Research Article
BibTex RIS Cite

Nanokil Katkısının PLA’nın Termal ve Mekanik Özellikleri Üzerindeki Etkilerinin İncelenmesi

Year 2025, Volume: 6 Issue: 3, 308 - 317, 30.12.2025
https://doi.org/10.52795/mateca.1808873

Abstract

Polilaktik Asit (PLA), yenilenebilir kaynaklardan elde edilmesi, biyouyumluluğu ve biyobozunurluğu sayesinde 3B uygulamalarda sıkça tercih edilen bir üründür. Bununla birlikte PLA’nın mekanik dayanımı ve termal direnci Akrilonitril Bütadiyen Stiren (ABS), Polietilen Tereftalat Glikol (PETG) gibi polimerler ile kıyaslandığında sınırlı kalmaktadır. PLA matrisine katkılanan çeşitli malzemeler yoluyla bu dezavantajların önüne geçmek mümkündür. Bu çalışmada, PLA matrisine nanokil katkısı yapılarak hem termal davranış hem de mekanik dayanım özelliklerinin iyileştirilmesi amaçlanmıştır. PLA granüller, birtakım gözlemlerin sonucunda kloroform çözücüsü kullanılarak çözdürülmüş, katkısız ve nanokil katkılı karışımlar manyetik karıştırma ve ultrasonik işlemlerle homojenleştirilmiş, daha sonra Termogravimetrik Analiz (TGA) ve çekme testleri için numuneler hazırlanmıştır. TGA analizinde saf PLA ve nanokil katkılı PLA arasındaki bozunma profilleri karşılaştırılmış; katkılı sistemin ikinci bozunma evresinde daha az kütle kaybı yaşadığı saptanmıştır. Çekme testlerinde nanokil katkılı PLA, 73.8 MPa maksimum gerilme değerine ve yaklaşık %0.0313 gerinime ulaşmıştır; bu değer, kataloğunda 50 MPa çekme mukavemeti bulunan saf PLA ile kıyaslandığında kayda değer bir artışı göstermektedir. Elde edilen bulgular, nanokil katkısının PLA’nın mekanik performansını iyileştirmek için iyi bir potansiyele sahip olduğunu gösterse de termal kararlılık açısından katkının etkisi homojen dağılım ve proses koşullarına bağlı olarak sınırlı kalmıştır. Bu çalışma, laboratuvar ölçeğinde düşük miktarda hazırlanan nanokil takviyeli PLA sistemlerinin özelliklerini ortaya koyarak, gelecekte bu tür biyokompozitlerin hazırlanışı ve optimizasyonu için yön gösterici nitelik taşımaktadır.

References

  • I. Plamadiala, C. Croitoru, M. A. Pop, I. C. Roata, Enhancing polylactic acid (PLA) Performance: a review of additives in fused deposition modelling (FDM) filaments, Polymers, 17(2) (2025) 191. https://doi.org/10.3390/polym17020191.
  • T. A. Hottle, M. M. Bilec, A. E. Landis, Sustainability assessments of bio-based polymers, Polymer degradation and stability, 98(9) (2013) 1898-1907. https://doi.org/10.1016/j.polymdegradstab.2013.06.016
  • G. Li, M. Zhao, F. Xu, B. Yang, X. Li, X. Meng, Y. Li, Synthesis and biological application of polylactic acid, Molecules, 25(21) (2020) 5023. https://doi.org/10.3390/molecules25215023
  • H. Kaczmarek, M. Nowicki, I. Vuković-Kwiatkowska, S. Nowakowska, Crosslinked blends of poly (lactic acid) and polyacrylates: AFM, DSC and XRD studies, Journal of Polymer Research, 20 (2013) 1-12. https://doi.org/10.1007/s10965-013-0091-y
  • R. A. Ilyas, S. M. Sapuan, M. M. Harussani, M. Y. A. Y Hakimi, M. Z. M. Haziq, M. S. N. Atikah, M. Asrofi, Polylactic acid (PLA) biocomposite: Processing, additive manufacturing and advanced applications, Polymers, 13(8) (2021) 1326. https://doi.org/10.3390/polym13081326
  • M. Á. Caminero, J. M. Chacón, E. García-Plaza, P. J. Núñez, J. M. Reverte, J. P. Becar, Additive manufacturing of PLA-based composites using fused filament fabrication: Effect of graphene nanoplatelet reinforcement on mechanical properties, dimensional accuracy and texture, Polymers, 11(5) (2019) 799. https://doi.org/10.3390/polym11050799
  • M. A. H. M. Yusri, M. Y. M. Zuhri, M. R. Ishak, M. A. Azman, The capabilities of honeycomb core structures made of kenaf/polylactic acid composite under compression loading. Polymers, 15(9) (2023) 2179. https://doi.org/10.3390/polym15092179
  • D. Brząkalski, B. Sztorch, M. Frydrych, D. Pakuła, K. Dydek, R. Kozera, R. E. Przekop, Limonene derivative of spherosilicate as a polylactide modifier for applications in 3D printing technology, Molecules, 25(24) (2020) 5882. https://doi.org/10.3390/molecules25245882
  • I. Buj-Corral, M. Sivatte-Adroer, An experimental investigation about the dimensional accuracy and the porosity of copper-filled pla fused filament fabrication parts, Metals, 13(9) (2023) 1608. https://doi.org/10.3390/met13091608
  • B. Sztorch, D. Brząkalski, D. Pakuła, M. Frydrych, Z. Špitalský, R. E. Przekop, Natural and synthetic polymer fillers for applications in 3D printing—FDM technology area, Solids, 3(3) (2022) 508-548. https://doi.org/10.3390/solids3030034
  • V. Fernández, A. García, A. M. Camacho, J. Claver, A. Rodríguez, A., M. A. Sebastián, Methodology to estimate the modulus of elasticity of parts manufactured by FFF/FDM combining finite element simulations and experimental tests, In IOP Conference Series: Materials Science and Engineering, 1193 (1) (2021). http://doi.org/10.1088/1757-899X/1193/1/012103
  • W. Li, L. Li, Y. Cao, T. Lan, H. Chen, Y. Qin, Effects of PLA film incorporated with ZnO nanoparticle on the quality attributes of fresh-cut apple, Nanomaterials, 7(8) (2017) 207. https://doi.org/10.3390/nano7080207
  • T. D. Hapuarachchi, T. Peijs, Multiwalled carbon nanotubes and sepiolite nanoclays as flame retardants for polylactide and its natural fibre reinforced composites, Composites Part A: Applied Science and Manufacturing, 41(8) (2010) 954-963. https://doi.org/10.1016/j.compositesa.2010.03.004
  • M. Alexandre, P. Dubois, Polymer-layered silicate nanocomposites: Preparation, properties, and uses of a new class of materials, Materials Science and Engineering: R: Reports, 28(1- 2) (2000) 1-63. https://doi.org/10.1016/S0927-796X(00)00012-7
  • S. S. Ray, M. Okamoto, Polymer/layered silicate nanocomposites: A review from preparation to processing, Progress in Polymer Science, 28(11) (2003) 1539-1641. https://doi.org/10.1016/j.progpolymsci.2003.08.002
  • S. Rajamanikam, N. R. Rajendran Royan, M. H. Ab Ghani, I. Ismail, R. Nawang, C. A. Che Abdullah, Investigation on tensile properties of polylactide-nanoclay (PLA/MMT) surface modification nanocomposites, Journal of Mechanical Engineering (JMechE), 21(3) (2024) 63-75.
  • A. R. Molina, J. Acosta-Sullcahuamán, Additive Manufacturing of Reinforced Thermoplastic Nanoclay Particle Composites by Fused Filament Fabrication, Engineering Proceedings, 83(1) (2025) 3. https://doi.org/10.3390/engproc2025083003
  • S. Alazzawi, N. H. Ali, S. K. Shihab, M. M. Hanon, Investigating the impact of process parameters on the thermomechanical properties of three-dimensional (3D) printed polymer-nanoclay composites, International Journal of Thermofluids, 27 (2025) 101168. https://doi.org/10.1016/j.ijft.2025.101168
  • M. Panahi-Sarmad, S. F. Kasbi, S. Shojaei, V. Goodarzih, M. Arjmand, Influence of polypropylene and nanoclay on thermal and thermo-oxidative degradation of poly (lactide acid): TG-FTIR, TG-DSC studies and kinetic analysis, Thermochimica Acta, 691 (2020) 178709. https://doi.org/10.1016/j.tca.2020.178709
  • W. A. N. G. Jie, X. I. N. Dehua, L. I. Hui, J. I. A. N. G. Hongshi, Z. H. O. U. Hongfu, Z. H. A. O. Jianguo, Effect of hybrid reinforcement of nanoclay and silica on properties of poly (lactic acid), China Plastics, 38(7) (2024) 43. http://doi.org/10.19491/j.issn.1001-9278.2024.07.008
  • A. Akshaykranth, J. Ajayan, N. Anitha, Development of biodegradable PLA/Nanoclay/ZnO polymer films for future Industrial packaging applications, Results in Surfaces and Interfaces, 19 (2025) 100518. https://doi.org/10.1016/j.rsurfi.2025.100518
  • A. V. Melendres, S. Q. Angles, E. P. G. Gaspar, J. F. Saliendra, M. M. S. Buenaventura, G. Sobrepeña, R. V. C. Rubi, Production of Defragmentable Bioplastic using Starch Extracted from Annona Muricata (Soursoup) Seed Reinforced with Bentonite Nanoclay. In IOP Conference Series: Materials Science and Engineering, 1318(1) (2024) 012034. http://doi.org/ 10.1088/1757-899X/1318/1/012034
  • B. Coppola, N. Cappetti, L. Di Maio, P. Scarfato, L. Incarnato, 3D printing of PLA/clay nanocomposites: Influence of printing temperature on printed samples properties, Materials, 11(10) (2018) 1947. https://doi.org/10.3390/ma11101947
  • H. Oliver-Ortega, J. Tresserras, F. Julian, M. Alcalà, A. Bala, F. X. Espinach, J. A. Méndez, Nanocomposites materials of PLA Reinforced with nanoclays using a masterbatch technology: A study of the mechanical performance and its sustainability, Polymers, 13(13) (2021) 2133. https://doi.org/10.3390/polym13132133
  • B. A. Basilia, J. N. Concepcion, J. J. Prila, Development of 3D printing filaments from recycled PLA reinforced with nanoclay, Key Engineering Materials, 975 (2024) 121-126. https://doi.org/10.4028/p-2PsMp3
  • Filameon, Riiz Makine Ltd.Şti., https://www.filameon.com/urun/pla-granul (2024)
  • J. R. Robledo-Ortíz, A. S. Martín del Campo, E. J. López-Naranjo, M. Arellano, C. F. Jasso-Gastinel, R. González-Núñez, A. A. Pérez-Fonseca, Effect of low nanoclay content on the physico-mechanical properties of poly (lactic acid) nanocomposites, Polymers and Polymer Composites, 27(2) (2019) 43-54. https://doi.org/10.1177/0967391118816393
  • S. Farah, D. G. Anderson, R. Langer, Physical and mechanical properties of PLA, and their functions in widespread applications—A comprehensive review, Advanced drug delivery reviews, 107 (2016) 367-392. https://doi.org/10.1016/j.addr.2016.06.012
  • T. Letcher, M. Waytashek, Material property testing of 3D-printed specimen in PLA on an entry-level 3D printer, In ASME international mechanical engineering congress and exposition, American Society of Mechanical Engineers, 46438 (2014). https://doi.org/10.1115/IMECE2014-39379
  • Y. Song, Y. Li, W. Song, K. Yee, K. Y. Lee, V. L. Tagarielli, Measurements of the mechanical response of unidirectional 3D-printed PLA. Materials & Design, 123 (2017) 154-164. https://doi.org/10.1016/j.matdes.2017.03.051
  • C. Tang, J. Liu, Y.A.N.G Yang, Y. Liu, S. Jiang, W. Hao, Effect of process parameters on mechanical properties of 3D printed PLA lattice structures, Composites Part C: Open Access, 3 (2020) 100076. https://doi.org/10.1016/j.jcomc.2020.100076

Investigation of the Effects of Nanoclay Additive on the Thermal and Mechanical Properties of PLA

Year 2025, Volume: 6 Issue: 3, 308 - 317, 30.12.2025
https://doi.org/10.52795/mateca.1808873

Abstract

Polylactic acid (PLA) is a frequently preferred material for 3D applications due to its renewable resource availability, biocompatibility, and biodegradability. However, PLA's mechanical strength and thermal resistance are limited compared to polymers like Acrylonitrile Butadiene Styrene (ABS) and Polyethylene Terephthalate Glycol (PETG). These disadvantages can be overcome by adding various materials to the PLA matrix. This study aimed to improve both thermal behavior and mechanical strength properties by adding nanoclay to the PLA matrix. As a result of some observations, PLA granules were dissolved using chloroform solvent, the pure and nanoclay added mixtures were homogenized by magnetic stirring and ultrasonic processes, and then samples were prepared for Thermogravimetric Analysis (TGA) and tensile tests. Samples were then prepared for TGA and tensile tests. In TGA analysis, degradation profiles between pure PLA and nanoclay-doped PLA were compared; it was determined that the doped system experienced less mass loss in the second degradation stage. In tensile tests, nanoclay-added PLA reached a maximum tensile value of 73.8 MPa and a strain of approximately 0.0313%, representing a significant increase compared to pure PLA, which has a cataloged tensile strength of 50 MPa. While the findings indicate that nanoclay additives have the potential to improve the mechanical performance of PLA, the additive's effect on thermal stability was limited due to processing conditions. This study demonstrates the properties of nanoclay reinforced PLA systems prepared in low quantity at laboratory scale and provides guidance for the preparation and optimization of such biocomposites in future.

References

  • I. Plamadiala, C. Croitoru, M. A. Pop, I. C. Roata, Enhancing polylactic acid (PLA) Performance: a review of additives in fused deposition modelling (FDM) filaments, Polymers, 17(2) (2025) 191. https://doi.org/10.3390/polym17020191.
  • T. A. Hottle, M. M. Bilec, A. E. Landis, Sustainability assessments of bio-based polymers, Polymer degradation and stability, 98(9) (2013) 1898-1907. https://doi.org/10.1016/j.polymdegradstab.2013.06.016
  • G. Li, M. Zhao, F. Xu, B. Yang, X. Li, X. Meng, Y. Li, Synthesis and biological application of polylactic acid, Molecules, 25(21) (2020) 5023. https://doi.org/10.3390/molecules25215023
  • H. Kaczmarek, M. Nowicki, I. Vuković-Kwiatkowska, S. Nowakowska, Crosslinked blends of poly (lactic acid) and polyacrylates: AFM, DSC and XRD studies, Journal of Polymer Research, 20 (2013) 1-12. https://doi.org/10.1007/s10965-013-0091-y
  • R. A. Ilyas, S. M. Sapuan, M. M. Harussani, M. Y. A. Y Hakimi, M. Z. M. Haziq, M. S. N. Atikah, M. Asrofi, Polylactic acid (PLA) biocomposite: Processing, additive manufacturing and advanced applications, Polymers, 13(8) (2021) 1326. https://doi.org/10.3390/polym13081326
  • M. Á. Caminero, J. M. Chacón, E. García-Plaza, P. J. Núñez, J. M. Reverte, J. P. Becar, Additive manufacturing of PLA-based composites using fused filament fabrication: Effect of graphene nanoplatelet reinforcement on mechanical properties, dimensional accuracy and texture, Polymers, 11(5) (2019) 799. https://doi.org/10.3390/polym11050799
  • M. A. H. M. Yusri, M. Y. M. Zuhri, M. R. Ishak, M. A. Azman, The capabilities of honeycomb core structures made of kenaf/polylactic acid composite under compression loading. Polymers, 15(9) (2023) 2179. https://doi.org/10.3390/polym15092179
  • D. Brząkalski, B. Sztorch, M. Frydrych, D. Pakuła, K. Dydek, R. Kozera, R. E. Przekop, Limonene derivative of spherosilicate as a polylactide modifier for applications in 3D printing technology, Molecules, 25(24) (2020) 5882. https://doi.org/10.3390/molecules25245882
  • I. Buj-Corral, M. Sivatte-Adroer, An experimental investigation about the dimensional accuracy and the porosity of copper-filled pla fused filament fabrication parts, Metals, 13(9) (2023) 1608. https://doi.org/10.3390/met13091608
  • B. Sztorch, D. Brząkalski, D. Pakuła, M. Frydrych, Z. Špitalský, R. E. Przekop, Natural and synthetic polymer fillers for applications in 3D printing—FDM technology area, Solids, 3(3) (2022) 508-548. https://doi.org/10.3390/solids3030034
  • V. Fernández, A. García, A. M. Camacho, J. Claver, A. Rodríguez, A., M. A. Sebastián, Methodology to estimate the modulus of elasticity of parts manufactured by FFF/FDM combining finite element simulations and experimental tests, In IOP Conference Series: Materials Science and Engineering, 1193 (1) (2021). http://doi.org/10.1088/1757-899X/1193/1/012103
  • W. Li, L. Li, Y. Cao, T. Lan, H. Chen, Y. Qin, Effects of PLA film incorporated with ZnO nanoparticle on the quality attributes of fresh-cut apple, Nanomaterials, 7(8) (2017) 207. https://doi.org/10.3390/nano7080207
  • T. D. Hapuarachchi, T. Peijs, Multiwalled carbon nanotubes and sepiolite nanoclays as flame retardants for polylactide and its natural fibre reinforced composites, Composites Part A: Applied Science and Manufacturing, 41(8) (2010) 954-963. https://doi.org/10.1016/j.compositesa.2010.03.004
  • M. Alexandre, P. Dubois, Polymer-layered silicate nanocomposites: Preparation, properties, and uses of a new class of materials, Materials Science and Engineering: R: Reports, 28(1- 2) (2000) 1-63. https://doi.org/10.1016/S0927-796X(00)00012-7
  • S. S. Ray, M. Okamoto, Polymer/layered silicate nanocomposites: A review from preparation to processing, Progress in Polymer Science, 28(11) (2003) 1539-1641. https://doi.org/10.1016/j.progpolymsci.2003.08.002
  • S. Rajamanikam, N. R. Rajendran Royan, M. H. Ab Ghani, I. Ismail, R. Nawang, C. A. Che Abdullah, Investigation on tensile properties of polylactide-nanoclay (PLA/MMT) surface modification nanocomposites, Journal of Mechanical Engineering (JMechE), 21(3) (2024) 63-75.
  • A. R. Molina, J. Acosta-Sullcahuamán, Additive Manufacturing of Reinforced Thermoplastic Nanoclay Particle Composites by Fused Filament Fabrication, Engineering Proceedings, 83(1) (2025) 3. https://doi.org/10.3390/engproc2025083003
  • S. Alazzawi, N. H. Ali, S. K. Shihab, M. M. Hanon, Investigating the impact of process parameters on the thermomechanical properties of three-dimensional (3D) printed polymer-nanoclay composites, International Journal of Thermofluids, 27 (2025) 101168. https://doi.org/10.1016/j.ijft.2025.101168
  • M. Panahi-Sarmad, S. F. Kasbi, S. Shojaei, V. Goodarzih, M. Arjmand, Influence of polypropylene and nanoclay on thermal and thermo-oxidative degradation of poly (lactide acid): TG-FTIR, TG-DSC studies and kinetic analysis, Thermochimica Acta, 691 (2020) 178709. https://doi.org/10.1016/j.tca.2020.178709
  • W. A. N. G. Jie, X. I. N. Dehua, L. I. Hui, J. I. A. N. G. Hongshi, Z. H. O. U. Hongfu, Z. H. A. O. Jianguo, Effect of hybrid reinforcement of nanoclay and silica on properties of poly (lactic acid), China Plastics, 38(7) (2024) 43. http://doi.org/10.19491/j.issn.1001-9278.2024.07.008
  • A. Akshaykranth, J. Ajayan, N. Anitha, Development of biodegradable PLA/Nanoclay/ZnO polymer films for future Industrial packaging applications, Results in Surfaces and Interfaces, 19 (2025) 100518. https://doi.org/10.1016/j.rsurfi.2025.100518
  • A. V. Melendres, S. Q. Angles, E. P. G. Gaspar, J. F. Saliendra, M. M. S. Buenaventura, G. Sobrepeña, R. V. C. Rubi, Production of Defragmentable Bioplastic using Starch Extracted from Annona Muricata (Soursoup) Seed Reinforced with Bentonite Nanoclay. In IOP Conference Series: Materials Science and Engineering, 1318(1) (2024) 012034. http://doi.org/ 10.1088/1757-899X/1318/1/012034
  • B. Coppola, N. Cappetti, L. Di Maio, P. Scarfato, L. Incarnato, 3D printing of PLA/clay nanocomposites: Influence of printing temperature on printed samples properties, Materials, 11(10) (2018) 1947. https://doi.org/10.3390/ma11101947
  • H. Oliver-Ortega, J. Tresserras, F. Julian, M. Alcalà, A. Bala, F. X. Espinach, J. A. Méndez, Nanocomposites materials of PLA Reinforced with nanoclays using a masterbatch technology: A study of the mechanical performance and its sustainability, Polymers, 13(13) (2021) 2133. https://doi.org/10.3390/polym13132133
  • B. A. Basilia, J. N. Concepcion, J. J. Prila, Development of 3D printing filaments from recycled PLA reinforced with nanoclay, Key Engineering Materials, 975 (2024) 121-126. https://doi.org/10.4028/p-2PsMp3
  • Filameon, Riiz Makine Ltd.Şti., https://www.filameon.com/urun/pla-granul (2024)
  • J. R. Robledo-Ortíz, A. S. Martín del Campo, E. J. López-Naranjo, M. Arellano, C. F. Jasso-Gastinel, R. González-Núñez, A. A. Pérez-Fonseca, Effect of low nanoclay content on the physico-mechanical properties of poly (lactic acid) nanocomposites, Polymers and Polymer Composites, 27(2) (2019) 43-54. https://doi.org/10.1177/0967391118816393
  • S. Farah, D. G. Anderson, R. Langer, Physical and mechanical properties of PLA, and their functions in widespread applications—A comprehensive review, Advanced drug delivery reviews, 107 (2016) 367-392. https://doi.org/10.1016/j.addr.2016.06.012
  • T. Letcher, M. Waytashek, Material property testing of 3D-printed specimen in PLA on an entry-level 3D printer, In ASME international mechanical engineering congress and exposition, American Society of Mechanical Engineers, 46438 (2014). https://doi.org/10.1115/IMECE2014-39379
  • Y. Song, Y. Li, W. Song, K. Yee, K. Y. Lee, V. L. Tagarielli, Measurements of the mechanical response of unidirectional 3D-printed PLA. Materials & Design, 123 (2017) 154-164. https://doi.org/10.1016/j.matdes.2017.03.051
  • C. Tang, J. Liu, Y.A.N.G Yang, Y. Liu, S. Jiang, W. Hao, Effect of process parameters on mechanical properties of 3D printed PLA lattice structures, Composites Part C: Open Access, 3 (2020) 100076. https://doi.org/10.1016/j.jcomc.2020.100076
There are 31 citations in total.

Details

Primary Language English
Subjects Material Design and Behaviors, Composite and Hybrid Materials
Journal Section Research Article
Authors

Mehmet İsmail Sarı 0000-0002-4920-1888

İsmail Şahin 0000-0001-8566-3433

Submission Date October 22, 2025
Acceptance Date December 12, 2025
Publication Date December 30, 2025
Published in Issue Year 2025 Volume: 6 Issue: 3

Cite

APA Sarı, M. İ., & Şahin, İ. (2025). Investigation of the Effects of Nanoclay Additive on the Thermal and Mechanical Properties of PLA. Manufacturing Technologies and Applications, 6(3), 308-317. https://doi.org/10.52795/mateca.1808873
AMA Sarı Mİ, Şahin İ. Investigation of the Effects of Nanoclay Additive on the Thermal and Mechanical Properties of PLA. MATECA. December 2025;6(3):308-317. doi:10.52795/mateca.1808873
Chicago Sarı, Mehmet İsmail, and İsmail Şahin. “Investigation of the Effects of Nanoclay Additive on the Thermal and Mechanical Properties of PLA”. Manufacturing Technologies and Applications 6, no. 3 (December 2025): 308-17. https://doi.org/10.52795/mateca.1808873.
EndNote Sarı Mİ, Şahin İ (December 1, 2025) Investigation of the Effects of Nanoclay Additive on the Thermal and Mechanical Properties of PLA. Manufacturing Technologies and Applications 6 3 308–317.
IEEE M. İ. Sarı and İ. Şahin, “Investigation of the Effects of Nanoclay Additive on the Thermal and Mechanical Properties of PLA”, MATECA, vol. 6, no. 3, pp. 308–317, 2025, doi: 10.52795/mateca.1808873.
ISNAD Sarı, Mehmet İsmail - Şahin, İsmail. “Investigation of the Effects of Nanoclay Additive on the Thermal and Mechanical Properties of PLA”. Manufacturing Technologies and Applications 6/3 (December2025), 308-317. https://doi.org/10.52795/mateca.1808873.
JAMA Sarı Mİ, Şahin İ. Investigation of the Effects of Nanoclay Additive on the Thermal and Mechanical Properties of PLA. MATECA. 2025;6:308–317.
MLA Sarı, Mehmet İsmail and İsmail Şahin. “Investigation of the Effects of Nanoclay Additive on the Thermal and Mechanical Properties of PLA”. Manufacturing Technologies and Applications, vol. 6, no. 3, 2025, pp. 308-17, doi:10.52795/mateca.1808873.
Vancouver Sarı Mİ, Şahin İ. Investigation of the Effects of Nanoclay Additive on the Thermal and Mechanical Properties of PLA. MATECA. 2025;6(3):308-17.