Research Article
BibTex RIS Cite

Some Involutions which Generate the Finite Symmetric Group

Year 2020, , 25 - 28, 20.03.2020
https://doi.org/10.36753/mathenot.608443

Abstract

Let $S_{n}$ be the symmetric group on $X_{n}=\{1, \dots, n\}$, for $n\geq 2$. In this paper we state some properties of subsemigroups generated by two involutions (a permutation with degree $2$) $\alpha,\beta$ such that $\alpha\beta$ is an $n$-cycle, and then state some generating sets of $S_n$ consists of involutions.

References

  • Ay\i k, G., Ay\i k, H., Bugay, L. and Kelekci, O., Generating sets of finite singular transformation semigroups, Semigroup Forum, 86 (2013), 59--66.
  • Bugay, L., Quasi-idempotent ranks of some permutation groups and transformation semigroups, Turk. J. Math., Accepted.
  • Ganyushkin, O. and Mazorchuk, V., Classical Finite Transformation Semigroups, Springer-Verlag, London, 2009.
  • Garba, G. U., Idempotents in partial transformation semigroups, Proc. Royal Soc. Edinburgh, 116A (1990), 359--366.
  • Garba, G. U., On the idempotent ranks of certain semigroups of order-preserving transformations,. Portugal. Math., 51 (1994) 185--204.
  • Garba, G. U. and Imam, A. T., Products of quasi-idempotents in finite symmetric inverse semigroups, Semigroup Forum, 92 (2016), 645--658.
  • Howie, J. M., Idempotent generators in finite full transformation semigroups, Proc. Royal Soc. Edinburgh, 81A (1978), 317--323.
  • Howie, J. M., Fundamentals of Semigroup Theory, New York, Oxford University Press, 1995.
  • Isaacs I. M., Finite Group Theory, American Mathematical Society, Graduate Studies in Mathematics, Volume 92, United States of America, 2008.
Year 2020, , 25 - 28, 20.03.2020
https://doi.org/10.36753/mathenot.608443

Abstract

References

  • Ay\i k, G., Ay\i k, H., Bugay, L. and Kelekci, O., Generating sets of finite singular transformation semigroups, Semigroup Forum, 86 (2013), 59--66.
  • Bugay, L., Quasi-idempotent ranks of some permutation groups and transformation semigroups, Turk. J. Math., Accepted.
  • Ganyushkin, O. and Mazorchuk, V., Classical Finite Transformation Semigroups, Springer-Verlag, London, 2009.
  • Garba, G. U., Idempotents in partial transformation semigroups, Proc. Royal Soc. Edinburgh, 116A (1990), 359--366.
  • Garba, G. U., On the idempotent ranks of certain semigroups of order-preserving transformations,. Portugal. Math., 51 (1994) 185--204.
  • Garba, G. U. and Imam, A. T., Products of quasi-idempotents in finite symmetric inverse semigroups, Semigroup Forum, 92 (2016), 645--658.
  • Howie, J. M., Idempotent generators in finite full transformation semigroups, Proc. Royal Soc. Edinburgh, 81A (1978), 317--323.
  • Howie, J. M., Fundamentals of Semigroup Theory, New York, Oxford University Press, 1995.
  • Isaacs I. M., Finite Group Theory, American Mathematical Society, Graduate Studies in Mathematics, Volume 92, United States of America, 2008.
There are 9 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Leyla Bugay 0000-0002-8316-2763

Publication Date March 20, 2020
Submission Date August 21, 2019
Acceptance Date March 13, 2020
Published in Issue Year 2020

Cite

APA Bugay, L. (2020). Some Involutions which Generate the Finite Symmetric Group. Mathematical Sciences and Applications E-Notes, 8(1), 25-28. https://doi.org/10.36753/mathenot.608443
AMA Bugay L. Some Involutions which Generate the Finite Symmetric Group. Math. Sci. Appl. E-Notes. March 2020;8(1):25-28. doi:10.36753/mathenot.608443
Chicago Bugay, Leyla. “Some Involutions Which Generate the Finite Symmetric Group”. Mathematical Sciences and Applications E-Notes 8, no. 1 (March 2020): 25-28. https://doi.org/10.36753/mathenot.608443.
EndNote Bugay L (March 1, 2020) Some Involutions which Generate the Finite Symmetric Group. Mathematical Sciences and Applications E-Notes 8 1 25–28.
IEEE L. Bugay, “Some Involutions which Generate the Finite Symmetric Group”, Math. Sci. Appl. E-Notes, vol. 8, no. 1, pp. 25–28, 2020, doi: 10.36753/mathenot.608443.
ISNAD Bugay, Leyla. “Some Involutions Which Generate the Finite Symmetric Group”. Mathematical Sciences and Applications E-Notes 8/1 (March 2020), 25-28. https://doi.org/10.36753/mathenot.608443.
JAMA Bugay L. Some Involutions which Generate the Finite Symmetric Group. Math. Sci. Appl. E-Notes. 2020;8:25–28.
MLA Bugay, Leyla. “Some Involutions Which Generate the Finite Symmetric Group”. Mathematical Sciences and Applications E-Notes, vol. 8, no. 1, 2020, pp. 25-28, doi:10.36753/mathenot.608443.
Vancouver Bugay L. Some Involutions which Generate the Finite Symmetric Group. Math. Sci. Appl. E-Notes. 2020;8(1):25-8.

20477

The published articles in MSAEN are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.