Review
BibTex RIS Cite

Farklı Gıdalardan İzole Edilen Laktik Asit Bakterileri’nin Antibiyotik Direnç Profilleri

Year 2018, Volume: 9 Issue: 2, 197 - 204, 11.07.2018
https://doi.org/10.29048/makufebed.387035

Abstract

Laktik asit bakterileri (LAB), insanlar ve
hayvanların gastrointestinal sistemleri ve gıdalar gibi geniş bir ekolojik yelpazede
doğal olarak bulunan, heterojen bir mikroorganizma grubunu temsil eder.
Antibiyotikler, bakterileri inhibe edebilir veya çoğalmasını durdurabilirler.
Antibiyotiklerin belirli periyotlarda ve belli dozlardaki kullanımı neticesinde
hastalıkların tedavi edildiği, ancak insan metabolizmasında yararlı
faaliyetleri olan mikroorganizmaları da inaktive ettiği ve normal florayı
bozduğu bilinmektedir. Hızla artan aşırı ve bilinçsiz antibiyotik kullanımı
bakterilerin antibiyotiklere karşı direnç geliştirmelerine sebep olmuştur.
Antibiyotik direnci sonucu hastalıkların tedavi süreleri uzamakta, ekonomik
kayıplar ve mortalite oranı artmaktadır. Bu sebeple LAB’ de antibiyotik
direnciyle ilgili çalışmalar son yıllarda önem kazanmıştır. Bu çalışmada,
antibiyotiklerin etki mekanizmalarından bahsedilmiş ve farklı fermente
gıdalardan izole edilmiş LAB’nin antibiyotik direnç profillerinin belirlenmesi
amacıyla yapılan çalışmalardan örnekler sunulmuştur.

References

  • Akkan, G., (1997). Antibiyotiklerin sınıflandırılmaları. İ.Ü. Cerrahpaşa Tıp Fakültesi Sürekli Tıp Eğitimi Etkinlikleri, Pratikte Antibiyotik Kullanımı Sempozyumu (2-3 Mayıs). 53-62, İstanbul. Alp, D., Öner, Z., (2014). Bazı laktik asit bakterilerinin antibiyotik dirençlilikleri ve aroma maddeleri oluşturma özelliklerinin belirlenmesi. Gıda, 39(6), 331-337. Ammor, M.S., Florez, A. B., Mayo, B. (2007). Antibiotic resistance in non-enterococcal lactic acid bacteria and bifidobacteria. The International Journal of Food Microbiology, 24, 559-570. Aslım, B., Beyatlı, Y. (2004). Antibiotic resistance and plasmid DNA contents of Streptococcus thermophilus strains isolated from Turkish yoghurts. The Journal of Food Science and Technology, 41, 18- 22. Başyiğit Kılıç, G., Karahan, A. G. (2010). Identification of lactic acid bacteria isolated from the fecal samples of healthy humans and patients with dyspepsia and determination of their pH, bile and antibiotic tolerance properties. The Journal of Molecular Microbiology and Biotechnology, 18, 220-229. Belletti, N., Gatti, M., Bottari, B., Neviani, E., Tabanelli, G., Gardini, F. (2009). Antibiotic resistance of lactobacilli isolated from two Italian hard cheeses. Journal of Food Protection, 72(10), 2162-2169. Billot-Klein, D., Gutmann, L., Sable, S., Guittet, E., van Heijenoort, J. (1994). Modification of peptidoglycan precursors is a common feature of the low-level vancomycin-resistant VANB-type Enterococcus D366 and of the naturally glycopeptide-resistant species Lactobacillus casei, Pediococcus pentosaceus, Leuconostoc mesenteroides and Enterococcus gallinarum. Journal of Bacteriology, 176(8), 2398-2405. Charteris, W. P., Kelly, P. M., Morelli, L., Collins, J. K. (1998). Antibiotic susceptibility of potentially probiotic Lactobacillus species. Journal of Food Protection, 61, 1636-1643. Clementi, F., Aquilanti, L. (2011). Recent investigations and updated criteria for the assessment of antibiotic resistance in food lactic acid bacteria. Anaerobe, 17, 394-398. CLSI. 2013. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing. CLSI document M100-S23—Twenty third Informational supplement. CLSI, Wayne, Pennsylvania. Comunian, R., Daga, E., Dupre, L., Paba, A., Devirgiliis, C., Piccioni, V., Perozzi, G., Zonenschain, D., Rebecchi, A., Morelli, L., De Lorentiis, A., Giraffa, G. (2010). Susceptibility to tetracycline and erythromycin of Lactobacillus paracasei Strains Isolated from Traditional Italian Fermented Foods. The International Journal of Food Microbiology, 138, 151-156. Coppola, R., Succi, M., Tremonte, P., Reale, A., Salzano, G., Sorrentino, E. (2005). Antibiotic susceptibility of Lactobacillus rhamnosus strains isolated from Parmigiano Reggiano cheese. Le. Lait, 85, 193-204. Çataloluk, O., Göğebakan, B. (2004). Presence of drug resistance in ıntestinal lactobacilli of dairy and human origin in Turkey. FEMS Microbiology Letters, 236, 7-12. Çıtak, S., Yücel, N., Orhan, S. (2004). Antibiotic resistance and incidence of Enterococcus species in Turkish White cheese. International Journal of Dairy Technology, 57, 27-31. Danielsen, M. (2002). Characterization of the tetracycline resistance plasmid pMD5057 from Lactobacillus plantarum 5057 reveals a composite structure. Plasmid, 48, 98-103. Danielsen, M., Wind, A. A. (2003). Susceptibility of Lactobacillus spp. to antimicrobial agents. International Journal of Food Microbiology, 82, 1-11. Donabedian, H. (2003). Quorum sensing and its relevance to infectious diseases. Journal of Infection, 46(4), 207-214. Evren, M., Apan, M., Tutkun, E., Evren, S. (2011). Geleneksel fermente gıdalarda bulunan laktik asit bakterileri. Elektronik Mikrobiyoloji Dergisi TR, 9, 11-17. EFSA. (2005). QPS. Qualified presumption of safety of microorganisms in food and feed. EFSA Scientific Colloquium Summary Report. European Food Safety Authority—October 2005. Parma, Italy. ISBN: 92-9199-012-4, p. 143. EFSA. (2007). Opinion of the scientific committe on a request from EFSA on the introduction of a qualified presumption of safety (QPS) approach for assessment of selected microorganisms referred to EFSA. EFSA Journal, 187, 1-16. EFSA. (2011). EFSA panel on biological hazards (BIOHAZ); scientific opinion on scientific opinion on risk based control of biogenic amine formation in fermented foods. EFSA Journal, 9(10), 93 (2393). EFSA. (2012). EFSA panel on additives and products or substances used in animal feed (FEEDAP). Guidance on the assessment of bacterial susceptibility to antimicrobials of human and veterinary importance. EFSA Journal, 10(6), 10 (2740). EFSA. (2013). EFSA BIOHAZ panel (EFSA Panel on Biological Hazards). Scientific Opinion on the maintenance of the list of QPS biological agents intentionally added to food and feed. EFSA Journal, 11(11),108 (3449). Egervarn, M. (2009). Antibiotic resistance in Lactobacillus reuteri and Lactobacillus plantarum. Unpublished Ph. D. Dissertation. Swedish University of Agricultural Sciences, Dept. of Microbiology, Sweeden. Federici, S., Ciarrocchi, F., Campana, R., Ciandrini, E., Blasi, G., Baffone, W. (2014). Identification and functional traits of lactic acid bacteria isolated from Ciauscolo salami produced in Central Italy. Meat Science, 98(4), 575-584. FEEDAP European Commision. (2005). Opinion of the FEEDAP panel on the updating of the criteria used in the assesment of bacteria for resistance to antibiotics of human or veterinary importance. EFSA Journal, 223, 1-12. Göğebakan, B. (2003). Peynir ve insan örneklerinden elde edilen Lactobacillus cinsi bakterilerin antibiyotik dirençliliklerinin araştırılması. Gaziantep Üniversitesi, Sağlık Bilimleri Enstitüsü, Yüksek Lisans Tezi, Gaziantep, Türkiye, 77. Hamilton-Miller, J. M. T., Shah, S. (1998). Vancomycin susceptibility as an aid to the identification of lactobacilli. Letters in Applied Microbiology, 26, 153-154. Hummel, A., Holzapfel, W. H., Franz, C. M. A. P. (2007). Characterisation and transfer of antibiotic resistance genes from enterococci isolated from food. Systematic and Applied Microbiology, 30, 1-7. Ishiwa, H., Iwata, M. (1980). Drug resistance plasmids in Lactobacillus fermentum. The Journal of General and Applied Microbiology, 26, 71-74. Lin, C., Fung, Z. F., Wu, C. L., Chung, T. C. (1996). Molecular characterization of a plasmid-borne (pTC82) chloramphenicol resistance determinant (cat-TC) from Lactobacillus reuteri G4. Plasmid. 36, 116-124. de Fátima Silva Lopes, M., Ribeiro, T., Martins, M. P., Tenreiro, R., Barreto Crespo, M. T. (2003). Gentamicin resistance in dairy and clinical enterococcal isolates and in reference strains. Journal of Antimicrobial Chemotherapy, 52, 214–219. Madhavan, H. N., Sowmiy, M. (2011). Mechanisms of development of antibiotic resistance in bacteria among clinical specimens. Journal of Biological Sciences, 1, 42-48. Mathur, T., Singh, R. (2005). Antibiotic resistance in food lactic acid bacteria- A Review The International Journal of Food Microbiology, 105, 281-295. Nicas, T. I., Cole, C. T., Preston, D. A., Schabel A. A., Nagarajan, R. (1989). Activity of glycopeptides against vancomycin-resistant Gram-positive bacteria. Journal of Antimicrobial Chemotherapy, 33, 1477-1481. Ong, L., Shah, N. P. (2009). Probiotic cheddar cheese: Influence of ripening temperatures on survival of probiotic microorganisms, cheese composition and organic acid profiles. Journal of Food Science and Technology, 42, 1260-1268. Ouoba, L.I., Lei, V., Jensen, L. B. (2008). Resistance of potential probiotic lactic acid bacteria and bifidobacteria of African and Europan origin to antimicrobials: Determination and transferability of the resistance genes to other bacteria. The International Journal of Food Microbiology, 121(2), 217-224. Özteber, M. (2013). Fermente süt ürünlerinden izole edilen laktik asit bakterilerinin antibiyotik dirençliliklerinin fenotipik ve genotipik yöntemlerle belirlenmesi. Yüksek Lisans Tezi, Adnan Menderes Üniversitesi, Fen Bilimleri Enstitüsü, Aydın. Pan, L., Hu, X., Wang, X. (2011). Assesment of antibiotic resistance of lactic acid bacteria in chinese fermented foods. Food Control, 22, 1316-1321. Rinckel, L.A., Savage, D. C. (1990). Characterization of plasmids and plasmid-borne macrolide resistance from Lactobacillus sp. strain. Plasmid. 23, 119-125. Sharma, P., Tomar, S. K., Goswami, P., Sangwan V., Singh R. (2014). Antibiotic resistance among commercially available probiotics- A Review. Food Research International, 57, 176-195. Shao, Y., Zhang, W., Gou, H., Pan, L., Zhang, H., Sun, T. (2015). Comparative studies on antibiotic resistance in Lactobacillus casei and Lactobacillus plantarum. Food Control, 50, 250-258. Singh, P., Saini, P., Sachan, S., Dubey, S. (2016). Characterization, antimicrobial activity and antibiotic susceptibility of lactic acid bacteria ısolated from food samples. International Journal of Current Microbiology and Applied Sciences, 5(7), 901-911. Swenson, J. M., Facklam, R. R., Thornsberry, C. (1990). Antimicrobial susceptibility of vancomycin-resistant Leuconostoc, Pediococcus and Lactobacillus species. Antimicrobial Agents and Chemotherapy, 34, 543-549. Tatlı, D. (2009). Geleneksel süt üIzole edilen laktik asit bakterilerinin antibiyotik dirençlerinin belirlenmesi. Çukurova Üniversitesi Fen Bilimleri Enstitüsü. Yüksek Lisans Tezi, Adana. Thumu, S. C. R., Halami, P. M. (2012). Presence of erythromycin and tetracycline resistance genes in lactic acid bacteria from fermented foods of Indian origin. Antonie van Leeuwenhoek, 102, 541–551. Tigu, F., Assefa, F., Mehari, T., Ashenafi, M. (2016). Probiotic property of lactic acid bacteria from traditional fermented condiments: Datta and Awaze. International Food Research Journal, 23(2), 770-776. Tynkkynen, S., Singh, K. V., Varmanen, P. (1998). Vancomycin resistance factor of Lactobacillus rhamnosus GG in relation to enterococcal vancomycin resistance genes. The International Journal of Food Microbiology, 41, 195-204. Vescovo, M., Morelli, L., Bottazzi, V. (1982). Drug resistance plasmids in Lactobacillus acidophilus and Lactobacillus reuteri. Applied and Environmental Microbiology, 43, 50-56. Yüce, A. (2001). Antimikrobik ilaçlara direnç kazanma mekanizmaları. Klinik Dergisi, 14(2), 41-46. Zhou, Y., Fuentes-Hernandez, C., Shim, J., Meyer, J., Giordano, A. J., Li, H., Winget, P., Papadopoulos, T., Cheun, H., Kim, J., Fenoll, M., Dindar, A., Haske, W., Najafabadi, E., Khan, T. M., Sojoudi, H., Barlow, S., Graham, S., Brédas, J. L., Marder, S. R., Kahn, A., Kippelen, B. (2012). A universal method to produce low–work function electrodes for organic electronics. Science, 336(6079), 327-332.

Antibiotic Resistance Profiles of Lactic Acid Bacteria Isolated from Different Foods

Year 2018, Volume: 9 Issue: 2, 197 - 204, 11.07.2018
https://doi.org/10.29048/makufebed.387035

Abstract

Lactic acid bacteria
(LAB) represent a heterogeneous group of microorganisms that are naturally
present in a wide range of ecological niches such as foods and the
gastrointestinal tract of humans and animals. Antibiotics
may inhibit bacteria or stop their proliferation.
It is known that certain diseases can be treated with
antibiotics used at certain doses and certain periods, however, it is also
known that antibiotics may inactivate beneficial microorganisms for human
metabolism and destroy the balance of intestinal microflora. The increasing
trend in the unconscious and overuse of antibiotics resulted in the development
of resistance in bacteria against antibiotics. As a result of increased
bacterial resistance, the duration of disease treatment, economic losses and
mortality rates are increasing.
For this
reason, studies on antibiotic resistance in LAB have gained importance in
recent years.
In this study, the mechanisms of antibiotic action are
described and the studies done to determine antibiotic resistance profiles of
LAB isolated from different fermented foods are presented.

References

  • Akkan, G., (1997). Antibiyotiklerin sınıflandırılmaları. İ.Ü. Cerrahpaşa Tıp Fakültesi Sürekli Tıp Eğitimi Etkinlikleri, Pratikte Antibiyotik Kullanımı Sempozyumu (2-3 Mayıs). 53-62, İstanbul. Alp, D., Öner, Z., (2014). Bazı laktik asit bakterilerinin antibiyotik dirençlilikleri ve aroma maddeleri oluşturma özelliklerinin belirlenmesi. Gıda, 39(6), 331-337. Ammor, M.S., Florez, A. B., Mayo, B. (2007). Antibiotic resistance in non-enterococcal lactic acid bacteria and bifidobacteria. The International Journal of Food Microbiology, 24, 559-570. Aslım, B., Beyatlı, Y. (2004). Antibiotic resistance and plasmid DNA contents of Streptococcus thermophilus strains isolated from Turkish yoghurts. The Journal of Food Science and Technology, 41, 18- 22. Başyiğit Kılıç, G., Karahan, A. G. (2010). Identification of lactic acid bacteria isolated from the fecal samples of healthy humans and patients with dyspepsia and determination of their pH, bile and antibiotic tolerance properties. The Journal of Molecular Microbiology and Biotechnology, 18, 220-229. Belletti, N., Gatti, M., Bottari, B., Neviani, E., Tabanelli, G., Gardini, F. (2009). Antibiotic resistance of lactobacilli isolated from two Italian hard cheeses. Journal of Food Protection, 72(10), 2162-2169. Billot-Klein, D., Gutmann, L., Sable, S., Guittet, E., van Heijenoort, J. (1994). Modification of peptidoglycan precursors is a common feature of the low-level vancomycin-resistant VANB-type Enterococcus D366 and of the naturally glycopeptide-resistant species Lactobacillus casei, Pediococcus pentosaceus, Leuconostoc mesenteroides and Enterococcus gallinarum. Journal of Bacteriology, 176(8), 2398-2405. Charteris, W. P., Kelly, P. M., Morelli, L., Collins, J. K. (1998). Antibiotic susceptibility of potentially probiotic Lactobacillus species. Journal of Food Protection, 61, 1636-1643. Clementi, F., Aquilanti, L. (2011). Recent investigations and updated criteria for the assessment of antibiotic resistance in food lactic acid bacteria. Anaerobe, 17, 394-398. CLSI. 2013. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing. CLSI document M100-S23—Twenty third Informational supplement. CLSI, Wayne, Pennsylvania. Comunian, R., Daga, E., Dupre, L., Paba, A., Devirgiliis, C., Piccioni, V., Perozzi, G., Zonenschain, D., Rebecchi, A., Morelli, L., De Lorentiis, A., Giraffa, G. (2010). Susceptibility to tetracycline and erythromycin of Lactobacillus paracasei Strains Isolated from Traditional Italian Fermented Foods. The International Journal of Food Microbiology, 138, 151-156. Coppola, R., Succi, M., Tremonte, P., Reale, A., Salzano, G., Sorrentino, E. (2005). Antibiotic susceptibility of Lactobacillus rhamnosus strains isolated from Parmigiano Reggiano cheese. Le. Lait, 85, 193-204. Çataloluk, O., Göğebakan, B. (2004). Presence of drug resistance in ıntestinal lactobacilli of dairy and human origin in Turkey. FEMS Microbiology Letters, 236, 7-12. Çıtak, S., Yücel, N., Orhan, S. (2004). Antibiotic resistance and incidence of Enterococcus species in Turkish White cheese. International Journal of Dairy Technology, 57, 27-31. Danielsen, M. (2002). Characterization of the tetracycline resistance plasmid pMD5057 from Lactobacillus plantarum 5057 reveals a composite structure. Plasmid, 48, 98-103. Danielsen, M., Wind, A. A. (2003). Susceptibility of Lactobacillus spp. to antimicrobial agents. International Journal of Food Microbiology, 82, 1-11. Donabedian, H. (2003). Quorum sensing and its relevance to infectious diseases. Journal of Infection, 46(4), 207-214. Evren, M., Apan, M., Tutkun, E., Evren, S. (2011). Geleneksel fermente gıdalarda bulunan laktik asit bakterileri. Elektronik Mikrobiyoloji Dergisi TR, 9, 11-17. EFSA. (2005). QPS. Qualified presumption of safety of microorganisms in food and feed. EFSA Scientific Colloquium Summary Report. European Food Safety Authority—October 2005. Parma, Italy. ISBN: 92-9199-012-4, p. 143. EFSA. (2007). Opinion of the scientific committe on a request from EFSA on the introduction of a qualified presumption of safety (QPS) approach for assessment of selected microorganisms referred to EFSA. EFSA Journal, 187, 1-16. EFSA. (2011). EFSA panel on biological hazards (BIOHAZ); scientific opinion on scientific opinion on risk based control of biogenic amine formation in fermented foods. EFSA Journal, 9(10), 93 (2393). EFSA. (2012). EFSA panel on additives and products or substances used in animal feed (FEEDAP). Guidance on the assessment of bacterial susceptibility to antimicrobials of human and veterinary importance. EFSA Journal, 10(6), 10 (2740). EFSA. (2013). EFSA BIOHAZ panel (EFSA Panel on Biological Hazards). Scientific Opinion on the maintenance of the list of QPS biological agents intentionally added to food and feed. EFSA Journal, 11(11),108 (3449). Egervarn, M. (2009). Antibiotic resistance in Lactobacillus reuteri and Lactobacillus plantarum. Unpublished Ph. D. Dissertation. Swedish University of Agricultural Sciences, Dept. of Microbiology, Sweeden. Federici, S., Ciarrocchi, F., Campana, R., Ciandrini, E., Blasi, G., Baffone, W. (2014). Identification and functional traits of lactic acid bacteria isolated from Ciauscolo salami produced in Central Italy. Meat Science, 98(4), 575-584. FEEDAP European Commision. (2005). Opinion of the FEEDAP panel on the updating of the criteria used in the assesment of bacteria for resistance to antibiotics of human or veterinary importance. EFSA Journal, 223, 1-12. Göğebakan, B. (2003). Peynir ve insan örneklerinden elde edilen Lactobacillus cinsi bakterilerin antibiyotik dirençliliklerinin araştırılması. Gaziantep Üniversitesi, Sağlık Bilimleri Enstitüsü, Yüksek Lisans Tezi, Gaziantep, Türkiye, 77. Hamilton-Miller, J. M. T., Shah, S. (1998). Vancomycin susceptibility as an aid to the identification of lactobacilli. Letters in Applied Microbiology, 26, 153-154. Hummel, A., Holzapfel, W. H., Franz, C. M. A. P. (2007). Characterisation and transfer of antibiotic resistance genes from enterococci isolated from food. Systematic and Applied Microbiology, 30, 1-7. Ishiwa, H., Iwata, M. (1980). Drug resistance plasmids in Lactobacillus fermentum. The Journal of General and Applied Microbiology, 26, 71-74. Lin, C., Fung, Z. F., Wu, C. L., Chung, T. C. (1996). Molecular characterization of a plasmid-borne (pTC82) chloramphenicol resistance determinant (cat-TC) from Lactobacillus reuteri G4. Plasmid. 36, 116-124. de Fátima Silva Lopes, M., Ribeiro, T., Martins, M. P., Tenreiro, R., Barreto Crespo, M. T. (2003). Gentamicin resistance in dairy and clinical enterococcal isolates and in reference strains. Journal of Antimicrobial Chemotherapy, 52, 214–219. Madhavan, H. N., Sowmiy, M. (2011). Mechanisms of development of antibiotic resistance in bacteria among clinical specimens. Journal of Biological Sciences, 1, 42-48. Mathur, T., Singh, R. (2005). Antibiotic resistance in food lactic acid bacteria- A Review The International Journal of Food Microbiology, 105, 281-295. Nicas, T. I., Cole, C. T., Preston, D. A., Schabel A. A., Nagarajan, R. (1989). Activity of glycopeptides against vancomycin-resistant Gram-positive bacteria. Journal of Antimicrobial Chemotherapy, 33, 1477-1481. Ong, L., Shah, N. P. (2009). Probiotic cheddar cheese: Influence of ripening temperatures on survival of probiotic microorganisms, cheese composition and organic acid profiles. Journal of Food Science and Technology, 42, 1260-1268. Ouoba, L.I., Lei, V., Jensen, L. B. (2008). Resistance of potential probiotic lactic acid bacteria and bifidobacteria of African and Europan origin to antimicrobials: Determination and transferability of the resistance genes to other bacteria. The International Journal of Food Microbiology, 121(2), 217-224. Özteber, M. (2013). Fermente süt ürünlerinden izole edilen laktik asit bakterilerinin antibiyotik dirençliliklerinin fenotipik ve genotipik yöntemlerle belirlenmesi. Yüksek Lisans Tezi, Adnan Menderes Üniversitesi, Fen Bilimleri Enstitüsü, Aydın. Pan, L., Hu, X., Wang, X. (2011). Assesment of antibiotic resistance of lactic acid bacteria in chinese fermented foods. Food Control, 22, 1316-1321. Rinckel, L.A., Savage, D. C. (1990). Characterization of plasmids and plasmid-borne macrolide resistance from Lactobacillus sp. strain. Plasmid. 23, 119-125. Sharma, P., Tomar, S. K., Goswami, P., Sangwan V., Singh R. (2014). Antibiotic resistance among commercially available probiotics- A Review. Food Research International, 57, 176-195. Shao, Y., Zhang, W., Gou, H., Pan, L., Zhang, H., Sun, T. (2015). Comparative studies on antibiotic resistance in Lactobacillus casei and Lactobacillus plantarum. Food Control, 50, 250-258. Singh, P., Saini, P., Sachan, S., Dubey, S. (2016). Characterization, antimicrobial activity and antibiotic susceptibility of lactic acid bacteria ısolated from food samples. International Journal of Current Microbiology and Applied Sciences, 5(7), 901-911. Swenson, J. M., Facklam, R. R., Thornsberry, C. (1990). Antimicrobial susceptibility of vancomycin-resistant Leuconostoc, Pediococcus and Lactobacillus species. Antimicrobial Agents and Chemotherapy, 34, 543-549. Tatlı, D. (2009). Geleneksel süt üIzole edilen laktik asit bakterilerinin antibiyotik dirençlerinin belirlenmesi. Çukurova Üniversitesi Fen Bilimleri Enstitüsü. Yüksek Lisans Tezi, Adana. Thumu, S. C. R., Halami, P. M. (2012). Presence of erythromycin and tetracycline resistance genes in lactic acid bacteria from fermented foods of Indian origin. Antonie van Leeuwenhoek, 102, 541–551. Tigu, F., Assefa, F., Mehari, T., Ashenafi, M. (2016). Probiotic property of lactic acid bacteria from traditional fermented condiments: Datta and Awaze. International Food Research Journal, 23(2), 770-776. Tynkkynen, S., Singh, K. V., Varmanen, P. (1998). Vancomycin resistance factor of Lactobacillus rhamnosus GG in relation to enterococcal vancomycin resistance genes. The International Journal of Food Microbiology, 41, 195-204. Vescovo, M., Morelli, L., Bottazzi, V. (1982). Drug resistance plasmids in Lactobacillus acidophilus and Lactobacillus reuteri. Applied and Environmental Microbiology, 43, 50-56. Yüce, A. (2001). Antimikrobik ilaçlara direnç kazanma mekanizmaları. Klinik Dergisi, 14(2), 41-46. Zhou, Y., Fuentes-Hernandez, C., Shim, J., Meyer, J., Giordano, A. J., Li, H., Winget, P., Papadopoulos, T., Cheun, H., Kim, J., Fenoll, M., Dindar, A., Haske, W., Najafabadi, E., Khan, T. M., Sojoudi, H., Barlow, S., Graham, S., Brédas, J. L., Marder, S. R., Kahn, A., Kippelen, B. (2012). A universal method to produce low–work function electrodes for organic electronics. Science, 336(6079), 327-332.
There are 1 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Review Paper
Authors

Ebru Demir This is me

Gülden Başyiğit Kılıç

Eyüp Uşan This is me

Publication Date July 11, 2018
Acceptance Date July 10, 2018
Published in Issue Year 2018 Volume: 9 Issue: 2

Cite

APA Demir, E., Başyiğit Kılıç, G., & Uşan, E. (2018). Farklı Gıdalardan İzole Edilen Laktik Asit Bakterileri’nin Antibiyotik Direnç Profilleri. Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 9(2), 197-204. https://doi.org/10.29048/makufebed.387035