Review
BibTex RIS Cite

Electrochemical Biosensor Applications for Food Contaminants Analysis

Year 2021, , 532 - 544, 31.12.2021
https://doi.org/10.29048/makufebed.984543

Abstract

Various contaminations caused by food contaminants such as pathogenic bacteria, heavy metal ions, mycotoxins, antibiotics and pesticides pose serious threats to food safety and human health. The frequent occurrence of food safety problems as a result of food contamination has become a concern for both consumers and the food industry. Many qualitative and quantitative detection methods have been developed to control and prevent food contamination problems. These methods include analysis methods such as Gas Chromatography (GC) and High-Performance Liquid Chromatography (HPLC). However, due to the disadvantages of these methods such as being costly and complex, requiring skill, taking time, and pre-processing the samples, biosensor techniques have become more preferred methods in food contamination analysis in recent years compared to others. In this study, electrochemical biosensor applications developed for food contamination analysis in recent years have been investigated and various informations are given.

References

  • Aghoutane, Y., Diouf, A., Österlund, L., Bouchikhi, B., El Bari, N. (2020). Development of a molecularly imprinted polymer electrochemical sensor and its application for sensitive detection and determination of malathion in olive fruits and oils. Bioelectrochemistry, 132: 107404; DOI: 10.1016/j.bioelechem.2019.107404
  • Alahi, M.E.E., Mukhopadhyay, S.C. (2017). Detection methodologies for pathogen and toxins: A review. Sensors (Switzerland), 17(8): 1–20.
  • Bahadır, E.B., Pagano, S.M. (2014). Pestisit Anali̇zleri̇nde Elektroki̇myasal Bi̇yosensörleri̇n Kullanımı. Ömer Halisdemir Üniversitesi Mühendislik Bilim Dergisi, 3(2): 18–28.
  • Belitz, H.D., Grosch, W., Schieberle, P. (2009). Food Chemistry. Springer, Heidelberg, Germany.
  • Boz, B., Paylan, İ.C., Kizmaz, M.Z., Erkan, S. (2017). Biyosensörler ve Tarım Alanında Kullanımı. Tarım Makinaları Bilimi Dergisi, 13(3): 141–148.
  • Caglayan, M.O., Şahin, S., Üstündağ, Z. (2020). Detection Strategies of Zearalenone for Food Safety: A Review. Critical Reviews in Analytical Chemistry; DOI: 10.1080/10408347.2020.1797468
  • Chen, Y., Qian, C., Liu, C., Shen, H., Wang, Z., Ping, J., Wu, J., Chen, H. (2020). Nucleic acid amplification free biosensors for pathogen detection. Biosensors and Bioelectronics,153: 112049; DOI: 10.1016/j.bios.2020.112049
  • Ding, J., Liu, Y., Zhang, D., Yu, M., Zhan, X., Zhang, D., Zhou, P. (2018). An electrochemical aptasensor based on gold@polypyrrole composites for detection of lead ions. Microchimica Acta, 185: 545; DOI: 10.1007/s00604-018-3068-z
  • Doğan, Y., Koç, F. (2018). Gıdalarda Kimyasal Kalıntılar ve Analiz Metotları. Erciyes Üniversitesi Veterinerlik Fakültesi Dergisi, 15(3): 264-270.
  • Erkmen, O. (2010). Gida kaynakli tehlikeler ve güvenli gida üretimi. Çocuk Sağlığı ve Hastalıkları Dergisi, 53 (3): 220–235.
  • Evtugyn, G., Hianik, T. (2019). Electrochemical immuno- and aptasensors for mycotoxin determination. Chemosensors, 7: 10; DOI: 10.3390/chemosensors7010010
  • Feng, N., Zhang, J., Li, W. (2019). Chitosan/Graphene Oxide Nanocomposite-Based Electrochemical Sensor For ppb Level Detection of Melamine. Journal of the Electrochemical Society, 166 (14): 1364–1369.
  • Fernández, B.P., Mercader, J.V., Fuentes, A.A., Orrego, B.I.C., García, A.C., Muñiz, A.E. (2020). Direct competitive immunosensor for Imidacloprid pesticide detection on gold nanoparticle-modified electrodes. Talanta, 209: 120465; DOI: 10.1016/j.talanta.2019.120465
  • Fu, J., Yao, Y., An, X., Wang, G., Guo, Y., Sun, X., Li, F. (2020). Voltammetric determination of organophosphorus pesticides using a hairpin aptamer immobilized in a graphene oxide-chitosan composite. Microchimica Acta, 187(1): 36; DOI: 10.1007/s00604-019-4022-4
  • Geleta, G.S., Zhao, Z., Wang, Z. (2018). Electrochemical Biosensors for Detecting Microbial Toxins by Graphene‑Based Nanocomposites. Journal of Analysis and Testing, 2: 20–25.
  • Güner, A., Çevik, E., Şenel, M., Alpsoy, L. (2017). An electrochemical immunosensor for sensitive detection of Escherichia coli O157:H7 by using chitosan, MWCNT, polypyrrole with gold nanoparticles hybrid sensing platform. Food Chemistry, 229: 358–365.
  • Güler, Ü.A., Can, Ö.P. (2017). Kimyasal Kontaminantların Çevre Sağlığı ve Gıda Güvenliği Üzerine Etkileri. Sinop Üniversitesi Fen Bilimleri Dergisi, 195: 170–195.
  • Helali, S., Sawelem, A., Alatawi, E., Abdelghani, A. (2018). Pathogenic Escherichia coli biosensor detection on chicken food samples. Journal of Food Safety, 38: 12510; DOI: 10.1111/jfs.12510
  • Heydari, M., Ghoreishi, S.M., Khoobi, A. (2019). Response Surface Modeling of Electrochemical Data for Sensitive Determination of Sudan III in Food Products at the Surface of a Nanocomposite Modified Electrode. Food Analytical Methods, 12(8): 1781–1790.
  • Jayan, H., Pu, H., Sun, D.W. (2020). Recent development in rapid detection techniques for microorganism activities in food matrices using bio-recognition: A review. Trends in Food Science and Technology, 95: 233–246.
  • Jemmeli, D., Marcoccio, E., Moscone, D., Dridi, C., Arduini, F. (2019). Highly sensitive paper-based electrochemical sensor for reagent free detection of bisphenol A. Talanta, 216: 120924; DOI: 10.1016/j.talanta.2020.120924
  • Jiang, D., Geb, P., Wang, L., Jiang, H., Yang, M., Yuan, L., Geb, Q., Fang, W., Jua, X., (2019). A novel electrochemical mast cell-based paper biosensor for the rapid detection of milk allergen casein. Biosensors and Bioelectronics, 130: 299–306.
  • Kaneko, N., Horii, K., Akitomi, J., Kato, S., Shiratori, I., Waga, I. (2018). An aptamer-based biosensor for direct, label-free detection of melamine in raw milk. Sensors (Switzerland), 18(10): 3227; DOI: 10.3390/s18103227
  • Karapetis, S., Nikolelis, D., Hianik, T. (2018). Label-free and redox markers-based electrochemical aptasensors for aflatoxin M1 detection. Sensors (Switzerland), 18 (12): 1–14.
  • Koç, F. (2018). Gıdalarda Kimyasal Kalıntılar ve Analiz Metotları. Erciyes Üniversitesi Veterinerlik Fakültesi Dergisi, 13(3): 264–271.
  • Kozitsina, A.N., Svalova, T.S., Malysheva, N.N., Okhokhonin, A.V., Vidrevich, M.B., Brainina, K.Z. (2018). Sensors based on bio and biomimetic receptors in medical diagnostic, environment, and food analysis. Biosensors, 8(2): 1–34.
  • Kuchmenko, T.A., Lvova, L.B. (2019). A perspective on recent advances in piezoelectric chemical sensors for environmental monitoring and foodstuffs analysis. Chemosensors, 7(3): 14–17.
  • Kulikova, T., Gorbatchuk, V., Stoikov, I., Rogov, A., Evtugyn, G., Hianik, T. (2020). Impedimetric determination of kanamycin in milk with aptasensor based on carbon black‐oligolactide composite. Sensors (Switzerland), 20(17): 1–17.
  • Kurbanoglu, S., Erkmen, C., Uslu, B. (2020). Frontiers in electrochemical enzyme based biosensors for food and drug analysis. Trends in Analytical Chemistry, 124: 115809; DOI: 10.1016/j.trac.2020.115809
  • Le, A.V.T., Su, Y.L., Cheng, S.H. (2019). A novel electrochemical assay for aspartame determination via nucleophilic reactions with caffeic acid ortho-quinone. Electrochimica Acta, 300: 67–76.
  • Liang, G., Man, Y., Jin, X., Pan, L., Liu, X. (2016). Aptamer-based biosensor for label-free detection of ethanolamine by electrochemical impedance spectroscopy. Analytica Chimica Acta, 936: 222–228.
  • Li, Y. (2006). Hardware, in CIGR Handbook of Agricultural Engineering Information Technology. CIGR Handbook of Agricultural Engineering, VI: 52–93.
  • Li, Y., Liu, H., Huang, H., Deng, J., Fang, L., Luo, J., Zhang, S., Huang, J., Liang, W., Zheng, J. (2020). A sensitive electrochemical strategy via multiple amplification reactions for the detection of E. coli O157: H7. Biosensors and Bioelectronics, 147: 111752; DOI 10.1016/j.bios.2019.111752
  • Li, Z., Li, X., Jian, M., Geleta, G.S., Wang, Z. (2019). Two-Dimensional Layered Nanomaterial-Based Electrochemical Biosensors for Detecting Microbial Toxins. Toxins, 12(20): 1-23.
  • Moro, G., De Wael, K., Moretto, L.M. (2019). Challenges in the electrochemical (bio)sensing of nonelectroactive food and environmental contaminants. Current Opinion in Electrochemistry, 16: 57–65.
  • Nardi, V.A.M., Teixeira, R., Ladeira, W.J., Santini, F.O. (2020). A meta-analytic review of food safety risk perception. Food Control, 112: 107089; DOI: 10.1016/j.foodcont.2020.107089
  • Navarro, K.M., Silva, J.C., Ossick, M.V., Nogueira, A.B., Etchegaray, A., Mendes, R.K. (2020). Low-Cost Electrochemical Determination of Acrylamide in Processed Food Using a Hemoglobin–Iron Magnetic Nanoparticle–Chitosan Modified Carbon Paste Electrode. Analytical Letters, 1–13.
  • Nielsen, S.S. (2017). Food Analysis. Springer, Cham-Switzerland.
  • Nodoushan, S.M., Nasirizadeh, N., Amani, J., Halabian, R., Fooladi, A.A.I. (2018). An electrochemical aptasensor for staphylococcal enterotoxin B detection based on reduced graphene oxide and gold nano-urchins. Biosensors and Bioelectronics, 127: 221–228.
  • Nogués, M.H., Oliu, S.B., Abramova, N., Muñoz, F.X., Bratov, A., Moruno, C.M., Gil, F.J. (2016). Impedimetric antimicrobial peptide-based sensor for the early detection of periodontopathogenic bacteria. Biosensors and Bioelectronics, 86: 377–385.
  • Paepe, E.D., Wauters, J., Borght, M.V.D., Claes, J., Huysman, S., Croubels, S., Vanhaecke, L. (2019). Ultra-high-performance liquid chromatography coupled to quadrupole orbitrap high-resolution mass spectrometry for multi-residue screening of pesticides, (veterinary)drugs and mycotoxins in edible insects. Food Chemistry, 293: 187–196.
  • Pan, M., Liu, K., Yang, J., Hong, L., Xie, X., Wang, S. (2020). Review of research into the determination of acrylamide in foods. Foods, 9(4): 524; DOI: 10.3390/foods9040524
  • Panhwar, S., Hassan, S.S., Mahar, R.B., Carlson, K., Rajput, M.H., Talpur, M.Y. (2019). Highly Sensitive and Selective Electrochemical Sensor for Detection of Escherichia coli by Using L-Cysteine Functionalized Iron Nanoparticles. Journal of the Electrochemical Society, 166(4): 227–235.
  • Saldamlı, İ. (2014). Gıda Kimyası. Hacettepe Üniversitesi Yayınları, Ankara-Türkiye.
  • Soon, J.M., Brazier, A.K.M., Wallace, C.A. (2020). Determining common contributory factors in food safety incidents – A review of global outbreaks and recalls 2008–2018. Trends in Food Science & Technology, 97:76-87.
  • Thyparambil, A.A., Bazin, I., Guiseppi-Elie, A. (2017). Molecular Modeling and Simulation Tools in the Development of Peptide-Based Biosensors for Mycotoxin Detection : Example of Ochratoxin. Toxin, 9: 395; DOI 10.3390/toxins9120395
  • Tüylek, Z. (2017). Biyosensörler ve Nanoteknolojik Etkileşim. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi 6(62): 71–80.
  • Wang, S., Sun, C., Hu, Q., Li, S., Wang, C., Wang, P., Zhou, L. (2020). A homogeneous magnetic bead-based impedance immunosensor for highly sensitive detection of Escherichia coli O157:H7. Biochemical Engineering Journal, 156: 107513; DOI: 10.1016/j.bej.2020.107513
  • Wang, W., Xu, Y., Cheng, N., Xie, Y., Huang, K., Xu, W. (2020). Dual-recognition aptazyme-driven DNA nanomachine for two-in-one electrochemical detection of pesticides and heavy metal ions. Sensors and Actuators B: Chemical, 321: 128598; DOI: 10.1016/j.snb.2020.128598
  • Wang, Y., Ning, G., Bi, H., Wu, Y., Liu, G., Zhao, Y. (2018). A novel ratiometric electrochemical assay for ochratoxin A coupling Au nanoparticles decorated MoS2 nanosheets with aptamer. Electrochimica Acta, 285: 120–127.
  • Williams, P. (2012). Food toxicity and safety. Essentials of Human Nutrition, Oxford-England.
  • Wu, Q., Zhang, Y., Yang, Q., Yuan, N., Zhang, W. (2019). Review of electrochemical DNA biosensors for detecting food borne pathogens. Sensors (Switzerland), 19(22): 4916; DOI: 10.3390/s19224916
  • Xu, X., Ying, Y. (2011). Microbial biosensors for environmental monitoring and food analysis. Food Reviews International, 27(3): 300–329.
  • Yang, D., Liu, X., Zhou, Y., Luo, L., Zhang, J., Huang, A., Mao, Q., Chen, X., Tang, L. (2017). Aptamer based biosensors for detection of lead(ii) ion a review. Analytical Methods, 9: 1976-1990.
  • Ye, Y., Ji, J., Sun, Z., Shen, P., Sun, X. (2020). Recent advances in electrochemical biosensors for antioxidant analysis in foodstuff. TrAC - Trends in Analytical Chemistry, 122: 115718; DOI: 10.1016/j.trac.2019.115718
  • Zhang, Y., Zhang, C., Ma, R., Du, X., Dong, W., Chen, Y., Chen, Q. (2017). An ultra-sensitive Au nanoparticles functionalized DNA biosensor for electrochemical sensing of mercury ions. Materials Science and Engineering C, 75: 175–181.
  • Zhou, X., Pu, H., Sun, D.W. (2020). DNA functionalized metal and metal oxide nanoparticles: principles and recent advances in food safety detection. Critical Reviews in Food Science and Nutrition, 1–20; DOI: 10.1080/10408398.2020.1809343

Gıda Kontaminantlarının Analizine Yönelik Elektrokimyasal Biyosensör Uygulamaları

Year 2021, , 532 - 544, 31.12.2021
https://doi.org/10.29048/makufebed.984543

Abstract

Patojenik bakteriler, ağır metal iyonları, mikotoksinler, antibiyotikler ve pestisitler gibi gıda kirleticilerinin sebep olduğu çeşitli kontaminasyonlar, gıda güvenliği ve insan sağlığı için ciddi tehditler oluşturmaktadır. Gıda kontaminasyonu sonucunda gıda güvenliği sorunlarının sık sık ortaya çıkması, hem tüketiciler hem de gıda endüstrisi için endişe kaynağı haline gelmiştir. Gıda kontaminasyon problemlerini kontrol altına almak ve önlemek adına kalitatif ve kantitatif birçok tespit yöntemi geliştirilmiştir. Bu yöntemler arasında Gaz Kromatografisi (GC) ve Yüksek Performanslı Sıvı Kromatografisi (HPLC) gibi analiz yöntemleri sayılabilir. Fakat bu yöntemlerin maliyetli ve karmaşık olması, beceri gerektirmesi, zaman alması, numunelerin ön işlemden geçirilmesi gibi dezavantajları nedeniyle biyosensör teknikleri son yıllarda gıda kontaminasyon analizlerinde diğerlerine kıyasla daha fazla tercih edilen yöntemler olmuştur. Bu çalışmada son yıllarda gıda kontaminasyon analizleri için geliştirilmiş elektrokimyasal biyosensör uygulamaları araştırılmış ve çeşitli bilgilere yer verilmiştir.

References

  • Aghoutane, Y., Diouf, A., Österlund, L., Bouchikhi, B., El Bari, N. (2020). Development of a molecularly imprinted polymer electrochemical sensor and its application for sensitive detection and determination of malathion in olive fruits and oils. Bioelectrochemistry, 132: 107404; DOI: 10.1016/j.bioelechem.2019.107404
  • Alahi, M.E.E., Mukhopadhyay, S.C. (2017). Detection methodologies for pathogen and toxins: A review. Sensors (Switzerland), 17(8): 1–20.
  • Bahadır, E.B., Pagano, S.M. (2014). Pestisit Anali̇zleri̇nde Elektroki̇myasal Bi̇yosensörleri̇n Kullanımı. Ömer Halisdemir Üniversitesi Mühendislik Bilim Dergisi, 3(2): 18–28.
  • Belitz, H.D., Grosch, W., Schieberle, P. (2009). Food Chemistry. Springer, Heidelberg, Germany.
  • Boz, B., Paylan, İ.C., Kizmaz, M.Z., Erkan, S. (2017). Biyosensörler ve Tarım Alanında Kullanımı. Tarım Makinaları Bilimi Dergisi, 13(3): 141–148.
  • Caglayan, M.O., Şahin, S., Üstündağ, Z. (2020). Detection Strategies of Zearalenone for Food Safety: A Review. Critical Reviews in Analytical Chemistry; DOI: 10.1080/10408347.2020.1797468
  • Chen, Y., Qian, C., Liu, C., Shen, H., Wang, Z., Ping, J., Wu, J., Chen, H. (2020). Nucleic acid amplification free biosensors for pathogen detection. Biosensors and Bioelectronics,153: 112049; DOI: 10.1016/j.bios.2020.112049
  • Ding, J., Liu, Y., Zhang, D., Yu, M., Zhan, X., Zhang, D., Zhou, P. (2018). An electrochemical aptasensor based on gold@polypyrrole composites for detection of lead ions. Microchimica Acta, 185: 545; DOI: 10.1007/s00604-018-3068-z
  • Doğan, Y., Koç, F. (2018). Gıdalarda Kimyasal Kalıntılar ve Analiz Metotları. Erciyes Üniversitesi Veterinerlik Fakültesi Dergisi, 15(3): 264-270.
  • Erkmen, O. (2010). Gida kaynakli tehlikeler ve güvenli gida üretimi. Çocuk Sağlığı ve Hastalıkları Dergisi, 53 (3): 220–235.
  • Evtugyn, G., Hianik, T. (2019). Electrochemical immuno- and aptasensors for mycotoxin determination. Chemosensors, 7: 10; DOI: 10.3390/chemosensors7010010
  • Feng, N., Zhang, J., Li, W. (2019). Chitosan/Graphene Oxide Nanocomposite-Based Electrochemical Sensor For ppb Level Detection of Melamine. Journal of the Electrochemical Society, 166 (14): 1364–1369.
  • Fernández, B.P., Mercader, J.V., Fuentes, A.A., Orrego, B.I.C., García, A.C., Muñiz, A.E. (2020). Direct competitive immunosensor for Imidacloprid pesticide detection on gold nanoparticle-modified electrodes. Talanta, 209: 120465; DOI: 10.1016/j.talanta.2019.120465
  • Fu, J., Yao, Y., An, X., Wang, G., Guo, Y., Sun, X., Li, F. (2020). Voltammetric determination of organophosphorus pesticides using a hairpin aptamer immobilized in a graphene oxide-chitosan composite. Microchimica Acta, 187(1): 36; DOI: 10.1007/s00604-019-4022-4
  • Geleta, G.S., Zhao, Z., Wang, Z. (2018). Electrochemical Biosensors for Detecting Microbial Toxins by Graphene‑Based Nanocomposites. Journal of Analysis and Testing, 2: 20–25.
  • Güner, A., Çevik, E., Şenel, M., Alpsoy, L. (2017). An electrochemical immunosensor for sensitive detection of Escherichia coli O157:H7 by using chitosan, MWCNT, polypyrrole with gold nanoparticles hybrid sensing platform. Food Chemistry, 229: 358–365.
  • Güler, Ü.A., Can, Ö.P. (2017). Kimyasal Kontaminantların Çevre Sağlığı ve Gıda Güvenliği Üzerine Etkileri. Sinop Üniversitesi Fen Bilimleri Dergisi, 195: 170–195.
  • Helali, S., Sawelem, A., Alatawi, E., Abdelghani, A. (2018). Pathogenic Escherichia coli biosensor detection on chicken food samples. Journal of Food Safety, 38: 12510; DOI: 10.1111/jfs.12510
  • Heydari, M., Ghoreishi, S.M., Khoobi, A. (2019). Response Surface Modeling of Electrochemical Data for Sensitive Determination of Sudan III in Food Products at the Surface of a Nanocomposite Modified Electrode. Food Analytical Methods, 12(8): 1781–1790.
  • Jayan, H., Pu, H., Sun, D.W. (2020). Recent development in rapid detection techniques for microorganism activities in food matrices using bio-recognition: A review. Trends in Food Science and Technology, 95: 233–246.
  • Jemmeli, D., Marcoccio, E., Moscone, D., Dridi, C., Arduini, F. (2019). Highly sensitive paper-based electrochemical sensor for reagent free detection of bisphenol A. Talanta, 216: 120924; DOI: 10.1016/j.talanta.2020.120924
  • Jiang, D., Geb, P., Wang, L., Jiang, H., Yang, M., Yuan, L., Geb, Q., Fang, W., Jua, X., (2019). A novel electrochemical mast cell-based paper biosensor for the rapid detection of milk allergen casein. Biosensors and Bioelectronics, 130: 299–306.
  • Kaneko, N., Horii, K., Akitomi, J., Kato, S., Shiratori, I., Waga, I. (2018). An aptamer-based biosensor for direct, label-free detection of melamine in raw milk. Sensors (Switzerland), 18(10): 3227; DOI: 10.3390/s18103227
  • Karapetis, S., Nikolelis, D., Hianik, T. (2018). Label-free and redox markers-based electrochemical aptasensors for aflatoxin M1 detection. Sensors (Switzerland), 18 (12): 1–14.
  • Koç, F. (2018). Gıdalarda Kimyasal Kalıntılar ve Analiz Metotları. Erciyes Üniversitesi Veterinerlik Fakültesi Dergisi, 13(3): 264–271.
  • Kozitsina, A.N., Svalova, T.S., Malysheva, N.N., Okhokhonin, A.V., Vidrevich, M.B., Brainina, K.Z. (2018). Sensors based on bio and biomimetic receptors in medical diagnostic, environment, and food analysis. Biosensors, 8(2): 1–34.
  • Kuchmenko, T.A., Lvova, L.B. (2019). A perspective on recent advances in piezoelectric chemical sensors for environmental monitoring and foodstuffs analysis. Chemosensors, 7(3): 14–17.
  • Kulikova, T., Gorbatchuk, V., Stoikov, I., Rogov, A., Evtugyn, G., Hianik, T. (2020). Impedimetric determination of kanamycin in milk with aptasensor based on carbon black‐oligolactide composite. Sensors (Switzerland), 20(17): 1–17.
  • Kurbanoglu, S., Erkmen, C., Uslu, B. (2020). Frontiers in electrochemical enzyme based biosensors for food and drug analysis. Trends in Analytical Chemistry, 124: 115809; DOI: 10.1016/j.trac.2020.115809
  • Le, A.V.T., Su, Y.L., Cheng, S.H. (2019). A novel electrochemical assay for aspartame determination via nucleophilic reactions with caffeic acid ortho-quinone. Electrochimica Acta, 300: 67–76.
  • Liang, G., Man, Y., Jin, X., Pan, L., Liu, X. (2016). Aptamer-based biosensor for label-free detection of ethanolamine by electrochemical impedance spectroscopy. Analytica Chimica Acta, 936: 222–228.
  • Li, Y. (2006). Hardware, in CIGR Handbook of Agricultural Engineering Information Technology. CIGR Handbook of Agricultural Engineering, VI: 52–93.
  • Li, Y., Liu, H., Huang, H., Deng, J., Fang, L., Luo, J., Zhang, S., Huang, J., Liang, W., Zheng, J. (2020). A sensitive electrochemical strategy via multiple amplification reactions for the detection of E. coli O157: H7. Biosensors and Bioelectronics, 147: 111752; DOI 10.1016/j.bios.2019.111752
  • Li, Z., Li, X., Jian, M., Geleta, G.S., Wang, Z. (2019). Two-Dimensional Layered Nanomaterial-Based Electrochemical Biosensors for Detecting Microbial Toxins. Toxins, 12(20): 1-23.
  • Moro, G., De Wael, K., Moretto, L.M. (2019). Challenges in the electrochemical (bio)sensing of nonelectroactive food and environmental contaminants. Current Opinion in Electrochemistry, 16: 57–65.
  • Nardi, V.A.M., Teixeira, R., Ladeira, W.J., Santini, F.O. (2020). A meta-analytic review of food safety risk perception. Food Control, 112: 107089; DOI: 10.1016/j.foodcont.2020.107089
  • Navarro, K.M., Silva, J.C., Ossick, M.V., Nogueira, A.B., Etchegaray, A., Mendes, R.K. (2020). Low-Cost Electrochemical Determination of Acrylamide in Processed Food Using a Hemoglobin–Iron Magnetic Nanoparticle–Chitosan Modified Carbon Paste Electrode. Analytical Letters, 1–13.
  • Nielsen, S.S. (2017). Food Analysis. Springer, Cham-Switzerland.
  • Nodoushan, S.M., Nasirizadeh, N., Amani, J., Halabian, R., Fooladi, A.A.I. (2018). An electrochemical aptasensor for staphylococcal enterotoxin B detection based on reduced graphene oxide and gold nano-urchins. Biosensors and Bioelectronics, 127: 221–228.
  • Nogués, M.H., Oliu, S.B., Abramova, N., Muñoz, F.X., Bratov, A., Moruno, C.M., Gil, F.J. (2016). Impedimetric antimicrobial peptide-based sensor for the early detection of periodontopathogenic bacteria. Biosensors and Bioelectronics, 86: 377–385.
  • Paepe, E.D., Wauters, J., Borght, M.V.D., Claes, J., Huysman, S., Croubels, S., Vanhaecke, L. (2019). Ultra-high-performance liquid chromatography coupled to quadrupole orbitrap high-resolution mass spectrometry for multi-residue screening of pesticides, (veterinary)drugs and mycotoxins in edible insects. Food Chemistry, 293: 187–196.
  • Pan, M., Liu, K., Yang, J., Hong, L., Xie, X., Wang, S. (2020). Review of research into the determination of acrylamide in foods. Foods, 9(4): 524; DOI: 10.3390/foods9040524
  • Panhwar, S., Hassan, S.S., Mahar, R.B., Carlson, K., Rajput, M.H., Talpur, M.Y. (2019). Highly Sensitive and Selective Electrochemical Sensor for Detection of Escherichia coli by Using L-Cysteine Functionalized Iron Nanoparticles. Journal of the Electrochemical Society, 166(4): 227–235.
  • Saldamlı, İ. (2014). Gıda Kimyası. Hacettepe Üniversitesi Yayınları, Ankara-Türkiye.
  • Soon, J.M., Brazier, A.K.M., Wallace, C.A. (2020). Determining common contributory factors in food safety incidents – A review of global outbreaks and recalls 2008–2018. Trends in Food Science & Technology, 97:76-87.
  • Thyparambil, A.A., Bazin, I., Guiseppi-Elie, A. (2017). Molecular Modeling and Simulation Tools in the Development of Peptide-Based Biosensors for Mycotoxin Detection : Example of Ochratoxin. Toxin, 9: 395; DOI 10.3390/toxins9120395
  • Tüylek, Z. (2017). Biyosensörler ve Nanoteknolojik Etkileşim. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi 6(62): 71–80.
  • Wang, S., Sun, C., Hu, Q., Li, S., Wang, C., Wang, P., Zhou, L. (2020). A homogeneous magnetic bead-based impedance immunosensor for highly sensitive detection of Escherichia coli O157:H7. Biochemical Engineering Journal, 156: 107513; DOI: 10.1016/j.bej.2020.107513
  • Wang, W., Xu, Y., Cheng, N., Xie, Y., Huang, K., Xu, W. (2020). Dual-recognition aptazyme-driven DNA nanomachine for two-in-one electrochemical detection of pesticides and heavy metal ions. Sensors and Actuators B: Chemical, 321: 128598; DOI: 10.1016/j.snb.2020.128598
  • Wang, Y., Ning, G., Bi, H., Wu, Y., Liu, G., Zhao, Y. (2018). A novel ratiometric electrochemical assay for ochratoxin A coupling Au nanoparticles decorated MoS2 nanosheets with aptamer. Electrochimica Acta, 285: 120–127.
  • Williams, P. (2012). Food toxicity and safety. Essentials of Human Nutrition, Oxford-England.
  • Wu, Q., Zhang, Y., Yang, Q., Yuan, N., Zhang, W. (2019). Review of electrochemical DNA biosensors for detecting food borne pathogens. Sensors (Switzerland), 19(22): 4916; DOI: 10.3390/s19224916
  • Xu, X., Ying, Y. (2011). Microbial biosensors for environmental monitoring and food analysis. Food Reviews International, 27(3): 300–329.
  • Yang, D., Liu, X., Zhou, Y., Luo, L., Zhang, J., Huang, A., Mao, Q., Chen, X., Tang, L. (2017). Aptamer based biosensors for detection of lead(ii) ion a review. Analytical Methods, 9: 1976-1990.
  • Ye, Y., Ji, J., Sun, Z., Shen, P., Sun, X. (2020). Recent advances in electrochemical biosensors for antioxidant analysis in foodstuff. TrAC - Trends in Analytical Chemistry, 122: 115718; DOI: 10.1016/j.trac.2019.115718
  • Zhang, Y., Zhang, C., Ma, R., Du, X., Dong, W., Chen, Y., Chen, Q. (2017). An ultra-sensitive Au nanoparticles functionalized DNA biosensor for electrochemical sensing of mercury ions. Materials Science and Engineering C, 75: 175–181.
  • Zhou, X., Pu, H., Sun, D.W. (2020). DNA functionalized metal and metal oxide nanoparticles: principles and recent advances in food safety detection. Critical Reviews in Food Science and Nutrition, 1–20; DOI: 10.1080/10408398.2020.1809343
There are 57 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Review Paper
Authors

Merve Muti İstek 0000-0003-4296-7343

Selda Bulca 0000-0001-7405-2872

Publication Date December 31, 2021
Acceptance Date December 12, 2021
Published in Issue Year 2021

Cite

APA Muti İstek, M., & Bulca, S. (2021). Gıda Kontaminantlarının Analizine Yönelik Elektrokimyasal Biyosensör Uygulamaları. Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 12(Ek (Suppl.) 1), 532-544. https://doi.org/10.29048/makufebed.984543