Research Article
BibTex RIS Cite
Year 2022, Volume: 11 Issue: 2, 194 - 201, 24.06.2022
https://doi.org/10.33714/masteb.1100624

Abstract

Project Number

FBA-2018-11155

References

  • Abd El Baky, H. H., El-Baroty, G. S., Bouaid, A., Martinez, M., & Aracil, J. (2012). Enhancement of lipid accumulation in Scenedesmus obliquus by optimizing CO2 and Fe3+ levels for biodiesel production. Bioresource Technology, 119, 429-432. https://doi.org/10.1016/j.biortech.2012.05.104
  • Adenan, N. S., Yusoff, F. M., Medipally, S. R., & Shariff, M. (2016). Enhancement of lipid production in two marine microalgae under different levels of nitrogen and phosphorus deficiency. Journal of Environmental Biology, 37(4 Spec No), 669-676.
  • Anand, J., & Arumugam, M. (2015). Enhanced lipid accumulation and biomass yield of Scenedesmus quadricauda under nitrogen starved condition. Bioresource Technology, 188, 190-194. https://doi.org/10.1016/j.biortech.2014.12.097
  • Bligh, E. G., & Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37(8), 911-917. https://doi.org/10.1139/o59-099
  • Damiani, M. C., Popovich, C. A., Constenla, D., & Leonardi, P. I. (2010). Lipid analysis in Haematococcus pluvialis to assess its potential use as a biodiesel feedstock. Bioresource Technology, 101(11), 3801-3807. https://doi.org/10.1016/j.biortech.2009.12.136
  • Dayananda, C., Sarada, R., Kumar, V., & Ravishankar, G. A. (2007). Isolation and characterization of hydrocarbon producing green alga Botryococcus braunii from Indian freshwater bodies. Electronic Journal of Biotechnology, 10(1), 78-91.
  • El-Sheekh, M., Abomohra, A. E. F., & Hanelt, D. (2013). Optimization of biomass and fatty acid productivity of Scenedesmus obliquus as a promising microalga for biodiesel production. World Journal of Microbiology and Biotechnology, 29(5), 915-922. https://doi.org/10.1007/s11274-012-1248-2
  • Gouveia, L., & Oliveira, A. C. (2009). Microalgae as a raw material for biofuels production. Journal of Industrial Microbiology and Biotechnology, 36(2), 269-274. https://doi.org/10.1007/s10295-008-0495-6
  • Ho, S. H., Chen, C. Y., & Chang, J. S. (2012). Effect of light intensity and nitrogen starvation on CO2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N. Bioresource Technology, 113, 244-252. https://doi.org/10.1016/j.biortech.2011.11.133
  • Illman, A. M., Scragg, A. H., & Shales, S. W. (2000). Increase in Chlorella strains calorific values when grown in low nitrogen medium. Enzyme and Microbial Technology, 27(8), 631-635. https://doi.org/10.1016/S0141-0229(00)00266-0
  • Kaewkannetra, P., Enmak, P., & Chiu, T. (2012). The effect of CO2 and salinity on the cultivation of Scenedesmus obliquus for biodiesel production. Biotechnology and Bioprocess Engineering, 17(3), 591-597. https://doi.org/10.1007/s12257-011-0533-5
  • Kamalanathan, M., Pierangelini, M., Shearman, L. A., Gleadow, R., & Beardall, J. (2016). Impacts of nitrogen and phosphorus starvation on the physiology of Chlamydomonas reinhardtii. Journal of Applied Phycology, 28(3), 1509-1520. https://doi.org/10.1007/s10811-015-0726-y
  • Li, Y., Fei, X., & Deng, X. (2012). Novel molecular insights into nitrogen starvation-induced triacylglycerols accumulation revealed by differential gene expression analysis in green algae Micractinium pusillum. Biomass and Bioenergy, 42, 199-211. https://doi.org/10.1016/j.biombioe.2012.03.010
  • Liu, Z. Y., Wang, G. C., & Zhou, B. C. (2008). Effect of iron on growth and lipid accumulation in Chlorella vulgaris. Bioresource Technology, 99(11), 4717-4722. https://doi.org/10.1016/j.biortech.2007.09.073
  • Mandal, S., & Mallick, N. (2009). Microalga Scenedesmus obliquus as a potential source for biodiesel production. Applied Microbiology and Biotechnology, 84(2), 281-291. https://doi.org/10.1007/s00253-009-1935-6
  • McGinnis, K. M., Dempster, T. A., & Sommerfeld, M. R. (1997). Characterization of the growth and lipid content of the diatom Chaetoceros muelleri. Journal of Applied Phycology, 9(1), 19-24. https://doi.org/10.1023/A:1007972214462
  • Mutlu, Y. B., Işık, O., Uslu, L., Koç, K., & Durmaz, Y. (2011). The effects of nitrogen and phosphorus deficiencies and nitrite addition on the lipid content of Chlorella vulgaris (Chlorophyceae). African Journal of Biotechnology, 10(3), 453-456.
  • Pancha, I., Chokshi, K., George, B., Ghosh, T., Paliwal, C., Maurya, R., & Mishra, S. (2014). Nitrogen stress triggered biochemical and morphological changes in the microalgae Scenedesmus sp. CCNM 1077. Bioresource Technology, 156, 146-154. https://doi.org/10.1016/j.biortech.2014.01.025
  • Sartory, D. P., & Grobbelaar, J. U. (1984). Extraction of chlorophyll a from freshwater phytoplankton for spectrophotometric analysis. Hydrobiologia, 114(3), 177-187. https://doi.org/10.1007/BF00031869
  • Sheehan, J., Dunahay, T., Benemann, J., & Roessler, P. (1998). Look back at the US department of energy's aquatic species program: biodiesel from algae; close-out report (No. NREL/TP-580-24190). National Renewable Energy Lab., Golden, CO.(US). https://doi.org/10.2172/15003040
  • Shifrin, N. S., & Chisholm, S. W. (1981). Phytoplankton lipids: interspecific differences and effects of nitrate, silicate and light-dark cycles. Journal of Phycology, 17(4), 374-384. https://doi.org/10.1111/j.1529-8817.1981.tb00865.x
  • Simionato, D., Block, M. A., La Rocca, N., Jouhet, J., Maréchal, E., Finazzi, G., & Morosinotto, T. (2013). The response of Nannochloropsis gaditana to nitrogen starvation includes de novo biosynthesis of triacylglycerols, a decrease of chloroplast galactolipids, and reorganization of the photosynthetic apparatus. Eukaryotic Cell, 12(5), 665-676. https://doi.org/10.1128/EC.00363-12
  • Sugimoto, K., Midorikawa, T., Tsuzuki, M., & Sato, N. (2008). Upregulation of PG synthesis on sulfur-starvation for PS I in Chlamydomonas. Biochemical and Biophysical Research Communications, 369(2), 660-665. https://doi.org/10.1016/j.bbrc.2008.02.058
  • Sukenik, A. (1991). Ecophysiological considerations in the optimization of eicosapentaenoic acid production by Nannochloropsis sp. (Eustigmatophyceae). Bioresource Technology, 35(3), 263-269. https://doi.org/10.1016/0960-8524(91)90123-2
  • Sukenik, A., Carmeli, Y., & Berner, T. (1989). Regulation of fatty acid composition by irradiance level in the eustigmatophyte Nannochloropsis sp. Journal of Phycology, 25(4), 686-692. https://doi.org/10.1111/j.0022-3646.1989.00686.x
  • Uslu, L., Işık, O., Koç, K., & Göksan, T. (2011). The effects of nitrogen deficiencies on the lipid and protein contents of Spirulina platensis. African Journal of Biotechnology, 10(3), 386-389.
  • Uslu, L., Işık, O. & Cimen, B. A. (2020). The effect of nitrogen deficiency on the growth and lipid content of Isochrysis affinis galbana in two photobioreactor systems (PBR): Tubular and flat panel. Journal of Agricultural Sciences, 26(3), 282-289. https://doi.org/10.15832/ankutbd.526989
  • Williams, S. (1984). Official methods of analysis (No. 630.24 A8 1984). Association of Official Analytical Chemists.
  • Yue, L., & Chen, W. (2005). Isolation and determination of cultural characteristics of a new highly CO2 tolerant fresh water microalgae. Energy Conversion and Management, 46(11-12), 1868-1876. https://doi.org/10.1016/j.enconman.2004.10.010
  • Zar, J. H. (1999). Biostatistical Analysis. 4th ed. Prentice Hall.

Effects of Nitrogen and Phosphorus Concentrations on the Growth and Lipid Accumulation of Microalgae Scenedesmus obliquus

Year 2022, Volume: 11 Issue: 2, 194 - 201, 24.06.2022
https://doi.org/10.33714/masteb.1100624

Abstract

In the study, Scenedesmus obliquus green algae was cultivated under laboratory conditions at 21±2°C, 16:8 (light:dark) photoperiod and continuous aeration in different nitrogen and phosphorus ratio nutrient medium and its growth was determined. Dry weight, cell density (optical density) and chlorophyll a and b were used to determine the growth of the algae. The best growth was determined in the group consisting of 30 ml NaNO3+10 ml PO4. The amount of biomass obtained was determined as 1.549 gL-1 in this group. The lowest values were the group containing 5 ml NaNO3+5 ml PO4. With the decrease in the amount of nitrogen in the medium, an increase in the amount of carotene and a decrease in the amount of chl a and b were detected. The highest lipid values were determined as 36.7% in the group containing 5 ml NaNO3+5 ml PO4 and 36.2% in the group containing 5 ml NaNO3+10 ml PO4.

Supporting Institution

Çukurova University Scientific Research Projects Unit

Project Number

FBA-2018-11155

Thanks

We gratefully acknowledge the research funding provided for this project (Project No: FBA-2018-11155) by the Scientific Research Projects Unit at Cukurova University for their financial support.

References

  • Abd El Baky, H. H., El-Baroty, G. S., Bouaid, A., Martinez, M., & Aracil, J. (2012). Enhancement of lipid accumulation in Scenedesmus obliquus by optimizing CO2 and Fe3+ levels for biodiesel production. Bioresource Technology, 119, 429-432. https://doi.org/10.1016/j.biortech.2012.05.104
  • Adenan, N. S., Yusoff, F. M., Medipally, S. R., & Shariff, M. (2016). Enhancement of lipid production in two marine microalgae under different levels of nitrogen and phosphorus deficiency. Journal of Environmental Biology, 37(4 Spec No), 669-676.
  • Anand, J., & Arumugam, M. (2015). Enhanced lipid accumulation and biomass yield of Scenedesmus quadricauda under nitrogen starved condition. Bioresource Technology, 188, 190-194. https://doi.org/10.1016/j.biortech.2014.12.097
  • Bligh, E. G., & Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37(8), 911-917. https://doi.org/10.1139/o59-099
  • Damiani, M. C., Popovich, C. A., Constenla, D., & Leonardi, P. I. (2010). Lipid analysis in Haematococcus pluvialis to assess its potential use as a biodiesel feedstock. Bioresource Technology, 101(11), 3801-3807. https://doi.org/10.1016/j.biortech.2009.12.136
  • Dayananda, C., Sarada, R., Kumar, V., & Ravishankar, G. A. (2007). Isolation and characterization of hydrocarbon producing green alga Botryococcus braunii from Indian freshwater bodies. Electronic Journal of Biotechnology, 10(1), 78-91.
  • El-Sheekh, M., Abomohra, A. E. F., & Hanelt, D. (2013). Optimization of biomass and fatty acid productivity of Scenedesmus obliquus as a promising microalga for biodiesel production. World Journal of Microbiology and Biotechnology, 29(5), 915-922. https://doi.org/10.1007/s11274-012-1248-2
  • Gouveia, L., & Oliveira, A. C. (2009). Microalgae as a raw material for biofuels production. Journal of Industrial Microbiology and Biotechnology, 36(2), 269-274. https://doi.org/10.1007/s10295-008-0495-6
  • Ho, S. H., Chen, C. Y., & Chang, J. S. (2012). Effect of light intensity and nitrogen starvation on CO2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N. Bioresource Technology, 113, 244-252. https://doi.org/10.1016/j.biortech.2011.11.133
  • Illman, A. M., Scragg, A. H., & Shales, S. W. (2000). Increase in Chlorella strains calorific values when grown in low nitrogen medium. Enzyme and Microbial Technology, 27(8), 631-635. https://doi.org/10.1016/S0141-0229(00)00266-0
  • Kaewkannetra, P., Enmak, P., & Chiu, T. (2012). The effect of CO2 and salinity on the cultivation of Scenedesmus obliquus for biodiesel production. Biotechnology and Bioprocess Engineering, 17(3), 591-597. https://doi.org/10.1007/s12257-011-0533-5
  • Kamalanathan, M., Pierangelini, M., Shearman, L. A., Gleadow, R., & Beardall, J. (2016). Impacts of nitrogen and phosphorus starvation on the physiology of Chlamydomonas reinhardtii. Journal of Applied Phycology, 28(3), 1509-1520. https://doi.org/10.1007/s10811-015-0726-y
  • Li, Y., Fei, X., & Deng, X. (2012). Novel molecular insights into nitrogen starvation-induced triacylglycerols accumulation revealed by differential gene expression analysis in green algae Micractinium pusillum. Biomass and Bioenergy, 42, 199-211. https://doi.org/10.1016/j.biombioe.2012.03.010
  • Liu, Z. Y., Wang, G. C., & Zhou, B. C. (2008). Effect of iron on growth and lipid accumulation in Chlorella vulgaris. Bioresource Technology, 99(11), 4717-4722. https://doi.org/10.1016/j.biortech.2007.09.073
  • Mandal, S., & Mallick, N. (2009). Microalga Scenedesmus obliquus as a potential source for biodiesel production. Applied Microbiology and Biotechnology, 84(2), 281-291. https://doi.org/10.1007/s00253-009-1935-6
  • McGinnis, K. M., Dempster, T. A., & Sommerfeld, M. R. (1997). Characterization of the growth and lipid content of the diatom Chaetoceros muelleri. Journal of Applied Phycology, 9(1), 19-24. https://doi.org/10.1023/A:1007972214462
  • Mutlu, Y. B., Işık, O., Uslu, L., Koç, K., & Durmaz, Y. (2011). The effects of nitrogen and phosphorus deficiencies and nitrite addition on the lipid content of Chlorella vulgaris (Chlorophyceae). African Journal of Biotechnology, 10(3), 453-456.
  • Pancha, I., Chokshi, K., George, B., Ghosh, T., Paliwal, C., Maurya, R., & Mishra, S. (2014). Nitrogen stress triggered biochemical and morphological changes in the microalgae Scenedesmus sp. CCNM 1077. Bioresource Technology, 156, 146-154. https://doi.org/10.1016/j.biortech.2014.01.025
  • Sartory, D. P., & Grobbelaar, J. U. (1984). Extraction of chlorophyll a from freshwater phytoplankton for spectrophotometric analysis. Hydrobiologia, 114(3), 177-187. https://doi.org/10.1007/BF00031869
  • Sheehan, J., Dunahay, T., Benemann, J., & Roessler, P. (1998). Look back at the US department of energy's aquatic species program: biodiesel from algae; close-out report (No. NREL/TP-580-24190). National Renewable Energy Lab., Golden, CO.(US). https://doi.org/10.2172/15003040
  • Shifrin, N. S., & Chisholm, S. W. (1981). Phytoplankton lipids: interspecific differences and effects of nitrate, silicate and light-dark cycles. Journal of Phycology, 17(4), 374-384. https://doi.org/10.1111/j.1529-8817.1981.tb00865.x
  • Simionato, D., Block, M. A., La Rocca, N., Jouhet, J., Maréchal, E., Finazzi, G., & Morosinotto, T. (2013). The response of Nannochloropsis gaditana to nitrogen starvation includes de novo biosynthesis of triacylglycerols, a decrease of chloroplast galactolipids, and reorganization of the photosynthetic apparatus. Eukaryotic Cell, 12(5), 665-676. https://doi.org/10.1128/EC.00363-12
  • Sugimoto, K., Midorikawa, T., Tsuzuki, M., & Sato, N. (2008). Upregulation of PG synthesis on sulfur-starvation for PS I in Chlamydomonas. Biochemical and Biophysical Research Communications, 369(2), 660-665. https://doi.org/10.1016/j.bbrc.2008.02.058
  • Sukenik, A. (1991). Ecophysiological considerations in the optimization of eicosapentaenoic acid production by Nannochloropsis sp. (Eustigmatophyceae). Bioresource Technology, 35(3), 263-269. https://doi.org/10.1016/0960-8524(91)90123-2
  • Sukenik, A., Carmeli, Y., & Berner, T. (1989). Regulation of fatty acid composition by irradiance level in the eustigmatophyte Nannochloropsis sp. Journal of Phycology, 25(4), 686-692. https://doi.org/10.1111/j.0022-3646.1989.00686.x
  • Uslu, L., Işık, O., Koç, K., & Göksan, T. (2011). The effects of nitrogen deficiencies on the lipid and protein contents of Spirulina platensis. African Journal of Biotechnology, 10(3), 386-389.
  • Uslu, L., Işık, O. & Cimen, B. A. (2020). The effect of nitrogen deficiency on the growth and lipid content of Isochrysis affinis galbana in two photobioreactor systems (PBR): Tubular and flat panel. Journal of Agricultural Sciences, 26(3), 282-289. https://doi.org/10.15832/ankutbd.526989
  • Williams, S. (1984). Official methods of analysis (No. 630.24 A8 1984). Association of Official Analytical Chemists.
  • Yue, L., & Chen, W. (2005). Isolation and determination of cultural characteristics of a new highly CO2 tolerant fresh water microalgae. Energy Conversion and Management, 46(11-12), 1868-1876. https://doi.org/10.1016/j.enconman.2004.10.010
  • Zar, J. H. (1999). Biostatistical Analysis. 4th ed. Prentice Hall.
There are 30 citations in total.

Details

Primary Language English
Subjects Hydrobiology
Journal Section Research Article
Authors

Leyla Uslu 0000-0002-9090-3240

Oya Işık 0000-0001-7147-4252

Yasemin Barış 0000-0003-0770-138X

Selin Sayın 0000-0002-7497-388X

Project Number FBA-2018-11155
Publication Date June 24, 2022
Submission Date April 8, 2022
Acceptance Date May 19, 2022
Published in Issue Year 2022 Volume: 11 Issue: 2

Cite

APA Uslu, L., Işık, O., Barış, Y., Sayın, S. (2022). Effects of Nitrogen and Phosphorus Concentrations on the Growth and Lipid Accumulation of Microalgae Scenedesmus obliquus. Marine Science and Technology Bulletin, 11(2), 194-201. https://doi.org/10.33714/masteb.1100624
AMA Uslu L, Işık O, Barış Y, Sayın S. Effects of Nitrogen and Phosphorus Concentrations on the Growth and Lipid Accumulation of Microalgae Scenedesmus obliquus. Mar. Sci. Tech. Bull. June 2022;11(2):194-201. doi:10.33714/masteb.1100624
Chicago Uslu, Leyla, Oya Işık, Yasemin Barış, and Selin Sayın. “Effects of Nitrogen and Phosphorus Concentrations on the Growth and Lipid Accumulation of Microalgae Scenedesmus Obliquus”. Marine Science and Technology Bulletin 11, no. 2 (June 2022): 194-201. https://doi.org/10.33714/masteb.1100624.
EndNote Uslu L, Işık O, Barış Y, Sayın S (June 1, 2022) Effects of Nitrogen and Phosphorus Concentrations on the Growth and Lipid Accumulation of Microalgae Scenedesmus obliquus. Marine Science and Technology Bulletin 11 2 194–201.
IEEE L. Uslu, O. Işık, Y. Barış, and S. Sayın, “Effects of Nitrogen and Phosphorus Concentrations on the Growth and Lipid Accumulation of Microalgae Scenedesmus obliquus”, Mar. Sci. Tech. Bull., vol. 11, no. 2, pp. 194–201, 2022, doi: 10.33714/masteb.1100624.
ISNAD Uslu, Leyla et al. “Effects of Nitrogen and Phosphorus Concentrations on the Growth and Lipid Accumulation of Microalgae Scenedesmus Obliquus”. Marine Science and Technology Bulletin 11/2 (June 2022), 194-201. https://doi.org/10.33714/masteb.1100624.
JAMA Uslu L, Işık O, Barış Y, Sayın S. Effects of Nitrogen and Phosphorus Concentrations on the Growth and Lipid Accumulation of Microalgae Scenedesmus obliquus. Mar. Sci. Tech. Bull. 2022;11:194–201.
MLA Uslu, Leyla et al. “Effects of Nitrogen and Phosphorus Concentrations on the Growth and Lipid Accumulation of Microalgae Scenedesmus Obliquus”. Marine Science and Technology Bulletin, vol. 11, no. 2, 2022, pp. 194-01, doi:10.33714/masteb.1100624.
Vancouver Uslu L, Işık O, Barış Y, Sayın S. Effects of Nitrogen and Phosphorus Concentrations on the Growth and Lipid Accumulation of Microalgae Scenedesmus obliquus. Mar. Sci. Tech. Bull. 2022;11(2):194-201.

27116