Research Article
BibTex RIS Cite

Year 2025, Volume: 12 Issue: 3, 1130 - 1152, 30.09.2025

Abstract

References

  • Addai, S. (2016). Financial forecasting using machine learning [Doctoral dissertation, University of Cape Town]. ResearchGate. https://doi.org/10.13140/RG.2.1.1186.0083
  • Aharon, D. Y., Butt, H. A., Jaffri, A., & Nichols, B. (2023). Asymmetric volatility in the cryptocurrency market: New evidence from models with structural breaks. International Review of Financial Analysis, 87, 102651. https://doi.org/10.1016/j.irfa.2023.102651
  • Al‐Yahyaee, K. H., Mensi, W., & Yoon, S. M. (2018). Efficiency, multifractality, and the long‐memory property of the Bitcoin market: A comparative analysis with stock, currency, and gold markets. Finance Research Letters, 27, 228–234. https://doi.org/10.1016/j.frl.2018.03.017
  • Aslam, F., Aziz, S., Nguyen, D. K., Mughal, K. S., & Khan, M. (2020). On the efficiency of foreign exchange markets in times of the COVID‐19 pandemic. Technological Forecasting and Social Change, 161, 120261. https://doi.org/10.1016/j.techfore.2020.120261
  • Assaf, A., Bhandari, A., Charif, H., & Demir, E. (2022). Multivariate long memory structure in the cryptocurrency market: The impact of COVID‐19. International Review of Financial Analysis, 82, 102132. https://doi.org/10.1016/j.irfa.2022.102132
  • Atsalakis, G., & Valavanis, K. (2009). Forecasting stock market short‐term trends using a neuro‐fuzzy based methodology. Expert Systems with Applications, 36, 10696–10707. https://doi.org/10.1016/j.eswa.2009.02.043
  • Atsalakis, G. S., Atsalaki, I. G., Pasiouras, F., & Zopounidis, C. (2019). Bitcoin price forecasting with neuro‐fuzzy techniques. European Journal of Operational Research, 276(2), 770–780. https://doi.org/10.1016/j.ejor.2019.01.040
  • Awoke, T., Minakhi, R., Mohanty, L., & Satapathy, S. C. (2020). Bitcoin price prediction and analysis using deep learning models. In Advances in intelligent systems and computing (Vol. 134, pp. 630–640). Springer. https://doi.org/10.1007/978-981-15-5397-4_63
  • Baillie, R. T., Bollerslev, T., & Mikkelsen, H. O. (1996). Fractionally integrated generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 74(1), 3–30. https://doi.org/10.1016/S0304-4076(95)01749-6
  • Bariviera, A. F. (2017). The inefficiency of Bitcoin revisited: A dynamic approach. Economics Letters, 161, 1–4. https://doi.org/10.1016/j.econlet.2017.09.013
  • Böhme, R., Christin, N., Edelman, B., & Moore, T. (2015). Bitcoin: Economics, technology, and governance. Journal of Economic Perspectives, 29(2), 213–238. https://doi.org/10.1257/jep.29.2.213
  • Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 31, 307–327. https://doi.org/10.1016/0304-4076(86)90063-1
  • Bollerslev, T., & Mikkelsen, H. O. (1996). Modeling and pricing long-memory in stock market volatility. Journal of Econometrics, 73(1), 151–184. https://doi.org/10.1016/0304-4076(95)01736-4
  • Bouri, E., Gil‐Alana, L. A., Gupta, R., & Roubaud, D. (2019). Modelling long memory volatility in the Bitcoin market: Evidence of persistence and structural breaks. International Journal of Finance & Economics, 24(1), 412–426. https://doi.org/10.1002/ijfe.1670
  • Bouri, E., Molnar, P., Azzi, G., Roubaud, D., & Hagfors, L. I. (2017). On the hedge and safe haven properties of Bitcoin: Is it really more than a diversifier? Finance Research Letters, 20, 192–198. https://doi.org/10.1016/j.frl.2016.09.025
  • Budree, A., & Nyathi, T. N. (2023). Can cryptocurrency be a payment method in a developing economy? Journal of Electronic Commerce in Organizations, 21(1), 1–21. https://doi.org/10.4018/jeco.320223
  • Caporale, G. M., Rubio-Bezares, A., & Gil-Alana, L. A. (2024). Persistence in European stock market returns and volatility. International Journal of Business and Economics, 9(1), 56–66. https://doi.org/10.58885/ijbe.v09i1.56.gc
  • Cavalcante, J., & Assaf, A. (2004). Long range dependence in the returns and volatility of the Brazilian stock market. European Review of Economics and Finance, 3, 5-22.
  • Cavalli, S., & Amoretti, M. (2021). CNN‐based multivariate data analysis for Bitcoin trend prediction. Applied Soft Computing Journal, 101, 107065. https://doi.org/10.1016/j.asoc.2020.107065
  • Charfeddine, L., & Maouchi, Y. (2019). Are shocks on the returns and volatility of cryptocurrencies really persistent? Finance Research Letters, 28, 423–430. https://doi.org/10.1016/j.frl.2018.06.017
  • Chen, H., Wei, N., Wang, L., Mobarak, W., Albahar, M. A., & Shaikh, Z. A. (2024). The role of blockchain in finance beyond cryptocurrency: Trust, data management, and automation. IEEE Access, 12, 64861–64885. https://doi.org/10.1109/access.2024.3395918
  • Chen, W., Xu, H., Jia, L., & Gao, Y. (2021). Machine learning model for Bitcoin exchange rate prediction using economic and technology determinants. International Journal of Forecasting, 37(1), 28–43. https://doi.org/10.1016/j.ijforecast.2020.02.008
  • , Z., Li, C., & Sun, W. (2020). Bitcoin price prediction using machine learning: An approach to sample dimension engineering. Journal of Computational and Applied Mathematics, 365, 112395. https://doi.org/10.1016/j.cam.2019.112395
  • CoinMarketCap. (2022). Cryptocurrency prices by market cap. CoinMarketCap. Retrieved March 2, 2022, from https://coinmarketcap.com/
  • Çevik, E. İ., & Topaloğlu, G. (2014). Volatilitede uzun hafıza ve yapısal kırılma: Borsa İstanbul örneği. Balkan Sosyal Bilimler Dergisi, 3(6), 40–55.
  • Davidson, J. (2004). Moment and memory properties of linear conditional heteroscedasticity models, and a new model. Journal of Business & Economic Statistics, 22, 16–29. https://doi.org/10.1198/073500103288619359
  • Engle, R. F. (1982). Autoregressive conditional heteroskedasticity with estimates of the variance of U.K. inflation. Econometrica, 50, 987–1008. https://doi.org/10.2307/1912773
  • Fakhfekh, M., & Jeribi, A. (2020). Volatility dynamics of cryptocurrencies’ returns: Evidence from asymmetric and long memory GARCH models. Research in International Business and Finance, 51, 101075. https://doi.org/10.1016/j.ribaf.2019.101075
  • Fama, E. (1965). The behavior of stock market prices. Journal of Business, 38, 34–105. https://doi.org/10.1086/294743
  • Festic, M., Kavkler, A., & Dajčman, S. (2012). Long memory in the Croatian and Hungarian stock market returns. Journal of Economics and Business, 30(1), 115–139.
  • Greaves, A., & Au, B. (2015). Using the Bitcoin transaction graph to predict the price of Bitcoin [Unpublished class project]. Stanford University, CS224W: Analysis of Networks. Retrieved from https://snap.stanford.edu/class/cs224w-2015/projects_2015/Using_the_Bitcoin_Transaction_Graph_to_Predict_the_Price_of_Bitcoin.pdf
  • Guiu, J. G., i Ribé, E. G., i Mansilla, E. B., & i Fàbrega, X. L. (1999). Automatic diagnosis with genetic algorithms and case-based reasoning. Artificial Intelligence in Engineering, 13(4), 367–372. https://doi.org/10.1016/S0954-1810(99)00009-6
  • Guo, T., Bifet, A., & Antulov-Fantulin, N. (2018). Bitcoin volatility forecasting with a glimpse into buy and sell orders. In 2018 IEEE International Conference on Data Mining (ICDM) (pp. 989–994). IEEE. https://doi.org/10.1109/ICDM.2018.00123
  • Gülcü, A., & Çalişkan, S. (2020). Clustering electricity market participants via FRM models. Intelligent Decision Technologies, 14(4), 481–492. https://doi.org/10.3233/IDT-200092
  • Hagenau, M., Liebmann, M., & Neumann, D. (2013). Automated news reading: Stock price prediction based on financial news using context‐capturing features. Decision Support Systems, 55(3), 685–697. https://doi.org/10.1016/j.dss.2013.02.006
  • Hegazy, O., Soliman, O. S., & Salam, M. A. (2013). A machine learning model for stock market prediction. arXiv preprint, 4(12), 17–23. https://doi.org/10.48550/arXiv.1402.7351
  • Horobet, A., Belascu, L., & Barsan, A.-M. (2016). Exchange rate volatility in the Balkans and Eastern Europe: Implications for international investments. In A. Karasavvoglou, Z. Aranđelović, S. Marinković, & P. Polychronidou (Eds.), The first decade of living with the global crisis (pp. 137–164). Springer. https://doi.org/10.1007/978-3-319-24267-5_11
  • Ibrahim, A., Hussin, S. A. S., Zahid, Z., & Khairi, S. (2018). Evaluation of long memory on the Malaysia exchange rate market. The Journal of Social Sciences Research, Special Issue 6, 653–656. https://doi.org/10.32861/jssr.spi6.653.656
  • Jang, J. S. (1993). ANFIS: Adaptive-network-based fuzzy inference system. IEEE Transactions on Systems, Man, and Cybernetics, 23(3), 665–685. https://doi.org/10.1109/21.256541
  • Jiang, X. (2020). Bitcoin price prediction based on deep learning methods. Journal of Mathematical Finance, 10(1), 132–139. http://doi.org/10.4236/jmf.2020.101009
  • Kapur, G., Manohar, S., Mittal, A., Jain, V., & Trivedi, S. (2024). Cryptocurrency price fluctuation and time series analysis through candlestick pattern of Bitcoin and Ethereum using machine learning. International Journal of Quality & Reliability Management, 41(8), 2055–2074. https://doi.org/10.1108/ijqrm-12-2022-0363
  • Karaatlı, M., Güngör, İ., Demir, Y., & Kalaycı, Ş. (2005). Hisse senedi fiyat hareketlerinin yapay sinir ağları yöntemi ile tahmin edilmesi. Yönetim ve Ekonomi Araştırmaları Dergisi, 3(3), 38–48.
  • Katsiampa, P. (2017). Volatility estimation for Bitcoin: A comparison of GARCH models. Economics Letters, 158, 3–6. https://doi.org/10.1016/j.econlet.2017.06.023
  • Khan, Z. H., Alin, T. S., & Hussain, M. A. (2011). Price prediction of share market using artificial neural network (ANN). International Journal of Computer Applications, 22(2), 42–47. http://doi.org/10.5120/2552-3497
  • Khuntia, S., & Pattanayak, J. K. (2020). Adaptive long memory in volatility of intra-day Bitcoin returns and the impact of trading volume. Finance Research Letters, 32, 101077. https://doi.org/10.1016/j.frl.2018.12.025
  • Kılıç, R. (2004). On the long memory properties of emerging capital markets: Evidence from Istanbul Stock Exchange. Applied Financial Economics, 14(13), 915–922. http://doi.org/10.1080/0960310042000233638
  • Lahmiri, S., & Bekiros, S. (2020). Intelligent forecasting with machine learning trading systems in chaotic intraday Bitcoin market. Chaos, Solitons & Fractals, 133, 109641. https://doi.org/10.1016/j.chaos.2020.109641
  • Liu, M., Li, G., Li, J., Zhu, X., & Yao, Y. (2021). Forecasting the price of Bitcoin using deep learning. Finance Research Letters, 40, 101755. https://doi.org/10.1016/j.frl.2020.101755
  • Liu, Y., & Tsyvinski, A. (2018). Risks and returns of cryptocurrency. National Bureau of Economic Research. https://doi.org/10.2139/ssrn.3226952
  • Malkiel, B. G. (2003). The efficient market hypothesis and its critics. Journal of Economic Perspectives, 17(1), 59–82. https://doi.org/10.1257/089533003321164958
  • McNally, S., Roche, J., & Caton, S. (2018). Predicting the price of bitcoin using machine learning. In 2018 26th Euromicro International Conference on Parallel, Distributed and Network-based Processing (PDP) (pp. 339–343). IEEE. https://doi.org/10.1109/PDP2018.2018.00060
  • Mensi, W., Al-Yahyaee, K. H., & Kang, S. H. (2019). Structural breaks and double long memory of cryptocurrency prices: A comparative analysis from Bitcoin and Ethereum. Finance Research Letters, 29, 222–230. https://doi.org/10.1016/j.frl.2018.07.011
  • Münyas, T., & Kadooğlu-Aydın, G. (2023). Etkin piyasa hipotezi ve kripto para piyasaları üzerine bir uygulama. Alanya Akademik Bakış Dergisi, 7(3), 1203–1216. https://doi.org/10.29023/alanyaakademik.1240173
  • Nadarajah, S., Mba, J. C., Rakotomarolahy, P., & Ratolojanahary, H. T. J. E. (2025). Ensemble learning and an adaptive neuro-fuzzy inference system for cryptocurrency volatility forecasting. Journal of Risk and Financial Management, 18(2), 52. https://doi.org/10.3390/jrfm18020052
  • Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system. Bitcoin.org, https://bitcoin.org/bitcoin.pdf
  • Nelson, D. B. (1991). Conditional heteroskedasticity in asset returns: A new approach. Econometrica, 59(2), 347–370. https://doi.org/10.2307/2938260
  • Oppenheim, D., & Shani, G. (2017). Potato disease classification using convolution neural networks. Advances in Animal Biosciences, 8(2), 244–249. http://doi.org/10.1017/S2040470017001376
  • Özçalıcı, M. (2016). Yapay sinir ağları ile çok aşamalı fiyat tahmini: BIST 30 senetleri üzerine bir araştırma. Dokuz Eylül Üniversitesi İktisadi İdari Bilimler Fakültesi Dergisi, 31(2), 209–227. https://doi.org/10.24988/deuiibf.2016312517
  • Özdemir, A., & Çelik, İ. (2020). Pay piyasalarında etkin piyasalar hipotezinin farklı dağılım varsayımları bağlamında uzun hafıza modelleri ile tespiti: ABD ve Türkiye karşılaştırması. Dokuz Eylül Üniversitesi İşletme Fakültesi Dergisi, 21(1), 125–160. https://doi.org/10.24889/ifede.481059
  • Phillip, A., Chan, J. S., & Peiris, S. (2018). A new look at cryptocurrencies. Economics Letters, 163, 6–9. https://doi.org/10.1016/j.econlet.2017.11.020
  • Rabemananjara, R., & Zakoian, J. M. (1993). Threshold ARCH models and asymmetries in volatility. Journal of Applied Econometrics, 8(1), 31–49. https://doi.org/10.1002/jae.3950080104
  • Sadique, S., & Silvapulle, P. (2001). Long‐term memory in stock market returns: International evidence. International Journal of Finance & Economics, 6(1), 59–67. https://doi.org/10.1002/ijfe.143
  • Saleem, K. (2014). Modeling long memory in the Russian stock market: Evidence from major sectoral indices. Journal of Applied Business Research, 30(2), 567–574. https://doi.org/10.19030/jabr.v30i2.8426
  • Seabe, P. L., Moutsinga, C. R. B., & Pindza, E. (2023). Forecasting cryptocurrency prices using LSTM, GRU, and bi-directional LSTM: A deep learning approach. Fractal and Fractional, 7(2), 203. https://doi.org/10.3390/fractalfract7020203
  • Shah, D., & Zhang, K. (2014). Bayesian regression and Bitcoin. In 2014 52nd Annual Allerton Conference on Communication, Control, and Computing (Allerton) (pp. 409–414). IEEE. https://doi.org/10.1109/ALLERTON.2014.7028484
  • Soylu, P., Okur, M., Çatıkkaş, Ö., & Altintig, A. (2020). Long memory in the volatility of selected cryptocurrencies: Bitcoin, Ethereum and Ripple. Journal of Risk and Financial Management, 13(6), 107. https://doi.org/10.3390/jrfm13060107
  • Tektaş, A., & Karataş, A. (2004). Yapay sinir ağları ve finans alanına uygulanması: Hisse senedi fiyat tahminlemesi. Atatürk Üniversitesi İktisadi ve İdari Bilimler Dergisi, 18, 3–4.
  • Tse, Y. (1998). The conditional heteroskedasticity of the Yen-dollar exchange rate, Journal of Applied Econometrics. 13(1), 49-55. https://doi.org/10.1002/(SICI)1099-1255(199801/02)13:1%3C49::AID-JAE459%3E3.0.CO;2-O
  • Türkyılmaz, S., & Balıbey, M. (2014). Türkiye hisse senedi piyasası oynaklığındaki asimetrik uzun hafıza özelliği. Journal of Banking and Financial Research, 1(1), 1–10.
  • Umoru, D., Ekeoba, A. A., & Igbinovia, B. (2024). Volatility behaviour of currency exchange rates in selected countries: Long memory effect. Asian Journal of Economics, Business and Accounting, 24(8), 168–189. https://doi.org/10.9734/ajeba/2024/v24i81449
  • Wang, Y., Andreeva, G., & Martin-Barragan, B. (2023). Machine learning approaches to forecasting cryptocurrency volatility: Considering internal and external determinants. International Review of Financial Analysis, 90, 102914. https://doi.org/10.1016/j.irfa.2023.102914
  • Yüksel, R., & Akkoç, S. (2016). Altın fiyatlarının yapay sinir ağları ile tahmini ve bir uygulama. Doğuş Üniversitesi Dergisi, 17(1), 39–50.
  • Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8, 338–353. http://doi.org/10.1016/S0019-9958(65)90241-X

Long Memory Analysis and Directional Return Forecasting in Cryptocurrency Markets: An Application of the PATSOS Method

Year 2025, Volume: 12 Issue: 3, 1130 - 1152, 30.09.2025

Abstract

This study aims to investigate the volatility dynamics of five major cryptocurrencies (Bitcoin, Ethereum, Binance Coin, Solana, and Ripple) to determine whether they exhibit long memory properties, reveal their market efficiency, and perform directional return forecasts using PATSOS, a hybrid machine learning method. This study uses daily data on cryptocurrencies from 2014 to 2022. According to the study results, long memory in volatility is found in the return series of Bitcoin, Binance Coin, Solana, and Ripple. Therefore, this finding reveals that the Efficient Markets Hypothesis does not hold for these cryptocurrencies’ return series, except Ethereum. Based on the tests, the most appropriate models for predicting volatility are HYGARCH(1, d, 1) for Bitcoin, IGARCH(1, 1) for Ethereum, FIGARCH(1, d, 0) for Binance Coin, FIGARCH(1, d, 1) and FIAPARCH(1, d, 1) for Solana and Ripple. Predicting future prices using past price movements is possible in these inefficient cryptocurrencies. In this context, we conduct return forecasts using the PATSOS method, which yields successful results in non-linear data. As a result, the PATSOS method produces lower RMSE, MSE, and MAE values and higher accuracy rates than the ANFIS method for all cryptocurrencies in the analysis. These findings highlight the effectiveness of hybrid models in capturing the non-linear structure of cryptocurrency returns.

Ethical Statement

Ethics Committee approval was not required for this study. The authors declare that the study was conducted in accordance with research and publication ethics. The authors declare that, during the writing process of this manuscript, AI tools (such as language improvement assistants) were occasionally used to enhance the clarity and fluency of the English language. All content, analysis, and interpretations were solely developed by the authors. The authors declare that there are no financial conflicts of interest involving any institution, organization, or individual associated with this article. Additionally, there are no conflicts of interest among the authors. The authors state that the first and corresponding author conducted the entire research process, including the planning, data collection, analysis, and manuscript preparation. The second author, who supervised the doctoral dissertation from which this article is derived, provided academic guidance during the thesis stage.

References

  • Addai, S. (2016). Financial forecasting using machine learning [Doctoral dissertation, University of Cape Town]. ResearchGate. https://doi.org/10.13140/RG.2.1.1186.0083
  • Aharon, D. Y., Butt, H. A., Jaffri, A., & Nichols, B. (2023). Asymmetric volatility in the cryptocurrency market: New evidence from models with structural breaks. International Review of Financial Analysis, 87, 102651. https://doi.org/10.1016/j.irfa.2023.102651
  • Al‐Yahyaee, K. H., Mensi, W., & Yoon, S. M. (2018). Efficiency, multifractality, and the long‐memory property of the Bitcoin market: A comparative analysis with stock, currency, and gold markets. Finance Research Letters, 27, 228–234. https://doi.org/10.1016/j.frl.2018.03.017
  • Aslam, F., Aziz, S., Nguyen, D. K., Mughal, K. S., & Khan, M. (2020). On the efficiency of foreign exchange markets in times of the COVID‐19 pandemic. Technological Forecasting and Social Change, 161, 120261. https://doi.org/10.1016/j.techfore.2020.120261
  • Assaf, A., Bhandari, A., Charif, H., & Demir, E. (2022). Multivariate long memory structure in the cryptocurrency market: The impact of COVID‐19. International Review of Financial Analysis, 82, 102132. https://doi.org/10.1016/j.irfa.2022.102132
  • Atsalakis, G., & Valavanis, K. (2009). Forecasting stock market short‐term trends using a neuro‐fuzzy based methodology. Expert Systems with Applications, 36, 10696–10707. https://doi.org/10.1016/j.eswa.2009.02.043
  • Atsalakis, G. S., Atsalaki, I. G., Pasiouras, F., & Zopounidis, C. (2019). Bitcoin price forecasting with neuro‐fuzzy techniques. European Journal of Operational Research, 276(2), 770–780. https://doi.org/10.1016/j.ejor.2019.01.040
  • Awoke, T., Minakhi, R., Mohanty, L., & Satapathy, S. C. (2020). Bitcoin price prediction and analysis using deep learning models. In Advances in intelligent systems and computing (Vol. 134, pp. 630–640). Springer. https://doi.org/10.1007/978-981-15-5397-4_63
  • Baillie, R. T., Bollerslev, T., & Mikkelsen, H. O. (1996). Fractionally integrated generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 74(1), 3–30. https://doi.org/10.1016/S0304-4076(95)01749-6
  • Bariviera, A. F. (2017). The inefficiency of Bitcoin revisited: A dynamic approach. Economics Letters, 161, 1–4. https://doi.org/10.1016/j.econlet.2017.09.013
  • Böhme, R., Christin, N., Edelman, B., & Moore, T. (2015). Bitcoin: Economics, technology, and governance. Journal of Economic Perspectives, 29(2), 213–238. https://doi.org/10.1257/jep.29.2.213
  • Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 31, 307–327. https://doi.org/10.1016/0304-4076(86)90063-1
  • Bollerslev, T., & Mikkelsen, H. O. (1996). Modeling and pricing long-memory in stock market volatility. Journal of Econometrics, 73(1), 151–184. https://doi.org/10.1016/0304-4076(95)01736-4
  • Bouri, E., Gil‐Alana, L. A., Gupta, R., & Roubaud, D. (2019). Modelling long memory volatility in the Bitcoin market: Evidence of persistence and structural breaks. International Journal of Finance & Economics, 24(1), 412–426. https://doi.org/10.1002/ijfe.1670
  • Bouri, E., Molnar, P., Azzi, G., Roubaud, D., & Hagfors, L. I. (2017). On the hedge and safe haven properties of Bitcoin: Is it really more than a diversifier? Finance Research Letters, 20, 192–198. https://doi.org/10.1016/j.frl.2016.09.025
  • Budree, A., & Nyathi, T. N. (2023). Can cryptocurrency be a payment method in a developing economy? Journal of Electronic Commerce in Organizations, 21(1), 1–21. https://doi.org/10.4018/jeco.320223
  • Caporale, G. M., Rubio-Bezares, A., & Gil-Alana, L. A. (2024). Persistence in European stock market returns and volatility. International Journal of Business and Economics, 9(1), 56–66. https://doi.org/10.58885/ijbe.v09i1.56.gc
  • Cavalcante, J., & Assaf, A. (2004). Long range dependence in the returns and volatility of the Brazilian stock market. European Review of Economics and Finance, 3, 5-22.
  • Cavalli, S., & Amoretti, M. (2021). CNN‐based multivariate data analysis for Bitcoin trend prediction. Applied Soft Computing Journal, 101, 107065. https://doi.org/10.1016/j.asoc.2020.107065
  • Charfeddine, L., & Maouchi, Y. (2019). Are shocks on the returns and volatility of cryptocurrencies really persistent? Finance Research Letters, 28, 423–430. https://doi.org/10.1016/j.frl.2018.06.017
  • Chen, H., Wei, N., Wang, L., Mobarak, W., Albahar, M. A., & Shaikh, Z. A. (2024). The role of blockchain in finance beyond cryptocurrency: Trust, data management, and automation. IEEE Access, 12, 64861–64885. https://doi.org/10.1109/access.2024.3395918
  • Chen, W., Xu, H., Jia, L., & Gao, Y. (2021). Machine learning model for Bitcoin exchange rate prediction using economic and technology determinants. International Journal of Forecasting, 37(1), 28–43. https://doi.org/10.1016/j.ijforecast.2020.02.008
  • , Z., Li, C., & Sun, W. (2020). Bitcoin price prediction using machine learning: An approach to sample dimension engineering. Journal of Computational and Applied Mathematics, 365, 112395. https://doi.org/10.1016/j.cam.2019.112395
  • CoinMarketCap. (2022). Cryptocurrency prices by market cap. CoinMarketCap. Retrieved March 2, 2022, from https://coinmarketcap.com/
  • Çevik, E. İ., & Topaloğlu, G. (2014). Volatilitede uzun hafıza ve yapısal kırılma: Borsa İstanbul örneği. Balkan Sosyal Bilimler Dergisi, 3(6), 40–55.
  • Davidson, J. (2004). Moment and memory properties of linear conditional heteroscedasticity models, and a new model. Journal of Business & Economic Statistics, 22, 16–29. https://doi.org/10.1198/073500103288619359
  • Engle, R. F. (1982). Autoregressive conditional heteroskedasticity with estimates of the variance of U.K. inflation. Econometrica, 50, 987–1008. https://doi.org/10.2307/1912773
  • Fakhfekh, M., & Jeribi, A. (2020). Volatility dynamics of cryptocurrencies’ returns: Evidence from asymmetric and long memory GARCH models. Research in International Business and Finance, 51, 101075. https://doi.org/10.1016/j.ribaf.2019.101075
  • Fama, E. (1965). The behavior of stock market prices. Journal of Business, 38, 34–105. https://doi.org/10.1086/294743
  • Festic, M., Kavkler, A., & Dajčman, S. (2012). Long memory in the Croatian and Hungarian stock market returns. Journal of Economics and Business, 30(1), 115–139.
  • Greaves, A., & Au, B. (2015). Using the Bitcoin transaction graph to predict the price of Bitcoin [Unpublished class project]. Stanford University, CS224W: Analysis of Networks. Retrieved from https://snap.stanford.edu/class/cs224w-2015/projects_2015/Using_the_Bitcoin_Transaction_Graph_to_Predict_the_Price_of_Bitcoin.pdf
  • Guiu, J. G., i Ribé, E. G., i Mansilla, E. B., & i Fàbrega, X. L. (1999). Automatic diagnosis with genetic algorithms and case-based reasoning. Artificial Intelligence in Engineering, 13(4), 367–372. https://doi.org/10.1016/S0954-1810(99)00009-6
  • Guo, T., Bifet, A., & Antulov-Fantulin, N. (2018). Bitcoin volatility forecasting with a glimpse into buy and sell orders. In 2018 IEEE International Conference on Data Mining (ICDM) (pp. 989–994). IEEE. https://doi.org/10.1109/ICDM.2018.00123
  • Gülcü, A., & Çalişkan, S. (2020). Clustering electricity market participants via FRM models. Intelligent Decision Technologies, 14(4), 481–492. https://doi.org/10.3233/IDT-200092
  • Hagenau, M., Liebmann, M., & Neumann, D. (2013). Automated news reading: Stock price prediction based on financial news using context‐capturing features. Decision Support Systems, 55(3), 685–697. https://doi.org/10.1016/j.dss.2013.02.006
  • Hegazy, O., Soliman, O. S., & Salam, M. A. (2013). A machine learning model for stock market prediction. arXiv preprint, 4(12), 17–23. https://doi.org/10.48550/arXiv.1402.7351
  • Horobet, A., Belascu, L., & Barsan, A.-M. (2016). Exchange rate volatility in the Balkans and Eastern Europe: Implications for international investments. In A. Karasavvoglou, Z. Aranđelović, S. Marinković, & P. Polychronidou (Eds.), The first decade of living with the global crisis (pp. 137–164). Springer. https://doi.org/10.1007/978-3-319-24267-5_11
  • Ibrahim, A., Hussin, S. A. S., Zahid, Z., & Khairi, S. (2018). Evaluation of long memory on the Malaysia exchange rate market. The Journal of Social Sciences Research, Special Issue 6, 653–656. https://doi.org/10.32861/jssr.spi6.653.656
  • Jang, J. S. (1993). ANFIS: Adaptive-network-based fuzzy inference system. IEEE Transactions on Systems, Man, and Cybernetics, 23(3), 665–685. https://doi.org/10.1109/21.256541
  • Jiang, X. (2020). Bitcoin price prediction based on deep learning methods. Journal of Mathematical Finance, 10(1), 132–139. http://doi.org/10.4236/jmf.2020.101009
  • Kapur, G., Manohar, S., Mittal, A., Jain, V., & Trivedi, S. (2024). Cryptocurrency price fluctuation and time series analysis through candlestick pattern of Bitcoin and Ethereum using machine learning. International Journal of Quality & Reliability Management, 41(8), 2055–2074. https://doi.org/10.1108/ijqrm-12-2022-0363
  • Karaatlı, M., Güngör, İ., Demir, Y., & Kalaycı, Ş. (2005). Hisse senedi fiyat hareketlerinin yapay sinir ağları yöntemi ile tahmin edilmesi. Yönetim ve Ekonomi Araştırmaları Dergisi, 3(3), 38–48.
  • Katsiampa, P. (2017). Volatility estimation for Bitcoin: A comparison of GARCH models. Economics Letters, 158, 3–6. https://doi.org/10.1016/j.econlet.2017.06.023
  • Khan, Z. H., Alin, T. S., & Hussain, M. A. (2011). Price prediction of share market using artificial neural network (ANN). International Journal of Computer Applications, 22(2), 42–47. http://doi.org/10.5120/2552-3497
  • Khuntia, S., & Pattanayak, J. K. (2020). Adaptive long memory in volatility of intra-day Bitcoin returns and the impact of trading volume. Finance Research Letters, 32, 101077. https://doi.org/10.1016/j.frl.2018.12.025
  • Kılıç, R. (2004). On the long memory properties of emerging capital markets: Evidence from Istanbul Stock Exchange. Applied Financial Economics, 14(13), 915–922. http://doi.org/10.1080/0960310042000233638
  • Lahmiri, S., & Bekiros, S. (2020). Intelligent forecasting with machine learning trading systems in chaotic intraday Bitcoin market. Chaos, Solitons & Fractals, 133, 109641. https://doi.org/10.1016/j.chaos.2020.109641
  • Liu, M., Li, G., Li, J., Zhu, X., & Yao, Y. (2021). Forecasting the price of Bitcoin using deep learning. Finance Research Letters, 40, 101755. https://doi.org/10.1016/j.frl.2020.101755
  • Liu, Y., & Tsyvinski, A. (2018). Risks and returns of cryptocurrency. National Bureau of Economic Research. https://doi.org/10.2139/ssrn.3226952
  • Malkiel, B. G. (2003). The efficient market hypothesis and its critics. Journal of Economic Perspectives, 17(1), 59–82. https://doi.org/10.1257/089533003321164958
  • McNally, S., Roche, J., & Caton, S. (2018). Predicting the price of bitcoin using machine learning. In 2018 26th Euromicro International Conference on Parallel, Distributed and Network-based Processing (PDP) (pp. 339–343). IEEE. https://doi.org/10.1109/PDP2018.2018.00060
  • Mensi, W., Al-Yahyaee, K. H., & Kang, S. H. (2019). Structural breaks and double long memory of cryptocurrency prices: A comparative analysis from Bitcoin and Ethereum. Finance Research Letters, 29, 222–230. https://doi.org/10.1016/j.frl.2018.07.011
  • Münyas, T., & Kadooğlu-Aydın, G. (2023). Etkin piyasa hipotezi ve kripto para piyasaları üzerine bir uygulama. Alanya Akademik Bakış Dergisi, 7(3), 1203–1216. https://doi.org/10.29023/alanyaakademik.1240173
  • Nadarajah, S., Mba, J. C., Rakotomarolahy, P., & Ratolojanahary, H. T. J. E. (2025). Ensemble learning and an adaptive neuro-fuzzy inference system for cryptocurrency volatility forecasting. Journal of Risk and Financial Management, 18(2), 52. https://doi.org/10.3390/jrfm18020052
  • Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system. Bitcoin.org, https://bitcoin.org/bitcoin.pdf
  • Nelson, D. B. (1991). Conditional heteroskedasticity in asset returns: A new approach. Econometrica, 59(2), 347–370. https://doi.org/10.2307/2938260
  • Oppenheim, D., & Shani, G. (2017). Potato disease classification using convolution neural networks. Advances in Animal Biosciences, 8(2), 244–249. http://doi.org/10.1017/S2040470017001376
  • Özçalıcı, M. (2016). Yapay sinir ağları ile çok aşamalı fiyat tahmini: BIST 30 senetleri üzerine bir araştırma. Dokuz Eylül Üniversitesi İktisadi İdari Bilimler Fakültesi Dergisi, 31(2), 209–227. https://doi.org/10.24988/deuiibf.2016312517
  • Özdemir, A., & Çelik, İ. (2020). Pay piyasalarında etkin piyasalar hipotezinin farklı dağılım varsayımları bağlamında uzun hafıza modelleri ile tespiti: ABD ve Türkiye karşılaştırması. Dokuz Eylül Üniversitesi İşletme Fakültesi Dergisi, 21(1), 125–160. https://doi.org/10.24889/ifede.481059
  • Phillip, A., Chan, J. S., & Peiris, S. (2018). A new look at cryptocurrencies. Economics Letters, 163, 6–9. https://doi.org/10.1016/j.econlet.2017.11.020
  • Rabemananjara, R., & Zakoian, J. M. (1993). Threshold ARCH models and asymmetries in volatility. Journal of Applied Econometrics, 8(1), 31–49. https://doi.org/10.1002/jae.3950080104
  • Sadique, S., & Silvapulle, P. (2001). Long‐term memory in stock market returns: International evidence. International Journal of Finance & Economics, 6(1), 59–67. https://doi.org/10.1002/ijfe.143
  • Saleem, K. (2014). Modeling long memory in the Russian stock market: Evidence from major sectoral indices. Journal of Applied Business Research, 30(2), 567–574. https://doi.org/10.19030/jabr.v30i2.8426
  • Seabe, P. L., Moutsinga, C. R. B., & Pindza, E. (2023). Forecasting cryptocurrency prices using LSTM, GRU, and bi-directional LSTM: A deep learning approach. Fractal and Fractional, 7(2), 203. https://doi.org/10.3390/fractalfract7020203
  • Shah, D., & Zhang, K. (2014). Bayesian regression and Bitcoin. In 2014 52nd Annual Allerton Conference on Communication, Control, and Computing (Allerton) (pp. 409–414). IEEE. https://doi.org/10.1109/ALLERTON.2014.7028484
  • Soylu, P., Okur, M., Çatıkkaş, Ö., & Altintig, A. (2020). Long memory in the volatility of selected cryptocurrencies: Bitcoin, Ethereum and Ripple. Journal of Risk and Financial Management, 13(6), 107. https://doi.org/10.3390/jrfm13060107
  • Tektaş, A., & Karataş, A. (2004). Yapay sinir ağları ve finans alanına uygulanması: Hisse senedi fiyat tahminlemesi. Atatürk Üniversitesi İktisadi ve İdari Bilimler Dergisi, 18, 3–4.
  • Tse, Y. (1998). The conditional heteroskedasticity of the Yen-dollar exchange rate, Journal of Applied Econometrics. 13(1), 49-55. https://doi.org/10.1002/(SICI)1099-1255(199801/02)13:1%3C49::AID-JAE459%3E3.0.CO;2-O
  • Türkyılmaz, S., & Balıbey, M. (2014). Türkiye hisse senedi piyasası oynaklığındaki asimetrik uzun hafıza özelliği. Journal of Banking and Financial Research, 1(1), 1–10.
  • Umoru, D., Ekeoba, A. A., & Igbinovia, B. (2024). Volatility behaviour of currency exchange rates in selected countries: Long memory effect. Asian Journal of Economics, Business and Accounting, 24(8), 168–189. https://doi.org/10.9734/ajeba/2024/v24i81449
  • Wang, Y., Andreeva, G., & Martin-Barragan, B. (2023). Machine learning approaches to forecasting cryptocurrency volatility: Considering internal and external determinants. International Review of Financial Analysis, 90, 102914. https://doi.org/10.1016/j.irfa.2023.102914
  • Yüksel, R., & Akkoç, S. (2016). Altın fiyatlarının yapay sinir ağları ile tahmini ve bir uygulama. Doğuş Üniversitesi Dergisi, 17(1), 39–50.
  • Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8, 338–353. http://doi.org/10.1016/S0019-9958(65)90241-X
There are 73 citations in total.

Details

Primary Language English
Subjects Financial Forecast and Modelling
Journal Section Research Articles
Authors

Ahmet Furkan Sak 0000-0002-6713-5773

Hüseyin Dalgar 0000-0001-9743-3766

Publication Date September 30, 2025
Submission Date April 17, 2025
Acceptance Date September 2, 2025
Published in Issue Year 2025 Volume: 12 Issue: 3

Cite

APA Sak, A. F., & Dalgar, H. (2025). Long Memory Analysis and Directional Return Forecasting in Cryptocurrency Markets: An Application of the PATSOS Method. Journal of Mehmet Akif Ersoy University Economics and Administrative Sciences Faculty, 12(3), 1130-1152. https://doi.org/10.30798/makuiibf.1678534

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

The author(s) bear full responsibility for the ideas and arguments presented in their articles. All scientific and legal accountability concerning the language, style, adherence to scientific ethics, and content of the published work rests solely with the author(s). Neither the journal nor the institution(s) affiliated with the author(s) assume any liability in this regard.