution and cancer genome chaos. Cancer Metastasis Rev., 32(0). https://doi.org/10.1249/MSS.0000000000000294
  • Rainero, E. (2016). Extracellular matrix endocytosis in controlling matrix turnover and beyond: emerging roles in cancer. Biochemical Society Transactions, 44(5), 1347–1354. https://doi.org/10.1042/bst20160159
  • Rangel-Sosa, M. M., Aguilar-Córdova, E., & Rojas-Martínez, A. (2017, September 30). Immunotherapy and gene therapy as novel treatments for cancer. Colombia Medica (Cali, Colombia). https://doi.org/10.25100/cm.v48i3.2997
  • Rejniak, K. A. (2016). Circulating Tumor Cells: When a Solid Tumor Meets a Fluid Microenvironment. Advances in Experimental Medicine and Biology, 936, 93–106. https://doi.org/10.1007/978-1-4614-1445-2_6
  • Rowshanravan, B., Halliday, N., & Sansom, D. M. (2018, January 4). CTLA-4: A moving target in immunotherapy. Blood. American Society of Hematology. https://doi.org/10.1182/blood-2017-06-741033
  • Shay, G., Lynch, C. C., & Fingleton, B. (2015). Moving targets: Emerging roles for MMPs in cancer progression and metastasis. Matrix Biology, 44–46, 200–206. https://doi.org/10.1016/j.matbio.2015.01.019
  • Taube, J. M., Galon, J., Sholl, L. M., Rodig, S. J., Cottrell, T. R., Giraldo, N. A., … David, L. (2018). Implications of the tumor immune microenvironment for staging and therapeutics. Mod Pathol., 31(2), 214–234. https://doi.org/10.1038/modpathol.2017.156.Implications
  • Van Doren, S. R. (2015). Matrix metalloproteinase interactions with collagen and elastin. Matrix Biology, 44–46(i), 224–231. https://doi.org/10.1016/j.matbio.2015.01.005
  • Van Hooren, L., Sandin, L. C., Moskalev, I., Ellmark, P., Dimberg, A., Black, P., … Mangsbo, S. M. (2017). Local checkpoint inhibition of CTLA-4 as a monotherapy or in combination with anti-PD1 prevents the growth of murine bladder cancer. European Journal of Immunology, 47(2), 385–393. https://doi.org/10.1002/eji.201646583
  • Walker, C., Mojares, E., & del Río Hernández, A. (2018). Role of Extracellular Matrix in Development and Cancer Progression. International Journal of Molecular Sciences (Vol. 19). https://doi.org/10.3390/ijms19103028
  • Walker, L. S. K. (2013, September). Treg and CTLA-4: Two intertwining pathways to immune tolerance. Journal of Autoimmunity. https://doi.org/10.1016/j.jaut.2013.06.006
  • Walker, L. S. K., & Sansom, D. M. (2015, February 1). Confusing signals: Recent progress in CTLA-4 biology. Trends in Immunology. Elsevier Ltd. https://doi.org/10.1016/j.it.2014.12.001
  • Wang, L.-H., Wu, C.-F., Rajasekaran, N., & Shin, Y. K. (2018). Loss of Tumor Suppressor Gene Function in Human Cancer: An Overview. Cellular Physiology and Biochemistry, 2647–2693. https://doi.org/10.1159/000495956
  • Weber, C. E., & Kuo, P. C. (2012). The tumor microenvironment. Surgical Oncology, 21(3), 172–177. https://doi.org/10.1016/j.suronc.2011.09.001
  • Wu, T., & Dai, Y. (2017). Tumor microenvironment and therapeutic response. Cancer Letters, 387, 61–68. https://doi.org/10.1016/j.canlet.2016.01.043
  • Yang, L., & Lin, P. C. (2017). Mechanisms that drive inflammatory tumor microenvironment, tumor heterogeneity, and metastatic progression. Seminars in Cancer Biology, 47(July), 185–195. https://doi.org/10.1016/j.semcancer.2017.08.001
  • Zhang, X., Wang, C., Wang, J., Hu, Q., Langworthy, B., Ye, Y., Gu, Z. (2018). PD-1 Blockade Cellular Vesicles for Cancer Immunotherapy. Advanced Materials (Deerfield Beach, Fla.), 30(22), e1707112. https://doi.org/10.1002/adma.201707112

İmmün Kontrol Noktası İnhibitörleri Ctla-4 ve Pd-1/Pd-l1’in İmmünoterapideki Yeri

Yıl 2019, , 210 - 218, 20.12.2019
https://doi.org/10.29048/makufebed.569375

Öz

Kanser immünoterapisi,
kanserle mücadelede insan immün sistemini güçlendirmeyi amaçlar ve immün
sistemin kanser ile normal hücreler arasındaki en iyi biyokimyasal
farklılıkları tespit etme yeteneğine dayanır. İmmünoterapi; özgüllüğü, uzun
süreli etkileri ve iyileşmeye olan katkıları sayesinde, kanser tedavisindeki
yerini sağlamlaştırmaya devam etmektedir. Tümörler, anti-tümör immün
tepkilerini inhibe etmek için bağışıklık kontrol noktaları olarak da bilinen
inhibitör reseptörleri kullanır. Birçok kişide immün-baskılamaya, Sitotoksik
T-Lenfosit-İlişkili Antijen-4 (CTLA-4) ve Programlanmış Ölüm-1 (PD-1)
reseptörleri aracılık eder. CTLA-4 ve/veya PD-1 kontrol noktası inhibitörlerini
hedefleyen monoklonal antikor (mAb) temelli terapilerin, birçok farklı malignin
türünde, hastalara gözle görülür yararlar sağladığı gözlemlenmiştir. Bu
çalışmanın amacı, CTLA-4 ve PD-1/ PD-L1 tedavilerinin kanser tedavisindeki ve
immünoterapideki yeri ile ilgili bilimsel çalışmaları incelemektir.

Kaynakça

  • A Shenoy, J. L. (2016). Cancer cells remodel themselves and vasculature to overcome the endothelial barrier. Cancer Lett., 380(2), 534–544. https://doi.org/10.1186/s40945-017-0033-9.Using
  • Apte, S. S., & Parks, W. C. (2015). Metalloproteinases: A parade of functions in matrix biology and an outlook for the future. Matrix Biology, 44–46, 1–6. https://doi.org/10.1016/j.matbio.2015.04.005
  • Aspeslagh, S., Solinas, C., Routy, B., Allard, B., Dupont, F. A., Buisseret, L., … Kok, M. (2018). Immuno-oncology-101: overview of major concepts and translational perspectives. Seminars in Cancer Biology, 52(February), 1–11. https://doi.org/10.1016/j.semcancer.2018.02.005
  • Baxter, E., Windloch, K., Gannon, F., & Lee, J. S. (2014). Epigenetic regulation in cancer progression. Cell and Bioscience, 4(1). https://doi.org/10.1186/2045-3701-4-45
  • Blomberg, O. S., Spagnuolo, L., & de Visser, K. E. (2018). Immune regulation of metastasis: mechanistic insights and therapeutic opportunities. Disease Models & Mechanisms, 11(10), dmm036236. https://doi.org/10.1242/dmm.036236
  • Bourboulia, D., & Stetler-Stevenson, W. G. (2010). Matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs): Positive and negative regulators in tumor cell adhesion. Seminars in Cancer Biology, 20(3), 161–168. https://doi.org/10.1016/j.semcancer.2010.05.002
  • Boussiotis, V. A. (2016). Molecular and Biochemical Aspects of the PD-1 Checkpoint Pathway. The New England Journal of Medicine, 375(18), 1767–1778. https://doi.org/10.1056/NEJMra1514296
  • Campbell, R. (2013). Biyoloji (9th ed.). Istanbul: Palme Yayıncılık.
  • Caroline Bonnans, Jonathan Chou, Z. W. (2014). Remodelling the extracellular matrix in development and disease. Nat Rev Mol Cell Biol., 15(12), 786–801. https://doi.org/10.1038/nrm3904.Remodelling
  • Catalano, V., Turdo, A., Di Franco, S., Dieli, F., Todaro, M., & Stassi, G. (2013). Tumor and its microenvironment: A synergistic interplay. Seminars in Cancer Biology, 23(6), 522–532. https://doi.org/10.1016/j.semcancer.2013.08.007
  • Chiarugi, P., & Cirri, P. (2016). Metabolic exchanges within tumor microenvironment. Cancer Letters, 380(1), 272–280. https://doi.org/10.1016/j.canlet.2015.10.027
  • Chowdhury, F., Dunn, S., Mitchell, S., Mellows, T., Ashton-Key, M., & Gray, J. C. (2015). PD-L1 and CD8 + PD1 + lymphocytes exist as targets in the pediatric tumor microenvironment for immunomodulatory therapy. OncoImmunology, 4(10), e1029701. https://doi.org/10.1080/2162402X.2015.1029701
  • Church, S. E., & Galon, J. (2015). Tumor Microenvironment and Immunotherapy: The Whole Picture Is Better Than a Glimpse. Immunity, 43(4), 631–633. https://doi.org/10.1016/j.immuni.2015.10.004
  • Deryugina, E. I., & Quigley, J. P. (2015). Tumor angiogenesis: MMP-mediated induction of intravasation- and metastasis-sustaining neovasculature. Matrix Biology, 44–46, 94–112. https://doi.org/10.1016/j.matbio.2015.04.004
  • Doan, M. V. W. (2017). İmmünoloji (2nd ed.). Istanbul: Nobel Tıp Kitabevleri.
  • Erdogan, B., & Webb, D. J. (2017). Cancer-associated fibroblasts modulate growth factor signaling and extracellular matrix remodeling to regulate tumor metastasis. Biochem Soc Trans., 45(1), 229–236. https://doi.org/10.1042/BST20160387.Cancer-associated
  • Foy, S. P., Mandl, S. J., dela Cruz, T., Cote, J. J., Gordon, E. J., Trent, E., … Rountree, R. B. (2016). Poxvirus-based active immunotherapy synergizes with CTLA-4 blockade to increase survival in a murine tumor model by improving the magnitude and quality of cytotoxic T cells. Cancer Immunology, Immunotherapy, 65(5), 537–549. https://doi.org/10.1007/s00262-016-1816-7
  • Gibney, G. T., Weiner, P. L. M., Atkins, P. M. B., & Comprehensive, L. (2016). Predictive biomarkers for checkpoint inhibitor-based immunotherapy. Lancet Oncol., 17(12), 542–551. https://doi.org/10.1016/S1470-2045(16)30406-5.Predictive
  • Hamanishi, J., Mandai, M., Matsumura, N., Abiko, K., Baba, T., & Konishi, I. (2016). PD-1/PD-L1 blockade in cancer treatment: perspectives and issues. International Journal of Clinical Oncology, 21(3), 462–473. https://doi.org/10.1007/s10147-016-0959-z
  • Hirata, E., & Sahai, E. (2017). Tumor Microenvironment and Differential. Cold Spring Harb Perspect Med Doi: https://doi.org/10.1101/cshperspect.a026781
  • Hui, L., & Chen, Y. (2015). Tumor microenvironment: Sanctuary of the devil. Cancer Letters, 368(1), 7–13. https://doi.org/10.1016/j.canlet.2015.07.039
  • Ivey, J. W., Bonakdar, M., Kanitkar, A., Davalos, R. V., & Verbridge, S. S. (2016). Improving cancer therapies by targeting the physical and chemical hallmarks of the tumor microenvironment. Cancer Letters, 380(1), 330–339. https://doi.org/10.1016/j.canlet.2015.12.019
  • Joosse, S. A., Gorges, T. M., & Pantel, K. (2015). Biology, detection, and clinical implications of circulating tumor cells. EMBO Molecular Medicine, 7(1), 1–11. https://doi.org/10.15252/emmm.201303698
  • Kenny, P. A., Lee, G. Y., & Bissell, M. J. (2007). Targeting the tumor microenvironment. Frontiers in Bioscience, 12, 3468–3474.
  • Li, Y., Li, F., Jiang, F., Lv, X., Zhang, R., Lu, A., & Zhang, G. (2016). A mini-review for cancer immunotherapy: Molecular understanding of PD-1/ PD-L1 pathway & translational blockade of immune checkpoints. International Journal of Molecular Sciences, 17(7), 1–22. https://doi.org/10.3390/ijms17071151
  • Lo, B., & Abdel-Motal, U. M. (2017, December 1). Lessons from CTLA-4 deficiency and checkpoint inhibition. Current Opinion in Immunology. Elsevier Ltd. https://doi.org/10.1016/j.coi.2017.07.014
  • Madigan, J. M. M. (2012). Mikroorganizmaların Biyolojisi (11th ed.). Istanbul: Palme Yayıncılık.
  • Majzner, R. G., Simon, J. S., Grosso, J. F., Martinez, D., Pawel, B. R., Santi, M., … Maris, J. M. (2017). Assessment of programmed death-ligand 1 expression and tumor-associated immune cells in pediatric cancer tissues. Cancer, 123(19), 3807–3815. https://doi.org/10.1002/cncr.30724
  • Malik, R., Lelkes, P. I., & Cukierman, E. (2015). BIOMECHANICAL and BIOCHEMICAL REMODELING of STROMAL EXTRACELLULAR MATRIX IN CANCER. Trends Biotechnol., 33(4), 230–236. https://doi.org/10.1016/j.tibtech.2015.01.004.BIOMECHANICAL
  • Marcucci, F., Rumio, C., & Corti, A. (2017). Tumor cell-associated immune checkpoint molecules – Drivers of malignancy and stemness. Biochimica et Biophysica Acta - Reviews on Cancer, 1868(2), 571–583. https://doi.org/10.1016/j.bbcan.2017.10.006
  • Masuda, T., Hayashi, N., Iguchi, T., Ito, S., Eguchi, H., & Mimori, K. (2016). Clinical and biological significance of circulating tumor cells in cancer. Molecular Oncology, 10(3), 408–417. https://doi.org/10.1016/j.molonc.2016.01.010
  • Melo, F. H. M. de, Oliveira, J. S., Sartorelli, V. O. B., & Montor, W. R. (2018). Cancer Chemoprevention: Classic and Epigenetic Mechanisms Inhibiting Tumorigenesis. What Have We Learned So Far? Frontiers in Oncology, 8(December), 1–15. https://doi.org/10.3389/fonc.2018.00644
  • Meng, Y., Liang, H., Hu, J., Liu, S., Hao, X., Wong, M. S. K., … Hu, L. (2018). PD-L1 Expression Correlates With Tumor Infiltrating Lymphocytes And Response To Neoadjuvant Chemotherapy In Cervical Cancer. Journal of Cancer, 9(16), 2938–2945. https://doi.org/10.7150/jca.22532
  • Michael W Pickup, Janna K Mouw, V. M. W. (2014). The extracellular matrix modulates the hallmarks of cancer. EMBO Reports, 15, 1243–1253. https://doi.org/10.15252/embr.201439246
  • Missiaen, R., Mazzone, M., & Bergers, G. (2018). The reciprocal function and regulation of tumor vessels and immune cells offers new therapeutic opportunities in cancer. Seminars in Cancer Biology, 52(June), 107–116. https://doi.org/10.1016/j.semcancer.2018.06.002
  • Multhaupt, H. A. B., Leitinger, B., Gullberg, D., & Couchman, J. R. (2016). Extracellular matrix component signaling in cancer. Advanced Drug Delivery Reviews, 97, 28–40. https://doi.org/10.1016/j.addr.2015.10.013
  • Nallasamy, P., Chava, S., Verma, S. S., Mishra, S., Gorantla, S., Coulter, D. W., … Challagundla, K. B. (2018). PD-L1, inflammation, non-coding RNAs, and neuroblastoma: Immuno-oncology perspective. Seminars in Cancer Biology, 52(July 2017), 53–65. https://doi.org/10.1016/j.semcancer.2017.11.009
  • Okazaki, T., Chikuma, S., Iwai, Y., Fagarasan, S., & Honjo, T. (2013). A rheostat for immune responses: The unique properties of PD-1 and their advantages for clinical application. Nature Immunology, 14(12), 1212–1218. https://doi.org/10.1038/ni.2762
  • Ott, P. A., Hodi, F. S., & Robert, C. (2013). CTLA-4 and PD-1/PD-L1 blockade: New immunotherapeutic modalities with durable clinical benefit in melanoma patients. Clinical Cancer Research, 19(19), 5300–5309. https://doi.org/10.1158/1078-0432.CCR-13-0143
  • Parkin, D. M., Bray, F., Ferlay, J., & Pisani, P. (2005). Global Cancer Statistics, 2002. CA: A Cancer Journal for Clinicians, 55(2), 74–108. https://doi.org/10.3322/canjclin.55.2.74
  • Potapova T, Zhu J, L. R. (2013). Aneuploidy and chromosomal instability: a vicious cycle driving cellular evolution and cancer genome chaos. Cancer Metastasis Rev., 32(0). https://doi.org/10.1249/MSS.0000000000000294
  • Rainero, E. (2016). Extracellular matrix endocytosis in controlling matrix turnover and beyond: emerging roles in cancer. Biochemical Society Transactions, 44(5), 1347–1354. https://doi.org/10.1042/bst20160159
  • Rangel-Sosa, M. M., Aguilar-Córdova, E., & Rojas-Martínez, A. (2017, September 30). Immunotherapy and gene therapy as novel treatments for cancer. Colombia Medica (Cali, Colombia). https://doi.org/10.25100/cm.v48i3.2997
  • Rejniak, K. A. (2016). Circulating Tumor Cells: When a Solid Tumor Meets a Fluid Microenvironment. Advances in Experimental Medicine and Biology, 936, 93–106. https://doi.org/10.1007/978-1-4614-1445-2_6
  • Rowshanravan, B., Halliday, N., & Sansom, D. M. (2018, January 4). CTLA-4: A moving target in immunotherapy. Blood. American Society of Hematology. https://doi.org/10.1182/blood-2017-06-741033
  • Shay, G., Lynch, C. C., & Fingleton, B. (2015). Moving targets: Emerging roles for MMPs in cancer progression and metastasis. Matrix Biology, 44–46, 200–206. https://doi.org/10.1016/j.matbio.2015.01.019
  • Taube, J. M., Galon, J., Sholl, L. M., Rodig, S. J., Cottrell, T. R., Giraldo, N. A., … David, L. (2018). Implications of the tumor immune microenvironment for staging and therapeutics. Mod Pathol., 31(2), 214–234. https://doi.org/10.1038/modpathol.2017.156.Implications
  • Van Doren, S. R. (2015). Matrix metalloproteinase interactions with collagen and elastin. Matrix Biology, 44–46(i), 224–231. https://doi.org/10.1016/j.matbio.2015.01.005
  • Van Hooren, L., Sandin, L. C., Moskalev, I., Ellmark, P., Dimberg, A., Black, P., … Mangsbo, S. M. (2017). Local checkpoint inhibition of CTLA-4 as a monotherapy or in combination with anti-PD1 prevents the growth of murine bladder cancer. European Journal of Immunology, 47(2), 385–393. https://doi.org/10.1002/eji.201646583
  • Walker, C., Mojares, E., & del Río Hernández, A. (2018). Role of Extracellular Matrix in Development and Cancer Progression. International Journal of Molecular Sciences (Vol. 19). https://doi.org/10.3390/ijms19103028
  • Walker, L. S. K. (2013, September). Treg and CTLA-4: Two intertwining pathways to immune tolerance. Journal of Autoimmunity. https://doi.org/10.1016/j.jaut.2013.06.006
  • Walker, L. S. K., & Sansom, D. M. (2015, February 1). Confusing signals: Recent progress in CTLA-4 biology. Trends in Immunology. Elsevier Ltd. https://doi.org/10.1016/j.it.2014.12.001
  • Wang, L.-H., Wu, C.-F., Rajasekaran, N., & Shin, Y. K. (2018). Loss of Tumor Suppressor Gene Function in Human Cancer: An Overview. Cellular Physiology and Biochemistry, 2647–2693. https://doi.org/10.1159/000495956
  • Weber, C. E., & Kuo, P. C. (2012). The tumor microenvironment. Surgical Oncology, 21(3), 172–177. https://doi.org/10.1016/j.suronc.2011.09.001
  • Wu, T., & Dai, Y. (2017). Tumor microenvironment and therapeutic response. Cancer Letters, 387, 61–68. https://doi.org/10.1016/j.canlet.2016.01.043
  • Yang, L., & Lin, P. C. (2017). Mechanisms that drive inflammatory tumor microenvironment, tumor heterogeneity, and metastatic progression. Seminars in Cancer Biology, 47(July), 185–195. https://doi.org/10.1016/j.semcancer.2017.08.001
  • Zhang, X., Wang, C., Wang, J., Hu, Q., Langworthy, B., Ye, Y., Gu, Z. (2018). PD-1 Blockade Cellular Vesicles for Cancer Immunotherapy. Advanced Materials (Deerfield Beach, Fla.), 30(22), e1707112. https://doi.org/10.1002/adma.201707112
Toplam 57 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Derleme Makale
Yazarlar

Kübra Kahveci 0000-0002-2074-3827

Melisa Türkoğlu 0000-0003-3176-0902

Yayımlanma Tarihi 20 Aralık 2019
Kabul Tarihi 16 Ekim 2019
Yayımlandığı Sayı Yıl 2019

Kaynak Göster

APA Kahveci, K., & Türkoğlu, M. (2019). İmmün Kontrol Noktası İnhibitörleri Ctla-4 ve Pd-1/Pd-l1’in İmmünoterapideki Yeri. Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 10(2), 210-218. https://doi.org/10.29048/makufebed.569375

Cited By