Research Article
BibTex RIS Cite

TÜRKİYE'DE DİJİTAL İÇERİK PLATFORMLARI KULLANICI MEMNUNİYETİNİN YAPAY ZEKÂ İLE ANALİZİ

Year 2025, Issue: 42, 105 - 121, 30.11.2025
https://doi.org/10.20875/makusobed.1740855

Abstract

Bu çalışma, Türkiye’deki dijital içerik platformlarına yönelik kullanıcı memnuniyetini, kullanıcı yorumları üzerinden yapay zekâ ve metin madenciliği teknikleriyle analiz etmektedir. Yedi aylık süreçte toplanan 1.400 yorum; TextBlob kütüphanesi ile olumlu, olumsuz ve nötr olarak sınıflandırılmış; kelime frekansları ve kelime bulutlarıyla duygusal eğilimler görselleştirilmiştir. Bulgular, kullanıcı memnuniyetinin zaman içinde dalgalandığını; Şubat ve Mart aylarında olumlu yorumların arttığını, Haziran ve Temmuz’da ise nötr tutumların öne çıktığını göstermektedir. Özellikle “senaryo”, “dizi”, “karakter” gibi içerik odaklı ifadelerin sık kullanılması, izleyici geri bildirimlerinin tematik unsurlar üzerinden şekillendiğini ortaya koymaktadır. Çalışma, dijital platformlar için içerik geliştirme ve kullanıcı deneyimi yönetimi açısından stratejik öneriler sunmaktadır.

Project Number

1919B012427918

References

  • Alrizq, M., & Alghamdi, A. (2024). Customer satisfaction analysis with Saudi Arabia mobile banking apps: a hybrid approach using text mining and predictive learning techniques. Neural Computing and Applications, 36(11), 6005-6023. https://doi.org/10.1007/s00521-023-09400-4
  • Abdullah, D. (2025). Proposal: Evaluating user satisfaction in mobile medical applications using text mining and sentiment analysis. Journal of Computational Medicine and Informatics, 52-61.
  • Alam, A., Mellinia, R., Ratnasari, R. T., & Ma’aruf, A. (2023). A systematic review of halal hotels: A word cloud and thematic analysis of articles from the Scopus database. International Journal of Advanced and Applied Sciences, 10(8), 166-175. https://doi.org/10.21833/ijaas.2023.08.019
  • Amrieh, E. A., Hamtini, T., & Aljarah, I. (2015, November). Preprocessing and analysing educational data set using X-API for improving student's performance. In 2015 IEEE Jordan conference on applied electrical engineering and computing technologies (AEECT) (pp. 1-5). IEEE. https://doi.org/10.1109/AEECT.2015.7360581
  • Andrian, B., Simanungkalit, T., Budi, I., & Wicaksono, A. F. (2022). Sentiment analysis on customer satisfaction of digital banking in Indonesia. International Journal of Advanced Computer Science and Applications, 13(3), 466-473. https://doi.org/10.14569/IJACSA.2022.0130356
  • Atılgan, K. Ö., & Yoğurtcu, H. (2021). Kargo firması müşterilerinin Twitter gönderilerinin duygu analizi. Çağ Üniversitesi Sosyal Bilimler Dergisi, 18(1), 31-39.
  • Baj-Rogowska, A., & Sikorski, M. (2023). Exploring the usability and user experience of social media apps through a text mining approach. Engineering Management in Production and Services, 15, 86-105. https://doi.org/10.2478/emj-2023-0007
  • Chen, S. H., Chen, Y. J., & Leung, W. C. (2023). Analyzing differences in customer satisfaction on the video streaming platform Netflix. Annals of Management and Organization Research, 4(3), 193-209. https://doi.org/10.35912/amor.v4i3.1554
  • Cömert, Ö., & Yücel, N. (2023). Müşteri duyarlılığını keşfetmek için yapay zekâ destekli analiz ile çevrimiçi ürün incelemelerinden anlamlı bilgiler elde etme. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 35(2), 679-690. https://doi.org/10.35234/fumbd.1305932
  • Çaylak, P. Ç., Kayakuş, M., Eksili, N., Yiğit Açikgöz, F., Coşkun, A. E., Ichimov, M. A. M., & Moiceanu, G. (2024). Analysing online reviews consumers’ experiences of mobile travel applications with sentiment analysis and topic modelling: the example of Booking and Expedia. Applied Sciences, 14(24), 11800. https://doi.org/10.3390/app142411800
  • Dutta, J., Saxena, S., & Itanager, A. P. (2021). Customer satisfaction analysis by recent artificial intelligence technology platforms. PalArch’s Journal of Archaeology of Egypt, 18(1), 4640-4648.
  • Erdoğan, D., Kayakuş, M., Çelik Çaylak, P., Ekşili, N., Moiceanu, G., Kabas, O., & Ichimov, M. A. M. (2025). Developing a deep learning-based sentiment analysis system of hotel customer reviews for sustainable tourism. Sustainability, 17(13), 5756. https://doi.org/10.3390/su17135756
  • Gürbüz, M., Sürmeli, D., Taşkın, K., & Cebeci, H. İ. (2024). Otellere için paylaşılan çevre ile alakalı yorumların metin madenciliği ile analizi: Antalya otelleri üzerine bir araştırma. Business & Management Studies: An International Journal, 12(1), 218-239. https://doi.org/10.15295/bmij.v12i1.2369
  • Islam, M. S., Kabir, M. N., Ghani, N. A., Zamli, K. Z., Zulkifli, N. S. A., Rahman, M. M., & Moni, M. A. (2024). Challenges and future in deep learning for sentiment analysis: a comprehensive review and a proposed novel hybrid approach. Artificial Intelligence Review, 57(62), 1-79. https://doi.org/10.1007/s10462-023-10651-9
  • JustWatch (2025). JustWatch Türkiye. www.justwatch.com/tr, Erişim Tarihi: 11.07.2025
  • Kıvrak, O. (2025). Trendyol üzerindeki kullanıcı yorumlarıyla akıllı çocuk saatlerine yönelik tüketici algısının tematik analizi: güvenlik, işlevsellik ve ebeveyn deneyimi üzerine bir inceleme. International Journal of Management Information Systems and Computer Science, 9(1), 67-76. https://doi.org/10.33461/uybisbbd.1688885
  • Kitsios, F., Kamariotou, M., Karanikolas, P., & Grigoroudis, E. (2021). Digital marketing platforms and customer satisfaction: Identifying eWOM using big data and text mining. Applied Sciences, 11(17), 8032. https://doi.org/10.3390/app11178032
  • Kondaveti, R., Rao, P. S., Ramana, G. V., Srinivas, B., & Nageswari, K. V. (2025). Predicting viewer satisfaction on streaming platforms using LSTM-based sentiment analysis. In Algorithms in Advanced Artificial Intelligence (pp. 646-652). CRC Press. https://doi.org/10.1201/9781003641537-98
  • Kumar, M., Khan, L., & Chang, H. T. (2025). Evolving techniques in sentiment analysis: a comprehensive review. PeerJ Computer Science, 11, e2592. https://doi.org/10.7717/peerj-cs.2592
  • Minaee, S., Kalchbrenner, N., Cambria, E., Nikzad, N., Chenaghlu, M., & Gao, J. (2021). Deep learning--based text classification: a comprehensive review. ACM computing surveys (CSUR), 54(3), 1-40. https://doi.org/10.1145/3439726
  • Nandwani, P., & Verma, R. (2021). A review on sentiment analysis and emotion detection from text. Social network analysis and mining, 11(1), 81. https://doi.org/10.1007/s13278-021-00776-6
  • Nesca, M., Katz, A., Leung, C. K., & Lix, L. M. (2022). A scoping review of preprocessing methods for unstructured
  • text data to assess data quality. International Journal of Population Data Science, 7(1), 1757. https://doi.org/10.23889/ijpds.v7i1.1757
  • Netflix (2025). Netflix Türkiye, www.netflix.com, Erişim Tarihi: 11.07.2025.
  • Nilashi, M., Abumalloh, R. A., Zibarzani, M., Samad, S., Zogaan, W. A., Ismail, M. Y., ... & Akib, N. A. M. (2022). What factors influence students’ satisfaction in massive open online courses? Findings from user-generated content using educational data mining. Education and Information Technologies, 27(7), 9401-9435. https://doi.org/10.1007/s10639-022-10997-7
  • Omeragić, D., Kečo, D., Jukić, S., & Isaković, B. (2023, June). The employment of a machine learning-based recommendation system to maximize Netflix user satisfaction. In International Symposium on Innovative and Interdisciplinary Applications of Advanced Technologies (pp. 300-328). Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-43056-5_23
  • Shi, Z., Rui, H., & Whinston, A. B. (2014). Content sharing in a social broadcasting environment: evidence from twitter. MIS quarterly, 38(1), 123-142. https://doi.org/10.25300/MISQ/2014/38.1.06
  • Sohtorik, S. (2022). Sosyal Medya Pazarlama Faaliyetlerinin Sadakat Niyetine Etkisinde Marka Ilişki Kalitesinin ve Marka Güveninin Rolü: Netflix Üzerine bir Araştırma (Master's thesis, Marmara Universitesi (Turkey)).
  • Suanpang, P., Jamjuntr, P., & Kaewyong, P. (2021). Sentiment analysis with a TextBlob package implications for tourism. Journal of Management Information and Decision Sciences, 24, 1-9.
  • Şaylan, O., Taşkın, E., & Abdulwahid, O. I. A. (2025). Yapay zekanın dijital pazarlama stratejileri üzerindeki etkisi: kavramsal bir çalışma. Uluslararası Sosyal ve Ekonomik Çalışmalar Dergisi, 6(1), 350-367. https://doi.org/10.62001/gsijses.1687324
  • Park, J. (2023). Combined text-mining/DEA method for measuring level of customer satisfaction from online reviews. Expert Systems with Applications, 232, 120767. https://doi.org/10.1016/j.eswa.2023.120767
  • Thomas, J., Sateesh Kumar, T. K., Menon, V. A., & Thomas, L. P. (2024, April). Analyzing sentiment in Netflix user opinions: a statistical examination. In International Conference on Information and Communication Technology for Intelligent Systems (pp. 587-601). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-97-6678-9_51
  • X Platform (2025). X Platform, https://x.com/home, Erişim Tarihi: 12.07.2025
  • Yılmaz, E. S., & Erdem, A. (2022). Dijital platform üyeliklerinin devamlılığına etki eden faktörler: Netflix örneği. İktisadi İdari ve Siyasal Araştırmalar Dergisi, 7(17), 47-67. https://doi.org/10.25204/iktisad.970186

ANALYSING USER SATISFACTION OF DIGITAL CONTENT PLATFORMS IN TURKEY WITH ARTIFICIAL INTELLIGENCE

Year 2025, Issue: 42, 105 - 121, 30.11.2025
https://doi.org/10.20875/makusobed.1740855

Abstract

This study analyses user satisfaction with digital content platforms in Turkey through user comments using artificial intelligence and text mining techniques. The 1,400 comments collected over a seven-month period were classified as positive, negative, and neutral using the TextBlob library, and emotional trends were visualised with word frequencies and word clouds. The findings show that user satisfaction fluctuates over time; positive comments increase in February and March, while neutral attitudes come to the fore in June and July. In particular, the frequent use of content-orientated expressions such as ‘scenario’, ‘series’ and ‘character’ reveals that audience feedback is shaped by thematic elements. The study provides strategic recommendations for content development and user experience management on digital platforms.

Supporting Institution

TÜBİTAK

Project Number

1919B012427918

Thanks

Bu çalışma TÜBİTAK Bilim İnsanı Destekleme Daire Başkanlığı (BİDEB) tarafından 2209-A Üniversite Öğrencileri Araştırma Projeleri Destek Programı kapsamında desteklenmiştir.

References

  • Alrizq, M., & Alghamdi, A. (2024). Customer satisfaction analysis with Saudi Arabia mobile banking apps: a hybrid approach using text mining and predictive learning techniques. Neural Computing and Applications, 36(11), 6005-6023. https://doi.org/10.1007/s00521-023-09400-4
  • Abdullah, D. (2025). Proposal: Evaluating user satisfaction in mobile medical applications using text mining and sentiment analysis. Journal of Computational Medicine and Informatics, 52-61.
  • Alam, A., Mellinia, R., Ratnasari, R. T., & Ma’aruf, A. (2023). A systematic review of halal hotels: A word cloud and thematic analysis of articles from the Scopus database. International Journal of Advanced and Applied Sciences, 10(8), 166-175. https://doi.org/10.21833/ijaas.2023.08.019
  • Amrieh, E. A., Hamtini, T., & Aljarah, I. (2015, November). Preprocessing and analysing educational data set using X-API for improving student's performance. In 2015 IEEE Jordan conference on applied electrical engineering and computing technologies (AEECT) (pp. 1-5). IEEE. https://doi.org/10.1109/AEECT.2015.7360581
  • Andrian, B., Simanungkalit, T., Budi, I., & Wicaksono, A. F. (2022). Sentiment analysis on customer satisfaction of digital banking in Indonesia. International Journal of Advanced Computer Science and Applications, 13(3), 466-473. https://doi.org/10.14569/IJACSA.2022.0130356
  • Atılgan, K. Ö., & Yoğurtcu, H. (2021). Kargo firması müşterilerinin Twitter gönderilerinin duygu analizi. Çağ Üniversitesi Sosyal Bilimler Dergisi, 18(1), 31-39.
  • Baj-Rogowska, A., & Sikorski, M. (2023). Exploring the usability and user experience of social media apps through a text mining approach. Engineering Management in Production and Services, 15, 86-105. https://doi.org/10.2478/emj-2023-0007
  • Chen, S. H., Chen, Y. J., & Leung, W. C. (2023). Analyzing differences in customer satisfaction on the video streaming platform Netflix. Annals of Management and Organization Research, 4(3), 193-209. https://doi.org/10.35912/amor.v4i3.1554
  • Cömert, Ö., & Yücel, N. (2023). Müşteri duyarlılığını keşfetmek için yapay zekâ destekli analiz ile çevrimiçi ürün incelemelerinden anlamlı bilgiler elde etme. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 35(2), 679-690. https://doi.org/10.35234/fumbd.1305932
  • Çaylak, P. Ç., Kayakuş, M., Eksili, N., Yiğit Açikgöz, F., Coşkun, A. E., Ichimov, M. A. M., & Moiceanu, G. (2024). Analysing online reviews consumers’ experiences of mobile travel applications with sentiment analysis and topic modelling: the example of Booking and Expedia. Applied Sciences, 14(24), 11800. https://doi.org/10.3390/app142411800
  • Dutta, J., Saxena, S., & Itanager, A. P. (2021). Customer satisfaction analysis by recent artificial intelligence technology platforms. PalArch’s Journal of Archaeology of Egypt, 18(1), 4640-4648.
  • Erdoğan, D., Kayakuş, M., Çelik Çaylak, P., Ekşili, N., Moiceanu, G., Kabas, O., & Ichimov, M. A. M. (2025). Developing a deep learning-based sentiment analysis system of hotel customer reviews for sustainable tourism. Sustainability, 17(13), 5756. https://doi.org/10.3390/su17135756
  • Gürbüz, M., Sürmeli, D., Taşkın, K., & Cebeci, H. İ. (2024). Otellere için paylaşılan çevre ile alakalı yorumların metin madenciliği ile analizi: Antalya otelleri üzerine bir araştırma. Business & Management Studies: An International Journal, 12(1), 218-239. https://doi.org/10.15295/bmij.v12i1.2369
  • Islam, M. S., Kabir, M. N., Ghani, N. A., Zamli, K. Z., Zulkifli, N. S. A., Rahman, M. M., & Moni, M. A. (2024). Challenges and future in deep learning for sentiment analysis: a comprehensive review and a proposed novel hybrid approach. Artificial Intelligence Review, 57(62), 1-79. https://doi.org/10.1007/s10462-023-10651-9
  • JustWatch (2025). JustWatch Türkiye. www.justwatch.com/tr, Erişim Tarihi: 11.07.2025
  • Kıvrak, O. (2025). Trendyol üzerindeki kullanıcı yorumlarıyla akıllı çocuk saatlerine yönelik tüketici algısının tematik analizi: güvenlik, işlevsellik ve ebeveyn deneyimi üzerine bir inceleme. International Journal of Management Information Systems and Computer Science, 9(1), 67-76. https://doi.org/10.33461/uybisbbd.1688885
  • Kitsios, F., Kamariotou, M., Karanikolas, P., & Grigoroudis, E. (2021). Digital marketing platforms and customer satisfaction: Identifying eWOM using big data and text mining. Applied Sciences, 11(17), 8032. https://doi.org/10.3390/app11178032
  • Kondaveti, R., Rao, P. S., Ramana, G. V., Srinivas, B., & Nageswari, K. V. (2025). Predicting viewer satisfaction on streaming platforms using LSTM-based sentiment analysis. In Algorithms in Advanced Artificial Intelligence (pp. 646-652). CRC Press. https://doi.org/10.1201/9781003641537-98
  • Kumar, M., Khan, L., & Chang, H. T. (2025). Evolving techniques in sentiment analysis: a comprehensive review. PeerJ Computer Science, 11, e2592. https://doi.org/10.7717/peerj-cs.2592
  • Minaee, S., Kalchbrenner, N., Cambria, E., Nikzad, N., Chenaghlu, M., & Gao, J. (2021). Deep learning--based text classification: a comprehensive review. ACM computing surveys (CSUR), 54(3), 1-40. https://doi.org/10.1145/3439726
  • Nandwani, P., & Verma, R. (2021). A review on sentiment analysis and emotion detection from text. Social network analysis and mining, 11(1), 81. https://doi.org/10.1007/s13278-021-00776-6
  • Nesca, M., Katz, A., Leung, C. K., & Lix, L. M. (2022). A scoping review of preprocessing methods for unstructured
  • text data to assess data quality. International Journal of Population Data Science, 7(1), 1757. https://doi.org/10.23889/ijpds.v7i1.1757
  • Netflix (2025). Netflix Türkiye, www.netflix.com, Erişim Tarihi: 11.07.2025.
  • Nilashi, M., Abumalloh, R. A., Zibarzani, M., Samad, S., Zogaan, W. A., Ismail, M. Y., ... & Akib, N. A. M. (2022). What factors influence students’ satisfaction in massive open online courses? Findings from user-generated content using educational data mining. Education and Information Technologies, 27(7), 9401-9435. https://doi.org/10.1007/s10639-022-10997-7
  • Omeragić, D., Kečo, D., Jukić, S., & Isaković, B. (2023, June). The employment of a machine learning-based recommendation system to maximize Netflix user satisfaction. In International Symposium on Innovative and Interdisciplinary Applications of Advanced Technologies (pp. 300-328). Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-43056-5_23
  • Shi, Z., Rui, H., & Whinston, A. B. (2014). Content sharing in a social broadcasting environment: evidence from twitter. MIS quarterly, 38(1), 123-142. https://doi.org/10.25300/MISQ/2014/38.1.06
  • Sohtorik, S. (2022). Sosyal Medya Pazarlama Faaliyetlerinin Sadakat Niyetine Etkisinde Marka Ilişki Kalitesinin ve Marka Güveninin Rolü: Netflix Üzerine bir Araştırma (Master's thesis, Marmara Universitesi (Turkey)).
  • Suanpang, P., Jamjuntr, P., & Kaewyong, P. (2021). Sentiment analysis with a TextBlob package implications for tourism. Journal of Management Information and Decision Sciences, 24, 1-9.
  • Şaylan, O., Taşkın, E., & Abdulwahid, O. I. A. (2025). Yapay zekanın dijital pazarlama stratejileri üzerindeki etkisi: kavramsal bir çalışma. Uluslararası Sosyal ve Ekonomik Çalışmalar Dergisi, 6(1), 350-367. https://doi.org/10.62001/gsijses.1687324
  • Park, J. (2023). Combined text-mining/DEA method for measuring level of customer satisfaction from online reviews. Expert Systems with Applications, 232, 120767. https://doi.org/10.1016/j.eswa.2023.120767
  • Thomas, J., Sateesh Kumar, T. K., Menon, V. A., & Thomas, L. P. (2024, April). Analyzing sentiment in Netflix user opinions: a statistical examination. In International Conference on Information and Communication Technology for Intelligent Systems (pp. 587-601). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-97-6678-9_51
  • X Platform (2025). X Platform, https://x.com/home, Erişim Tarihi: 12.07.2025
  • Yılmaz, E. S., & Erdem, A. (2022). Dijital platform üyeliklerinin devamlılığına etki eden faktörler: Netflix örneği. İktisadi İdari ve Siyasal Araştırmalar Dergisi, 7(17), 47-67. https://doi.org/10.25204/iktisad.970186
There are 34 citations in total.

Details

Primary Language English
Subjects Communication Studies, Mass Media
Journal Section Research Article
Authors

Mehmet Kayakuş 0000-0003-0394-5862

Sıla Nur Sine This is me 0009-0006-3509-8206

Project Number 1919B012427918
Publication Date November 30, 2025
Submission Date July 14, 2025
Acceptance Date November 7, 2025
Published in Issue Year 2025 Issue: 42

Cite

APA Kayakuş, M., & Sine, S. N. (2025). ANALYSING USER SATISFACTION OF DIGITAL CONTENT PLATFORMS IN TURKEY WITH ARTIFICIAL INTELLIGENCE. Mehmet Akif Ersoy University Journal of Social Sciences Institute(42), 105-121. https://doi.org/10.20875/makusobed.1740855