Research Article
BibTex RIS Cite
Year 2022, Volume: 11 Issue: 3, 352 - 360, 30.09.2022
https://doi.org/10.33714/masteb.1145994

Abstract

References

  • Ammar, N. R. (2019). An environmental and economic analysis of methanol fuel for a cellular container ship. Transportation Research Part D: Transport and Environment, 69, 66–76. https://doi.org/10.1016/j.trd.2019.02.001
  • Ančić, I., Perčić, M., & Vladimir, N. (2020). Alternative power options to reduce carbon footprint of ro-ro passenger fleet: A case study of Croatia. Journal of Cleaner Production, 271, 122638. https://doi.org/10.1016/j.jclepro.2020.122638
  • Andersson, K., & Salazar, C. M. (2015). Methanol as a Marine Fuel Report. In FCBI Energy.
  • Andersson, K., Brynolf, S., Hansson, J., & Grahn, M. (2020). Criteria and decision support for a sustainable choice of alternative marine fuels. Sustainability, 12(9), 3623. https://doi.org/10.3390/su12093623
  • Arteconi, A., Brandoni, C., Evangelista, D., & Polonara, F. (2010). Life-cycle greenhouse gas analysis of LNG as a heavy vehicle fuel in Europe. Applied Energy, 87(6), 2005–2013. https://doi.org/10.1016/j.apenergy.2009.11.012
  • Brynolf, S. (2014). Environmental Assessment of Present and Future Marine Fuels. Chalmers University of Technology.
  • Brynolf, S., Fridell, E., & Andersson, K. (2014). Environmental assessment of marine fuels: Liquefied natural gas, liquefied biogas, methanol and bio-methanol. Journal of Cleaner Production, 74, 86–95. https://doi.org/10.1016/j.jclepro.2014.03.052
  • Buhaug, Ø., Corbett, J. J., Endresen, O., Eyring, V., Faber, J., Hanayama, S., Lee, D. S., Lindstad, H., Markowska, A. Z., Mjelde, A., Nelissen, D., Nilsen, J., Pålsson, C., Winebrake, J. J., Wu, W., & Yoshida, K. (2009). Second IMO GHG Study. International Maritime Organization.
  • Dimitriou, P., & Javaid, R. (2020). A review of ammonia as a compression ignition engine fuel. International Journal of Hydrogen Energy, 45(11), 7098–7118. https://doi.org/10.1016/j.ijhydene.2019.12.209
  • DNV GL. (2021). Maritime Forecast to 2050. In Energy Transition Outlook 2021.
  • EC. (2021). Decarbonisation of Shipping. European Commission.
  • Eise Fokkema, J., Buijs, P., & Vis, I. F. A. (2017). An investment appraisal method to compare LNG-fueled and conventional vessels. Transportation Research Part D: Transport and Environment, 56, 229–240. https://doi.org/10.1016/j.trd.2017.07.021
  • Elishav, O., Mosevitzky Lis, B., Miller, E. M., Arent, D. J., Valera-Medina, A., Grinberg Dana, A., Shter, G. E., & Grader, G. S. (2020). Progress and prospective of nitrogen-based alternative fuels. Chemical Reviews, 120(12), 5352–5436. https://doi.org/10.1021/acs.chemrev.9b00538
  • Ellis, J., & Tanneberger, K. (2015). Study on the Use of Ethyl and Methyl Alcohol as Alternative Fuels in Shipping. In EMSA.
  • Faber, J., Hanayama, S., Zhang, S., Pereda, P., Comer, B., Hauerhof, E., van der Loeff, W., Smith, T., Zhang, Y., Kosaka, H., Adachi, M., Bonello, J., Galbraith, C., Gong, Z., Hirata, K., Hummels, D., Kleijn, A., Lee, D., Liu, Y., … Xing, H. (2020). Fourth IMO GHG Study. In International Maritime Organization.
  • Fan, H., Tu, H., Enshaei, H., Xu, X., & Wei, Y. (2021). Comparison of the economic performances of three sulphur oxides emissions abatement solutions for a Very Large Crude Carrier (VLCC). Journal of Marine Science and Engineering, 9(2), 221. https://doi.org/10.3390/jmse9020221
  • Hansson, J., & Fridell, E. (2020). On the potential of ammonia as fuel for shipping. In Lighthouse, Swedish Maritime Competence Centre.
  • Hansson, J., Brynolf, S., Fridell, E., & Lehtveer, M. (2020). The potential role of ammonia as marine fuel-based on energy systems modeling and multi-criteria decision analysis. Sustainability, 12(8), 3625. https://doi.org/10.3390/SU12083265
  • Hansson, J., Månsson, S., Brynolf, S., & Grahn, M. (2019). Alternative marine fuels: Prospects based on multi-criteria decision analysis involving Swedish stakeholders. Biomass and Bioenergy, 126, 159–173. https://doi.org/10.1016/j.biombioe.2019.05.008
  • Hsieh, C.-W. C., & Felby, C. (2017). Biofuels for the marine shipping sector-an overview and analysis of sector infrastructure, fuel technologies and regulations. Retrieved on July 20, 2022, from https://www.ieabioenergy.com/wp-content/uploads/2018/02/Marine-biofuel-report-final-Oct-2017.pdf
  • IEA. (2019). The future of hydrogen. In International Energy Agency. https://doi.org/10.1787/1e0514c4-en
  • IEA. (2020). Key world energy statistics. In International Energy Agency. https://www.iea.org/reports/key-world-energy-statistics-2020
  • IMO. (2018). Adoption of the initial IMO strategy on reduction of ghg emissions from ships and existing IMO activity related to reducing GHG emissions in the shipping sector. Retrieved on July 20, 2022, from https://unfccc.int/sites/default/files/resource/250_IMO submission_Talanoa Dialogue_April 2018.pdf
  • IMO. (2020a). IMO. Retrieved on July 20, 2022, from http://www.imo.org/OurWork/Environment/PollutionPrevention/AirPollution/Pages/Nitrogen-oxides-(NOx)-–-Regulation-13.aspx
  • IMO. (2020b). IMO sulphur regulation. Retrieved on July 20, 2022, from http://www.imo.org/en/OurWork/Environment/PollutionPrevention/AirPollution/Pages/Sulphur-oxides-(SOx)-–-Regulation-14.aspx
  • IMO. (n.d.-a). Ozone-depleting-substances-(ODS)-–-Regulation-12. Retrieved on August 26, 2021, from https://www.imo.org/en/OurWork/Environment/Pages/Ozone-depleting-substances-(ODS)-–-Regulation-12.aspx
  • IMO. (n.d.-b). Sustainable development goals. Retrieved on August 26, 2021, from https://www.imo.org/en/MediaCentre/HotTopics/Pages/SustainableDevelopmentGoals.aspx
  • IMO. (n.d.-c). Volatile-organic-compounds-(VOC)-–-Regulation-15. Retrieved on August 26, 2021, from https://www.imo.org/en/OurWork/Environment/Pages/Volatile-organic-compounds-(VOC)-–-Regulation-15.aspx
  • Kim, K., Roh, G., Kim, W., & Chun, K. (2020). A preliminary study on an alternative ship propulsion system fueled by ammonia: Environmental and economic assessments. Journal of Marine Science and Engineering, 8(3), 183. https://doi.org/10.3390/jmse8030183
  • Kollamthodi, S., Brannigan, C., Harfoot, M., Skinner, I., Whall, C., Lavric, L., Noden, R., Lee, D., Buhaug, Ø., Martinussen, K., Skejic, R., Valberg, I., Brembo, J. C., Eyring, V., & Faber, J. (2008). Greenhouse gas emissions from shipping: Trends, projections and abatement potential: Final report to the Committee on Climate Change (CCC). In AEA Technology (Issue 4).
  • Konnov, A. A. (2019). Yet another kinetic mechanism for hydrogen combustion. Combustion and Flame, 203, 14–22. https://doi.org/10.1016/j.combustflame.2019.01.032
  • Lee, H. J., Yoo, S. H., & Huh, S. Y. (2020). Economic benefits of introducing LNG-fuelled ships for imported flour in South Korea. Transportation Research Part D: Transport and Environment, 78, 102220. https://doi.org/10.1016/j.trd.2019.102220
  • Lehtoranta, K., Koponen, P., Vesala, H., Kallinen, K., & Maunula, T. (2021). Performance and regeneration of methane oxidation catalyst for LNG ships. Journal of Marine Science and Engineering, 9(2), 111. https://doi.org/10.3390/jmse9020111
  • Mandić, N., Ukić Boljat, H., Kekez, T., & Luttenberger, L. R. (2021). Multicriteria analysis of alternative marine fuels in sustainable coastal marine traffic. Applied Sciences (Switzerland), 11(6), 2600. https://doi.org/10.3390/app11062600
  • Manouchehrinia, B., Dong, Z., & Gulliver, T. A. (2020). Well-to-Propeller environmental assessment of natural gas as a marine transportation fuel in British Columbia, Canada. Energy Reports, 6, 802–812. https://doi.org/10.1016/j.egyr.2020.03.016
  • Nemanič, V. (2019). Hydrogen permeation barriers: Basic requirements, materials selection, deposition methods, and quality evaluation. Nuclear Materials and Energy, 19, 451–457. https://doi.org/10.1016/j.nme.2019.04.001
  • Pan, H., Pournazeri, S., Princevac, M., Miller, J. W., Mahalingam, S., Khan, M. Y., Jayaram, V., & Welch, W. A. (2014). Effect of hydrogen addition on criteria and greenhouse gas emissions for a marine diesel engine. International Journal of Hydrogen Energy, 39(21), 11336–11345. https://doi.org/10.1016/j.ijhydene.2014.05.010
  • Plana, C., Armenise, S., Monzón, A., & García-Bordejé, E. (2010). Ni on alumina-coated cordierite monoliths for in situ generation of CO-free H2 from ammonia. Journal of Catalysis, 275(2), 228–235. https://doi.org/10.1016/j.jcat.2010.07.026
  • Ryste, J. A. (2019). Comparison of alternative marine fuels. Retrieved on July 20, 2022, from https://sea-lng.org/wp-content/uploads/2019/09/19-09-16_Alternative-Marine-Fuels-Study_final_report.pdf
  • Schinas, O., & Butler, M. (2016). Feasibility and commercial considerations of LNG-fueled ships. Ocean Engineering, 122, 84–96. https://doi.org/10.1016/j.oceaneng.2016.04.031
  • Shahhosseini, H. R., Iranshahi, D., Saeidi, S., Pourazadi, E., & Klemeš, J. J. (2018). Multi-objective optimisation of steam methane reforming considering stoichiometric ratio indicator for methanol production. Journal of Cleaner Production, 180, 655–665. https://doi.org/10.1016/j.jclepro.2017.12.201
  • Svanberg, M., Ellis, J., Lundgren, J., & Landälv, I. (2018). Renewable methanol as a fuel for the shipping industry. Renewable and Sustainable Energy Reviews, 94, 1217–1228. https://doi.org/10.1016/j.rser.2018.06.058
  • Taccani, R., Malabotti, S., Dall’Armi, C., & Micheli, D. (2020). High energy density storage of gaseous marine fuels: An innovative concept and its application to a hydrogen powered ferry. International Shipbuilding Progress, 67(1), 29–52. https://doi.org/10.3233/ISP-190274
  • Thomson, H., Corbett, J. J., & Winebrake, J. J. (2015). Natural gas as a marine fuel. Energy Policy, 87, 153–167. https://doi.org/10.1016/j.enpol.2015.08.027
  • Trivyza, N. L., Cheliotis, M., Boulougouris, E., & Theotokatos, G. (2020). Safety and reliability analysis of an ammonia-powered fuel-cell system. Safety, 7, 80. https://doi.org/10.3850/978-981-11-2724-30885-cd
  • Tunér, M. (2015). Combustion of alternative vehicle fuels in internal combustion engines. A report on engine performance from combustion of alternative fuels based on literature review. Report within project “A pre-study to prepare for interdisciplinary research on future alternative transportation fuels”, financed by The Swedish Energy Agency.
  • Tunér, M., Aakko-Saksa, P., & Molander, P. (2018). Engine technology, research, and development for methanol in internal combustion Engines: SUMMETH-Sustainable marine methanol, Deliverable D3.1. Retrieved on July 20, 2022, from http://summeth.marinemethanol.com/reports/SUMMETH-WP3_fnl.pdf
  • United Nations. (2020). Goals. Retrieved on July 20, 2022, from https://sdgs.un.org/goals
  • Valera-Medina, A., Baej, H., Syred, N., Chong, C. T., & Bowen, P. (2017). Coherent structure impacts on blowoff using various syngases. Energy Procedia, 105, 1356–1362. https://doi.org/10.1016/j.egypro.2017.03.500
  • Verhelst, S., Turner, J. W., Sileghem, L., & Vancoillie, J. (2019). Methanol as a fuel for internal combustion engines. Progress in Energy and Combustion Science, 70, 43–88. https://doi.org/10.1016/j.pecs.2018.10.001
  • Zhao, J., Wei, Q., Wang, S., & Ren, X. (2021). Progress of ship exhaust gas control technology. Science of The Total Environment, 799, 149437. https://doi.org/10.1016/j.scitotenv.2021.149437

A Discussion on Alternative Fuel Criteria for Maritime Transport

Year 2022, Volume: 11 Issue: 3, 352 - 360, 30.09.2022
https://doi.org/10.33714/masteb.1145994

Abstract

Alternative marine fuels are considered an important solution for reducing ship emissions from fossil fuels. These fuels have similar energy content with fossil fuels, but they create much less environmental burden during their use due to the elements they contain (or not), the ratio of elements to each other and different combustion characteristics. On the other hand, for these fuels to replace fossil fuels, they must meet a number of important criteria and conditions. These are divided under four main titles: Economic, technical, environmental, social and other. In addition, examining the environmental impacts of alternative fuels from a life-cycle perspective is also important for determining the holistic and cumulative impacts. In this study, the criteria determined for alternative marine fuels were evaluated from the life cycle perspective and it was investigated which criterion is the most important in terms of life cycle. Thus, it is aimed to summarize the assessments of the criteria for acceptance of the alternative fuels.

References

  • Ammar, N. R. (2019). An environmental and economic analysis of methanol fuel for a cellular container ship. Transportation Research Part D: Transport and Environment, 69, 66–76. https://doi.org/10.1016/j.trd.2019.02.001
  • Ančić, I., Perčić, M., & Vladimir, N. (2020). Alternative power options to reduce carbon footprint of ro-ro passenger fleet: A case study of Croatia. Journal of Cleaner Production, 271, 122638. https://doi.org/10.1016/j.jclepro.2020.122638
  • Andersson, K., & Salazar, C. M. (2015). Methanol as a Marine Fuel Report. In FCBI Energy.
  • Andersson, K., Brynolf, S., Hansson, J., & Grahn, M. (2020). Criteria and decision support for a sustainable choice of alternative marine fuels. Sustainability, 12(9), 3623. https://doi.org/10.3390/su12093623
  • Arteconi, A., Brandoni, C., Evangelista, D., & Polonara, F. (2010). Life-cycle greenhouse gas analysis of LNG as a heavy vehicle fuel in Europe. Applied Energy, 87(6), 2005–2013. https://doi.org/10.1016/j.apenergy.2009.11.012
  • Brynolf, S. (2014). Environmental Assessment of Present and Future Marine Fuels. Chalmers University of Technology.
  • Brynolf, S., Fridell, E., & Andersson, K. (2014). Environmental assessment of marine fuels: Liquefied natural gas, liquefied biogas, methanol and bio-methanol. Journal of Cleaner Production, 74, 86–95. https://doi.org/10.1016/j.jclepro.2014.03.052
  • Buhaug, Ø., Corbett, J. J., Endresen, O., Eyring, V., Faber, J., Hanayama, S., Lee, D. S., Lindstad, H., Markowska, A. Z., Mjelde, A., Nelissen, D., Nilsen, J., Pålsson, C., Winebrake, J. J., Wu, W., & Yoshida, K. (2009). Second IMO GHG Study. International Maritime Organization.
  • Dimitriou, P., & Javaid, R. (2020). A review of ammonia as a compression ignition engine fuel. International Journal of Hydrogen Energy, 45(11), 7098–7118. https://doi.org/10.1016/j.ijhydene.2019.12.209
  • DNV GL. (2021). Maritime Forecast to 2050. In Energy Transition Outlook 2021.
  • EC. (2021). Decarbonisation of Shipping. European Commission.
  • Eise Fokkema, J., Buijs, P., & Vis, I. F. A. (2017). An investment appraisal method to compare LNG-fueled and conventional vessels. Transportation Research Part D: Transport and Environment, 56, 229–240. https://doi.org/10.1016/j.trd.2017.07.021
  • Elishav, O., Mosevitzky Lis, B., Miller, E. M., Arent, D. J., Valera-Medina, A., Grinberg Dana, A., Shter, G. E., & Grader, G. S. (2020). Progress and prospective of nitrogen-based alternative fuels. Chemical Reviews, 120(12), 5352–5436. https://doi.org/10.1021/acs.chemrev.9b00538
  • Ellis, J., & Tanneberger, K. (2015). Study on the Use of Ethyl and Methyl Alcohol as Alternative Fuels in Shipping. In EMSA.
  • Faber, J., Hanayama, S., Zhang, S., Pereda, P., Comer, B., Hauerhof, E., van der Loeff, W., Smith, T., Zhang, Y., Kosaka, H., Adachi, M., Bonello, J., Galbraith, C., Gong, Z., Hirata, K., Hummels, D., Kleijn, A., Lee, D., Liu, Y., … Xing, H. (2020). Fourth IMO GHG Study. In International Maritime Organization.
  • Fan, H., Tu, H., Enshaei, H., Xu, X., & Wei, Y. (2021). Comparison of the economic performances of three sulphur oxides emissions abatement solutions for a Very Large Crude Carrier (VLCC). Journal of Marine Science and Engineering, 9(2), 221. https://doi.org/10.3390/jmse9020221
  • Hansson, J., & Fridell, E. (2020). On the potential of ammonia as fuel for shipping. In Lighthouse, Swedish Maritime Competence Centre.
  • Hansson, J., Brynolf, S., Fridell, E., & Lehtveer, M. (2020). The potential role of ammonia as marine fuel-based on energy systems modeling and multi-criteria decision analysis. Sustainability, 12(8), 3625. https://doi.org/10.3390/SU12083265
  • Hansson, J., Månsson, S., Brynolf, S., & Grahn, M. (2019). Alternative marine fuels: Prospects based on multi-criteria decision analysis involving Swedish stakeholders. Biomass and Bioenergy, 126, 159–173. https://doi.org/10.1016/j.biombioe.2019.05.008
  • Hsieh, C.-W. C., & Felby, C. (2017). Biofuels for the marine shipping sector-an overview and analysis of sector infrastructure, fuel technologies and regulations. Retrieved on July 20, 2022, from https://www.ieabioenergy.com/wp-content/uploads/2018/02/Marine-biofuel-report-final-Oct-2017.pdf
  • IEA. (2019). The future of hydrogen. In International Energy Agency. https://doi.org/10.1787/1e0514c4-en
  • IEA. (2020). Key world energy statistics. In International Energy Agency. https://www.iea.org/reports/key-world-energy-statistics-2020
  • IMO. (2018). Adoption of the initial IMO strategy on reduction of ghg emissions from ships and existing IMO activity related to reducing GHG emissions in the shipping sector. Retrieved on July 20, 2022, from https://unfccc.int/sites/default/files/resource/250_IMO submission_Talanoa Dialogue_April 2018.pdf
  • IMO. (2020a). IMO. Retrieved on July 20, 2022, from http://www.imo.org/OurWork/Environment/PollutionPrevention/AirPollution/Pages/Nitrogen-oxides-(NOx)-–-Regulation-13.aspx
  • IMO. (2020b). IMO sulphur regulation. Retrieved on July 20, 2022, from http://www.imo.org/en/OurWork/Environment/PollutionPrevention/AirPollution/Pages/Sulphur-oxides-(SOx)-–-Regulation-14.aspx
  • IMO. (n.d.-a). Ozone-depleting-substances-(ODS)-–-Regulation-12. Retrieved on August 26, 2021, from https://www.imo.org/en/OurWork/Environment/Pages/Ozone-depleting-substances-(ODS)-–-Regulation-12.aspx
  • IMO. (n.d.-b). Sustainable development goals. Retrieved on August 26, 2021, from https://www.imo.org/en/MediaCentre/HotTopics/Pages/SustainableDevelopmentGoals.aspx
  • IMO. (n.d.-c). Volatile-organic-compounds-(VOC)-–-Regulation-15. Retrieved on August 26, 2021, from https://www.imo.org/en/OurWork/Environment/Pages/Volatile-organic-compounds-(VOC)-–-Regulation-15.aspx
  • Kim, K., Roh, G., Kim, W., & Chun, K. (2020). A preliminary study on an alternative ship propulsion system fueled by ammonia: Environmental and economic assessments. Journal of Marine Science and Engineering, 8(3), 183. https://doi.org/10.3390/jmse8030183
  • Kollamthodi, S., Brannigan, C., Harfoot, M., Skinner, I., Whall, C., Lavric, L., Noden, R., Lee, D., Buhaug, Ø., Martinussen, K., Skejic, R., Valberg, I., Brembo, J. C., Eyring, V., & Faber, J. (2008). Greenhouse gas emissions from shipping: Trends, projections and abatement potential: Final report to the Committee on Climate Change (CCC). In AEA Technology (Issue 4).
  • Konnov, A. A. (2019). Yet another kinetic mechanism for hydrogen combustion. Combustion and Flame, 203, 14–22. https://doi.org/10.1016/j.combustflame.2019.01.032
  • Lee, H. J., Yoo, S. H., & Huh, S. Y. (2020). Economic benefits of introducing LNG-fuelled ships for imported flour in South Korea. Transportation Research Part D: Transport and Environment, 78, 102220. https://doi.org/10.1016/j.trd.2019.102220
  • Lehtoranta, K., Koponen, P., Vesala, H., Kallinen, K., & Maunula, T. (2021). Performance and regeneration of methane oxidation catalyst for LNG ships. Journal of Marine Science and Engineering, 9(2), 111. https://doi.org/10.3390/jmse9020111
  • Mandić, N., Ukić Boljat, H., Kekez, T., & Luttenberger, L. R. (2021). Multicriteria analysis of alternative marine fuels in sustainable coastal marine traffic. Applied Sciences (Switzerland), 11(6), 2600. https://doi.org/10.3390/app11062600
  • Manouchehrinia, B., Dong, Z., & Gulliver, T. A. (2020). Well-to-Propeller environmental assessment of natural gas as a marine transportation fuel in British Columbia, Canada. Energy Reports, 6, 802–812. https://doi.org/10.1016/j.egyr.2020.03.016
  • Nemanič, V. (2019). Hydrogen permeation barriers: Basic requirements, materials selection, deposition methods, and quality evaluation. Nuclear Materials and Energy, 19, 451–457. https://doi.org/10.1016/j.nme.2019.04.001
  • Pan, H., Pournazeri, S., Princevac, M., Miller, J. W., Mahalingam, S., Khan, M. Y., Jayaram, V., & Welch, W. A. (2014). Effect of hydrogen addition on criteria and greenhouse gas emissions for a marine diesel engine. International Journal of Hydrogen Energy, 39(21), 11336–11345. https://doi.org/10.1016/j.ijhydene.2014.05.010
  • Plana, C., Armenise, S., Monzón, A., & García-Bordejé, E. (2010). Ni on alumina-coated cordierite monoliths for in situ generation of CO-free H2 from ammonia. Journal of Catalysis, 275(2), 228–235. https://doi.org/10.1016/j.jcat.2010.07.026
  • Ryste, J. A. (2019). Comparison of alternative marine fuels. Retrieved on July 20, 2022, from https://sea-lng.org/wp-content/uploads/2019/09/19-09-16_Alternative-Marine-Fuels-Study_final_report.pdf
  • Schinas, O., & Butler, M. (2016). Feasibility and commercial considerations of LNG-fueled ships. Ocean Engineering, 122, 84–96. https://doi.org/10.1016/j.oceaneng.2016.04.031
  • Shahhosseini, H. R., Iranshahi, D., Saeidi, S., Pourazadi, E., & Klemeš, J. J. (2018). Multi-objective optimisation of steam methane reforming considering stoichiometric ratio indicator for methanol production. Journal of Cleaner Production, 180, 655–665. https://doi.org/10.1016/j.jclepro.2017.12.201
  • Svanberg, M., Ellis, J., Lundgren, J., & Landälv, I. (2018). Renewable methanol as a fuel for the shipping industry. Renewable and Sustainable Energy Reviews, 94, 1217–1228. https://doi.org/10.1016/j.rser.2018.06.058
  • Taccani, R., Malabotti, S., Dall’Armi, C., & Micheli, D. (2020). High energy density storage of gaseous marine fuels: An innovative concept and its application to a hydrogen powered ferry. International Shipbuilding Progress, 67(1), 29–52. https://doi.org/10.3233/ISP-190274
  • Thomson, H., Corbett, J. J., & Winebrake, J. J. (2015). Natural gas as a marine fuel. Energy Policy, 87, 153–167. https://doi.org/10.1016/j.enpol.2015.08.027
  • Trivyza, N. L., Cheliotis, M., Boulougouris, E., & Theotokatos, G. (2020). Safety and reliability analysis of an ammonia-powered fuel-cell system. Safety, 7, 80. https://doi.org/10.3850/978-981-11-2724-30885-cd
  • Tunér, M. (2015). Combustion of alternative vehicle fuels in internal combustion engines. A report on engine performance from combustion of alternative fuels based on literature review. Report within project “A pre-study to prepare for interdisciplinary research on future alternative transportation fuels”, financed by The Swedish Energy Agency.
  • Tunér, M., Aakko-Saksa, P., & Molander, P. (2018). Engine technology, research, and development for methanol in internal combustion Engines: SUMMETH-Sustainable marine methanol, Deliverable D3.1. Retrieved on July 20, 2022, from http://summeth.marinemethanol.com/reports/SUMMETH-WP3_fnl.pdf
  • United Nations. (2020). Goals. Retrieved on July 20, 2022, from https://sdgs.un.org/goals
  • Valera-Medina, A., Baej, H., Syred, N., Chong, C. T., & Bowen, P. (2017). Coherent structure impacts on blowoff using various syngases. Energy Procedia, 105, 1356–1362. https://doi.org/10.1016/j.egypro.2017.03.500
  • Verhelst, S., Turner, J. W., Sileghem, L., & Vancoillie, J. (2019). Methanol as a fuel for internal combustion engines. Progress in Energy and Combustion Science, 70, 43–88. https://doi.org/10.1016/j.pecs.2018.10.001
  • Zhao, J., Wei, Q., Wang, S., & Ren, X. (2021). Progress of ship exhaust gas control technology. Science of The Total Environment, 799, 149437. https://doi.org/10.1016/j.scitotenv.2021.149437
There are 51 citations in total.

Details

Primary Language English
Subjects Maritime Engineering (Other)
Journal Section Research Article
Authors

Levent Bilgili 0000-0001-9431-5289

Publication Date September 30, 2022
Submission Date July 20, 2022
Acceptance Date September 19, 2022
Published in Issue Year 2022 Volume: 11 Issue: 3

Cite

APA Bilgili, L. (2022). A Discussion on Alternative Fuel Criteria for Maritime Transport. Marine Science and Technology Bulletin, 11(3), 352-360. https://doi.org/10.33714/masteb.1145994
AMA Bilgili L. A Discussion on Alternative Fuel Criteria for Maritime Transport. Mar. Sci. Tech. Bull. September 2022;11(3):352-360. doi:10.33714/masteb.1145994
Chicago Bilgili, Levent. “A Discussion on Alternative Fuel Criteria for Maritime Transport”. Marine Science and Technology Bulletin 11, no. 3 (September 2022): 352-60. https://doi.org/10.33714/masteb.1145994.
EndNote Bilgili L (September 1, 2022) A Discussion on Alternative Fuel Criteria for Maritime Transport. Marine Science and Technology Bulletin 11 3 352–360.
IEEE L. Bilgili, “A Discussion on Alternative Fuel Criteria for Maritime Transport”, Mar. Sci. Tech. Bull., vol. 11, no. 3, pp. 352–360, 2022, doi: 10.33714/masteb.1145994.
ISNAD Bilgili, Levent. “A Discussion on Alternative Fuel Criteria for Maritime Transport”. Marine Science and Technology Bulletin 11/3 (September 2022), 352-360. https://doi.org/10.33714/masteb.1145994.
JAMA Bilgili L. A Discussion on Alternative Fuel Criteria for Maritime Transport. Mar. Sci. Tech. Bull. 2022;11:352–360.
MLA Bilgili, Levent. “A Discussion on Alternative Fuel Criteria for Maritime Transport”. Marine Science and Technology Bulletin, vol. 11, no. 3, 2022, pp. 352-60, doi:10.33714/masteb.1145994.
Vancouver Bilgili L. A Discussion on Alternative Fuel Criteria for Maritime Transport. Mar. Sci. Tech. Bull. 2022;11(3):352-60.

27116