BibTex RIS Cite

Ayrışımların Modulo 11 Kongrüans Özellikleri

Year 2011, Volume: 2 Issue: 2, 61 - 73, 01.12.2011

Abstract

Atkin and Swinnerton – Dyer calculated some congruences properties of the generating function for the partitions for modulo 5, 7 and 11. They obtained the results directly for modulo 5 and 7, but for modulo 11, they gave the congruences, and proved later by using these congruences. In this paper, it is explained how the congruences given by Atkin and Swinnerton – Dyer can be calculated for modulo 11.

References

  • Andrews, G.E. & Garvan F.G. (1988). Dyson’s Crank of a Partition. Bulletin of the American Mathematical Society, 167 – 171.
  • Atkin, A.O.L. & Swinnerton – Dyer, H.P.F. (1954). Some Properties of Partitions. Proceedings of the London Mathematical Society, 4, 84 – 106.
  • Dyson, F.J. (1944). Some Guesses in Theory of Partitions. Eureka, Cambridge, 8, 10 – 15,.
  • Garvan, F.G. (1988). New Combinatorial Interpretations of Ramanujan's Partition Congruences mod 5,7 and 11. Trans. Amer. Math. Soc., 305, 47—77.
  • Hardy, G. H., Ramanujan, S. (1918). Asymptotic Formulae in Combinatory Analysis. Proc. London Math. Soc., 17, 75-115.
  • Hirschhorn, M.D. (1987). A Generalization of Winquist’s Identity and a Conjecture of Ramanujan. Journal of Indian Mathematical Society, 51.
  • Hirschorn, M. D. (1999). Another Short Proof of Ramanujan's Mod 5 Partition Congruences and More. Amer. Math. Monthly, 106, 580-583.
  • Lewis, R. (1995). The Components of Modular Forms. J. London Math.Soc., 52 (2), 245-254.
  • MacMahon, P. A. (1926). The Parity of p(n), the Number of Partitions of n., when n 1000. J. London Math. Soc. 1, 225-226.
  • Ramanujan, S. (1927). Some Properties of p(n), the Number of partitions of n. Paper 25 of Collected Papers of S. Ramanujan, Cambridge University Pres, London.
  • Skiena, S. (1990). Implementing Discrete Mathematics: Combinatorics and Graph Theory with Mathematica. Reading, MA: Addison-Wesley.
  • Winquist, L. (1968). An Elementary Proof of p (11m 
  • (mod 11). J. Combinatorial 6) Theory, 6, 56-69.

Congruences Properties of Partitions for Modulo

Year 2011, Volume: 2 Issue: 2, 61 - 73, 01.12.2011

Abstract

Atkin and Swinnerton – Dyer calculated some congruences properties of the generating function for the partitions for modulo 5, 7 and 11. They obtained the results directly for modulo 5 and 7, but for modulo 11, they gave the congruences, and proved later by using these congruences. In this paper, it is explained how the congruences given by Atkin and Swinnerton – Dyer can be calculated for modulo 11.

References

  • Andrews, G.E. & Garvan F.G. (1988). Dyson’s Crank of a Partition. Bulletin of the American Mathematical Society, 167 – 171.
  • Atkin, A.O.L. & Swinnerton – Dyer, H.P.F. (1954). Some Properties of Partitions. Proceedings of the London Mathematical Society, 4, 84 – 106.
  • Dyson, F.J. (1944). Some Guesses in Theory of Partitions. Eureka, Cambridge, 8, 10 – 15,.
  • Garvan, F.G. (1988). New Combinatorial Interpretations of Ramanujan's Partition Congruences mod 5,7 and 11. Trans. Amer. Math. Soc., 305, 47—77.
  • Hardy, G. H., Ramanujan, S. (1918). Asymptotic Formulae in Combinatory Analysis. Proc. London Math. Soc., 17, 75-115.
  • Hirschhorn, M.D. (1987). A Generalization of Winquist’s Identity and a Conjecture of Ramanujan. Journal of Indian Mathematical Society, 51.
  • Hirschorn, M. D. (1999). Another Short Proof of Ramanujan's Mod 5 Partition Congruences and More. Amer. Math. Monthly, 106, 580-583.
  • Lewis, R. (1995). The Components of Modular Forms. J. London Math.Soc., 52 (2), 245-254.
  • MacMahon, P. A. (1926). The Parity of p(n), the Number of Partitions of n., when n 1000. J. London Math. Soc. 1, 225-226.
  • Ramanujan, S. (1927). Some Properties of p(n), the Number of partitions of n. Paper 25 of Collected Papers of S. Ramanujan, Cambridge University Pres, London.
  • Skiena, S. (1990). Implementing Discrete Mathematics: Combinatorics and Graph Theory with Mathematica. Reading, MA: Addison-Wesley.
  • Winquist, L. (1968). An Elementary Proof of p (11m 
  • (mod 11). J. Combinatorial 6) Theory, 6, 56-69.
There are 13 citations in total.

Details

Primary Language Turkish
Journal Section Research Paper
Authors

Göksal Bilgici This is me

Publication Date December 1, 2011
Published in Issue Year 2011 Volume: 2 Issue: 2

Cite

APA Bilgici, G. (2011). Ayrışımların Modulo 11 Kongrüans Özellikleri. Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 2(2), 61-73.