Research Article
BibTex RIS Cite
Year 2015, Volume: 3 Issue: 2, 45 - 53, 30.10.2015
https://doi.org/10.36753/mathenot.421329

Abstract

References

  • [1] Agarwal, P., Chand, M., (2013), On new sequence of functions involving pFq, South Asian Journal of Mathematics , Vol. 3 ( 3 ) : 199-210.
  • [2] Agarwal, P., Chand, M., (2013), A new sequence of functions involving pjFqj , MathematicalSciences And Applications E-Notes, Volume 1 No. 2 pp. 173-190.
  • [3] Agarwal, P., Chand, M.,(2013), Graphical Interpretation of the New Sequence of Functions Involving Mittage-Leffler Function Using Matlab, American Journal of Mathematics and Statistics 2013, 3(2): 73-83 DOI: 10.5923/j.ajms.20130302.02.
  • [4] Agarwal, P., Chand, M. and Dwivedi, S.,(2014), A Study on New Sequence of Functions Involving H-Function, American Journal of Applied Mathematics and Statistics, Vol. 2, No. ¯ 1, 34-39.
  • [5] Chak, A. M., (1956) A class of polynomials and generalization of stirling numbers, Duke J. Math., 23, 45-55.
  • [6] Chandel, R.C.S., (1973) A new class of polynomials, Indian J. Math., 15(1), 41-49.
  • [7] Chandel, R.C.S., (1974) A further note on the class of polynomials T α,kn (x, r, p), Indian J.Math.,16(1), 39-48.
  • [8] Chatterjea, S. K., (1964) On generalization of Laguerre polynomials, Rend. Mat. Univ. Padova, 34, 180-190.
  • [9] Gould, H. W. and Hopper, A. T., (1962) Operational formulas connected with two generalizations of Hermite polynomials, Duck Math. J., 29, 51-63.
  • [10] Joshi, C. M. and Prajapat, M. L., (1975) The operator Ta,k, and a generalization of certain classical polynomials, Kyungpook Math. J., 15, 191-199.
  • [11] Mittal, H. B., (1971) A generalization of Laguerre polynomial, Publ. Math. Debrecen, 18, 53-58.
  • [12] Mittal, H. B., (1971) Operational representations for the generalized Laguerre polynomial, Glasnik Mat.Ser III, 26(6), 45-53.
  • [13] Mittal, H. B., (1977) Bilinear and Bilateral generating relations, American J. Math., 99, 23-45.
  • [14] O¨zergin, E., Some properties of hypergeometric functions,Ph.D. Thesis, Eastern Mediterranean University, North Cyprus, February 2011.
  • [15] Patil, K. R. and Thakare, N. K., (1975) Operational formulas for a function defined by a generalized Rodrigues formula-II, Sci. J. Shivaji Univ. 15, 1-10.
  • [16] Shrivastava, P. N., (1974) Some operational formulas and generalized generating function, The Math. Education, 8, 19-22.
  • [17] Shukla, A. K. and Prajapati J. C., (2007) On some properties of a class of Polynomials suggested by Mittal, Proyecciones J. Math., 26(2), 145-156.
  • [18] Srivastava, H. M. and Choi,J., (2012) Zeta and q-Zeta Functions and Associated Series and Integrals, Elsevier Science Publishers, Amsterdam, London and New York.
  • [19] Srivastava, A. N. and Singh, S. N., (1979) Some generating relations connected with a function defined by a Generalized Rodrigues formula, Indian J. Pure Appl. Math., 10(10), 1312-1317.
  • [20] Srivastava, H. M. and Singh, J. P., (1971) A class of polynomials defined by generalized, Rodrigues formula, Ann. Mat. Pura Appl., 90(4), 75-85.
  • [21] Wright, E.M., (1935a) The asymptotic expansion of the generalized hypergeometric function. J. London Math. Soc. 10. 286-293.
  • [22] E.Özergin, Some properties of hypergeometric functions,Ph.D. Thesis, Eastern Mediterranean University, North Cyprus, February 2011.
  • [23] E. Özergin, M. A. O¨zarslan and A. Altin, Extension of gamma, beta and hypergeometric functions, J. Comput. Appl. Math. 235(2011), 4601-4610.

CERTAIN SEQUENCE OF FUNCTIONS INVOLVING GENERALIZED HYPERGEOMETRIC FUNCTIONS

Year 2015, Volume: 3 Issue: 2, 45 - 53, 30.10.2015
https://doi.org/10.36753/mathenot.421329

Abstract

A remarkably large number of operational techniques have drawn
the attention of several researchers in the study of sequence of functions and
polynomials. In this sequel, here, we aim to introduce a new sequence of
functions involving the generalized Gauss hypergeometric function by using
operational techniques. Some generating relations and finite summation formula
of the sequence presented here are also considered.

References

  • [1] Agarwal, P., Chand, M., (2013), On new sequence of functions involving pFq, South Asian Journal of Mathematics , Vol. 3 ( 3 ) : 199-210.
  • [2] Agarwal, P., Chand, M., (2013), A new sequence of functions involving pjFqj , MathematicalSciences And Applications E-Notes, Volume 1 No. 2 pp. 173-190.
  • [3] Agarwal, P., Chand, M.,(2013), Graphical Interpretation of the New Sequence of Functions Involving Mittage-Leffler Function Using Matlab, American Journal of Mathematics and Statistics 2013, 3(2): 73-83 DOI: 10.5923/j.ajms.20130302.02.
  • [4] Agarwal, P., Chand, M. and Dwivedi, S.,(2014), A Study on New Sequence of Functions Involving H-Function, American Journal of Applied Mathematics and Statistics, Vol. 2, No. ¯ 1, 34-39.
  • [5] Chak, A. M., (1956) A class of polynomials and generalization of stirling numbers, Duke J. Math., 23, 45-55.
  • [6] Chandel, R.C.S., (1973) A new class of polynomials, Indian J. Math., 15(1), 41-49.
  • [7] Chandel, R.C.S., (1974) A further note on the class of polynomials T α,kn (x, r, p), Indian J.Math.,16(1), 39-48.
  • [8] Chatterjea, S. K., (1964) On generalization of Laguerre polynomials, Rend. Mat. Univ. Padova, 34, 180-190.
  • [9] Gould, H. W. and Hopper, A. T., (1962) Operational formulas connected with two generalizations of Hermite polynomials, Duck Math. J., 29, 51-63.
  • [10] Joshi, C. M. and Prajapat, M. L., (1975) The operator Ta,k, and a generalization of certain classical polynomials, Kyungpook Math. J., 15, 191-199.
  • [11] Mittal, H. B., (1971) A generalization of Laguerre polynomial, Publ. Math. Debrecen, 18, 53-58.
  • [12] Mittal, H. B., (1971) Operational representations for the generalized Laguerre polynomial, Glasnik Mat.Ser III, 26(6), 45-53.
  • [13] Mittal, H. B., (1977) Bilinear and Bilateral generating relations, American J. Math., 99, 23-45.
  • [14] O¨zergin, E., Some properties of hypergeometric functions,Ph.D. Thesis, Eastern Mediterranean University, North Cyprus, February 2011.
  • [15] Patil, K. R. and Thakare, N. K., (1975) Operational formulas for a function defined by a generalized Rodrigues formula-II, Sci. J. Shivaji Univ. 15, 1-10.
  • [16] Shrivastava, P. N., (1974) Some operational formulas and generalized generating function, The Math. Education, 8, 19-22.
  • [17] Shukla, A. K. and Prajapati J. C., (2007) On some properties of a class of Polynomials suggested by Mittal, Proyecciones J. Math., 26(2), 145-156.
  • [18] Srivastava, H. M. and Choi,J., (2012) Zeta and q-Zeta Functions and Associated Series and Integrals, Elsevier Science Publishers, Amsterdam, London and New York.
  • [19] Srivastava, A. N. and Singh, S. N., (1979) Some generating relations connected with a function defined by a Generalized Rodrigues formula, Indian J. Pure Appl. Math., 10(10), 1312-1317.
  • [20] Srivastava, H. M. and Singh, J. P., (1971) A class of polynomials defined by generalized, Rodrigues formula, Ann. Mat. Pura Appl., 90(4), 75-85.
  • [21] Wright, E.M., (1935a) The asymptotic expansion of the generalized hypergeometric function. J. London Math. Soc. 10. 286-293.
  • [22] E.Özergin, Some properties of hypergeometric functions,Ph.D. Thesis, Eastern Mediterranean University, North Cyprus, February 2011.
  • [23] E. Özergin, M. A. O¨zarslan and A. Altin, Extension of gamma, beta and hypergeometric functions, J. Comput. Appl. Math. 235(2011), 4601-4610.
There are 23 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

P. Agarwal

S. Jaın This is me

İ. O. Kıymaz This is me

M. Chand This is me

S.k.q. Al-omarı

Publication Date October 30, 2015
Submission Date August 13, 2015
Published in Issue Year 2015 Volume: 3 Issue: 2

Cite

APA Agarwal, P., Jaın, S., Kıymaz, İ. O., Chand, M., et al. (2015). CERTAIN SEQUENCE OF FUNCTIONS INVOLVING GENERALIZED HYPERGEOMETRIC FUNCTIONS. Mathematical Sciences and Applications E-Notes, 3(2), 45-53. https://doi.org/10.36753/mathenot.421329
AMA Agarwal P, Jaın S, Kıymaz İO, Chand M, Al-omarı S. CERTAIN SEQUENCE OF FUNCTIONS INVOLVING GENERALIZED HYPERGEOMETRIC FUNCTIONS. Math. Sci. Appl. E-Notes. October 2015;3(2):45-53. doi:10.36753/mathenot.421329
Chicago Agarwal, P., S. Jaın, İ. O. Kıymaz, M. Chand, and S.k.q. Al-omarı. “CERTAIN SEQUENCE OF FUNCTIONS INVOLVING GENERALIZED HYPERGEOMETRIC FUNCTIONS”. Mathematical Sciences and Applications E-Notes 3, no. 2 (October 2015): 45-53. https://doi.org/10.36753/mathenot.421329.
EndNote Agarwal P, Jaın S, Kıymaz İO, Chand M, Al-omarı S (October 1, 2015) CERTAIN SEQUENCE OF FUNCTIONS INVOLVING GENERALIZED HYPERGEOMETRIC FUNCTIONS. Mathematical Sciences and Applications E-Notes 3 2 45–53.
IEEE P. Agarwal, S. Jaın, İ. O. Kıymaz, M. Chand, and S. Al-omarı, “CERTAIN SEQUENCE OF FUNCTIONS INVOLVING GENERALIZED HYPERGEOMETRIC FUNCTIONS”, Math. Sci. Appl. E-Notes, vol. 3, no. 2, pp. 45–53, 2015, doi: 10.36753/mathenot.421329.
ISNAD Agarwal, P. et al. “CERTAIN SEQUENCE OF FUNCTIONS INVOLVING GENERALIZED HYPERGEOMETRIC FUNCTIONS”. Mathematical Sciences and Applications E-Notes 3/2 (October 2015), 45-53. https://doi.org/10.36753/mathenot.421329.
JAMA Agarwal P, Jaın S, Kıymaz İO, Chand M, Al-omarı S. CERTAIN SEQUENCE OF FUNCTIONS INVOLVING GENERALIZED HYPERGEOMETRIC FUNCTIONS. Math. Sci. Appl. E-Notes. 2015;3:45–53.
MLA Agarwal, P. et al. “CERTAIN SEQUENCE OF FUNCTIONS INVOLVING GENERALIZED HYPERGEOMETRIC FUNCTIONS”. Mathematical Sciences and Applications E-Notes, vol. 3, no. 2, 2015, pp. 45-53, doi:10.36753/mathenot.421329.
Vancouver Agarwal P, Jaın S, Kıymaz İO, Chand M, Al-omarı S. CERTAIN SEQUENCE OF FUNCTIONS INVOLVING GENERALIZED HYPERGEOMETRIC FUNCTIONS. Math. Sci. Appl. E-Notes. 2015;3(2):45-53.

20477

The published articles in MSAEN are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.