Bitkisel ürünler antik çağlardan beri birçok hastalığın tedavisinde ve hastalıklardan korunma sürecinde tercih edilmektedir. Günümüzde üretilen ilaçların büyük bir bölümü bitkisel kökenli veya bitkilerden ilham alınarak tasarlanmaktadır. Geleneksel kanser tedavisinde kullanılan yöntemlerin yeterli etkinliği göstermemesi ve yan etkilerinin fazla olması yeni tedavi yaklaşımlarını zorunlu kılmaktadır. Bitkisel kaynaklı ilaçların daha az yan etkiye sahip olması ve birden fazla yolak üzerinden etkinliğini göstermesi önemli bir avantaj olarak kabul edilmektedir. Fitokimyasallar bir süredir kanser vakalarında monoterapi yada diğer ajanlarla kombine terapi olarak kullanılmaktadır. Kanser hücrelerini diğer tedavi yöntemlerine duyarlı hale getirilmesi ve bu yöntemlerin ortaya çıkardığı zararların azaltılmasında önemli etkiye sahiptir. Bu derlemede amaç; günümüzde tercih edilen güncel fitokimyasalların yapısının incelenmesi ve etki mekanizmalarının anlaşılmasıdır.
Agarwal, C., Tyagi, A., & Agarwal, R. (2006). Gallic acid cause inactivating phosphorylation of cdc25A/cdc25C-cdc2 via ATM-Chk2 activation, leading to cell cycle arrest, and induces apoptosis in human prostate carcinoma DU145 cells. Molecular Cancer Therapeutics, 5(12), 3294–3302. https://doi.org/10.1158/1535-7163.MCT-06-0483
Aggarwal, V., Tuli, H. S., Thakral, F., Singhal, P., Aggarwal, D., Srivastava, S., … Sethi, G. (2020). Molecular mechanisms of action of hesperidin in cancer: Recent trends and advancements. Experimental Biology and Medicine, 245(5), 486. https://doi.org/10.1177/1535370220903671
Ahmadi, A., & Shadboorestan, A. (2016). Oxidative stress and cancer; the role of hesperidin, a citrus natural bioflavonoid, as a cancer chemoprotective agent. Nutrition and Cancer, 68(1), 29–39. https://doi.org/10.1080/01635581.2015.1078822
Ahmed, S., Khan, H., Fratantonio, D., Hasan, M. M., Sharifi, S., Fathi, N., … Rastrelli, L. (2019). Apoptosis induced by luteolin in breast cancer: Mechanistic and therapeutic perspectives. Phytomedicine : International Journal of Phytotherapy and Phytopharmacology, 59. https://doi.org/10.1016/J.PHYMED.2019.152883
Aluyen, J. K., Ton, Q. N., Tran, T., Yang, A. E., Gottlieb, H. B., & Bellanger, R. A. (2012). Resveratrol: Potential as Anticancer Agent. Http://Dx.Doi.Org/10.3109/19390211.2011.650842, 9(1), 45–56. https://doi.org/10.3109/19390211.2011.650842
Ambasta, R. K., Gupta, R., Kumar, D., Bhattacharya, S., Sarkar, A., & Kumar, P. (2018). Can luteolin be a therapeutic molecule for both colon cancer and diabetes? Briefings in Functional Genomics, 18(4), 230–239. https://doi.org/10.1093/BFGP/ELY036
Asgharian, P., Tazehkand, A. P., Soofiyani, S. R., Hosseini, K., Martorell, M., Tarhriz, V., … Cho, W. C. (2021). Quercetin Impact in Pancreatic Cancer: An Overview on Its Therapeutic Effects. Oxidative Medicine and Cellular Longevity, 2021. https://doi.org/10.1155/2021/4393266
Carter, L. G., D’Orazio, J. A., & Pearson, K. J. (2014). Resveratrol and cancer: focus on in vivo evidence. Endocrine-Related Cancer, 21(3), R209. https://doi.org/10.1530/ERC-13-0171
Chen, Y., Wu, X., Liu, C., & Zhou, Y. (2020). Betulinic acid triggers apoptosis and inhibits migration and invasion of gastric cancer cells by impairing EMT progress. Cell Biochemistry and Function, 38(6), 702–709. https://doi.org/10.1002/cbf.3537
Chiang, E. P. I., Tsai, S. Y., Kuo, Y. H., Pai, M. H., Chiu, H. L., Rodriguez, R. L., & Tang, F. Y. (2014). Caffeic acid derivatives inhibit the growth of colon cancer: Involvement of the PI3-K/Akt and AMPK signaling pathways. PLoS ONE, 9(6). https://doi.org/10.1371/journal.pone.0099631
Da Costa, D. C. F., Fialho, E., & Silva, J. L. (2017). Cancer chemoprevention by resveratrol: The P53 tumor suppressor protein as a promising molecular target. Molecules, 22(6). https://doi.org/10.3390/molecules22061014
D. (2019). Health benefits of resveratrol administration. Acta Biochimica Polonica, 66(1), 13–21. https://doi.org/10.18388/ABP.2018_2749
Ghafouri-Fard, S., Shabestari, F. A., Vaezi, S., Abak, A., Shoorei, H., Karimi, A., … Basiri, A. (2021). Emerging impact of quercetin in the treatment of prostate cancer. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 138. https://doi.org/10.1016/J.BIOPHA.2021.111548
Giordano, A., & Tommonaro, G. (2019). Curcumin and Cancer. Nutrients, 11(10). https://doi.org/10.3390/NU11102376
Hanahan, D. (2022, January 1). Hallmarks of Cancer: New Dimensions. Cancer Discovery, Vol. 12, pp. 31–46. https://doi.org/10.1158/2159-8290.CD-21-1059
Hanahan, D., & Weinberg, R. A. (2000). The hallmarks of cancer. Cell, 100(1), 57–70. https://doi.org/10.1016/S0092-8674(00)81683-9
Hassanalilou, T., Ghavamzadeh, S., & Khalili, L. (2019). Curcumin and Gastric Cancer: a Review on Mechanisms of Action. Journal of Gastrointestinal Cancer, 50(2), 185–192. https://doi.org/10.1007/S12029-018-00186-6
Helleday, T., Petermann, E., Lundin, C., Hodgson, B., & Sharma, R. A. (2008). DNA repair pathways as targets for cancer therapy. Nature Reviews Cancer, 8(3), 193–204. https://doi.org/10.1038/nrc2342
Ho, H. H., Chang, C. Sen, Ho, W. C., Liao, S. Y., Lin, W. L., & Wang, C. J. (2013). Gallic acid inhibits gastric cancer cells metastasis and invasive growth via increased expression of RhoB, downregulation of AKT/small GTPase signals and inhibition of NF-κB activity. Toxicology and Applied Pharmacology, 266(1), 76–85. https://doi.org/10.1016/J.TAAP.2012.10.019
Ho, W. S. (2015). Active phytochemicals from Chinese herbal medicines: Anti-cancer activities and mechanisms. Active Phytochemicals from Chinese Herbal Medicines: Anti-Cancer Activities and Mechanisms, 1–160. https://doi.org/10.1201/b18824
Hussain, Y., Cui, J. H., Khan, H., Aschner, M., Batiha, G. E. S., & Jeandet, P. (2021). Luteolin and cancer metastasis suppression: focus on the role of epithelial to mesenchymal transition. Medical Oncology (Northwood, London, England), 38(6). https://doi.org/10.1007/S12032-021-01508-8
Imran, M., Rauf, A., Abu-Izneid, T., Nadeem, M., Shariati, M. A., Khan, I. A., … Mubarak, M. S. (2019). Luteolin, a flavonoid, as an anticancer agent: A review. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 112. https://doi.org/10.1016/J.BIOPHA.2019.108612
Jiang, W., Li, X., Dong, S., & Zhou, W. (2021). Betulinic acid in the treatment of tumour diseases: Application and research progress. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 142. https://doi.org/10.1016/J.BIOPHA.2021.111990
Johnson, I. T. (2007). Phytochemicals and cancer. Proceedings of the Nutrition Society, 66(2), 207–215. https://doi.org/10.1017/S0029665107005459
Kim, J., Wie, M. B., Ahn, M., Tanaka, A., Matsuda, H., & Shin, T. (2019). Benefits of hesperidin in central nervous system disorders: A review. Anatomy and Cell Biology, 52(4), 369–377. https://doi.org/10.5115/acb.19.119
Kim, S. Y., Hwangbo, H., Kim, M. Y., Ji, S. Y., Kim, D. H., Lee, H., … Choi, Y. H. (2021). Betulinic acid restricts human bladder cancer cell proliferation in vitro by inducing caspase-dependent cell death and cell cycle arrest, and decreasing metastatic potential. Molecules, 26(5). https://doi.org/10.3390/molecules26051381
Agarwal, C., Tyagi, A., & Agarwal, R. (2006). Gallic acid cause inactivating phosphorylation of cdc25A/cdc25C-cdc2 via ATM-Chk2 activation, leading to cell cycle arrest, and induces apoptosis in human prostate carcinoma DU145 cells. Molecular Cancer Therapeutics, 5(12), 3294–3302. https://doi.org/10.1158/1535-7163.MCT-06-0483
Aggarwal, V., Tuli, H. S., Thakral, F., Singhal, P., Aggarwal, D., Srivastava, S., … Sethi, G. (2020). Molecular mechanisms of action of hesperidin in cancer: Recent trends and advancements. Experimental Biology and Medicine, 245(5), 486. https://doi.org/10.1177/1535370220903671
Ahmadi, A., & Shadboorestan, A. (2016). Oxidative stress and cancer; the role of hesperidin, a citrus natural bioflavonoid, as a cancer chemoprotective agent. Nutrition and Cancer, 68(1), 29–39. https://doi.org/10.1080/01635581.2015.1078822
Ahmed, S., Khan, H., Fratantonio, D., Hasan, M. M., Sharifi, S., Fathi, N., … Rastrelli, L. (2019). Apoptosis induced by luteolin in breast cancer: Mechanistic and therapeutic perspectives. Phytomedicine : International Journal of Phytotherapy and Phytopharmacology, 59. https://doi.org/10.1016/J.PHYMED.2019.152883
Aluyen, J. K., Ton, Q. N., Tran, T., Yang, A. E., Gottlieb, H. B., & Bellanger, R. A. (2012). Resveratrol: Potential as Anticancer Agent. Http://Dx.Doi.Org/10.3109/19390211.2011.650842, 9(1), 45–56. https://doi.org/10.3109/19390211.2011.650842
Ambasta, R. K., Gupta, R., Kumar, D., Bhattacharya, S., Sarkar, A., & Kumar, P. (2018). Can luteolin be a therapeutic molecule for both colon cancer and diabetes? Briefings in Functional Genomics, 18(4), 230–239. https://doi.org/10.1093/BFGP/ELY036
Asgharian, P., Tazehkand, A. P., Soofiyani, S. R., Hosseini, K., Martorell, M., Tarhriz, V., … Cho, W. C. (2021). Quercetin Impact in Pancreatic Cancer: An Overview on Its Therapeutic Effects. Oxidative Medicine and Cellular Longevity, 2021. https://doi.org/10.1155/2021/4393266
Carter, L. G., D’Orazio, J. A., & Pearson, K. J. (2014). Resveratrol and cancer: focus on in vivo evidence. Endocrine-Related Cancer, 21(3), R209. https://doi.org/10.1530/ERC-13-0171
Chen, Y., Wu, X., Liu, C., & Zhou, Y. (2020). Betulinic acid triggers apoptosis and inhibits migration and invasion of gastric cancer cells by impairing EMT progress. Cell Biochemistry and Function, 38(6), 702–709. https://doi.org/10.1002/cbf.3537
Chiang, E. P. I., Tsai, S. Y., Kuo, Y. H., Pai, M. H., Chiu, H. L., Rodriguez, R. L., & Tang, F. Y. (2014). Caffeic acid derivatives inhibit the growth of colon cancer: Involvement of the PI3-K/Akt and AMPK signaling pathways. PLoS ONE, 9(6). https://doi.org/10.1371/journal.pone.0099631
Da Costa, D. C. F., Fialho, E., & Silva, J. L. (2017). Cancer chemoprevention by resveratrol: The P53 tumor suppressor protein as a promising molecular target. Molecules, 22(6). https://doi.org/10.3390/molecules22061014
Davoodvandi, A., Shabani Varkani, M., Clark, C. C. T., & Jafarnejad, S. (2020). Quercetin as an anticancer agent: Focus on esophageal cancer. Journal of Food Biochemistry, 44(9). https://doi.org/10.1111/JFBC.13374
Ezzati, M., Yousefi, B., Velaei, K., & Safa, A. (2020). A review on anti-cancer properties of Quercetin in breast cancer. Life Sciences, 248. https://doi.org/10.1016/J.LFS.2020.117463
Fasoulakis, Z., Koutras, A., Syllaios, A., Schizas, D., Garmpis, N., Diakosavvas, M., … Kontomanolis, E. N. (2021). Breast Cancer Apoptosis and the Therapeutic Role of Luteolin. Chirurgia (Bucharest, Romania : 1990), 116(2), 170–177. https://doi.org/10.21614/CHIRURGIA.116.2.170
Feng, T., Wei, Y., Lee, R. J., & Zhao, L. (2017). Liposomal curcumin and its application in cancer. International Journal of Nanomedicine, 12, 6027–6044. https://doi.org/10.2147/IJN.S132434
Franza, L., Carusi, V., Nucera, E., & Pandolfi, F. (2021). Luteolin, inflammation and cancer: Special emphasis on gut microbiota. BioFactors (Oxford, England), 47(2), 181–189. https://doi.org/10.1002/BIOF.1710
Fulda, S. (2009). Betulinic acid: A natural product with anticancer activity. Molecular Nutrition and Food Research, 53(1), 140–146. https://doi.org/10.1002/mnfr.200700491
Galiniak, S., Aebisher, D., & Bartusik-Aebisher, D. (2019). Health benefits of resveratrol administration. Acta Biochimica Polonica, 66(1), 13–21. https://doi.org/10.18388/ABP.2018_2749
Ghafouri-Fard, S., Shabestari, F. A., Vaezi, S., Abak, A., Shoorei, H., Karimi, A., … Basiri, A. (2021). Emerging impact of quercetin in the treatment of prostate cancer. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 138. https://doi.org/10.1016/J.BIOPHA.2021.111548
Giordano, A., & Tommonaro, G. (2019). Curcumin and Cancer. Nutrients, 11(10). https://doi.org/10.3390/NU11102376
Hanahan, D. (2022, January 1). Hallmarks of Cancer: New Dimensions. Cancer Discovery, Vol. 12, pp. 31–46. https://doi.org/10.1158/2159-8290.CD-21-1059
Hanahan, D., & Weinberg, R. A. (2000). The hallmarks of cancer. Cell, 100(1), 57–70. https://doi.org/10.1016/S0092-8674(00)81683-9
Hassanalilou, T., Ghavamzadeh, S., & Khalili, L. (2019). Curcumin and Gastric Cancer: a Review on Mechanisms of Action. Journal of Gastrointestinal Cancer, 50(2), 185–192. https://doi.org/10.1007/S12029-018-00186-6
Helleday, T., Petermann, E., Lundin, C., Hodgson, B., & Sharma, R. A. (2008). DNA repair pathways as targets for cancer therapy. Nature Reviews Cancer, 8(3), 193–204. https://doi.org/10.1038/nrc2342
Ho, H. H., Chang, C. Sen, Ho, W. C., Liao, S. Y., Lin, W. L., & Wang, C. J. (2013). Gallic acid inhibits gastric cancer cells metastasis and invasive growth via increased expression of RhoB, downregulation of AKT/small GTPase signals and inhibition of NF-κB activity. Toxicology and Applied Pharmacology, 266(1), 76–85. https://doi.org/10.1016/J.TAAP.2012.10.019
Ho, W. S. (2015). Active phytochemicals from Chinese herbal medicines: Anti-cancer activities and mechanisms. Active Phytochemicals from Chinese Herbal Medicines: Anti-Cancer Activities and Mechanisms, 1–160. https://doi.org/10.1201/b18824
Hussain, Y., Cui, J. H., Khan, H., Aschner, M., Batiha, G. E. S., & Jeandet, P. (2021). Luteolin and cancer metastasis suppression: focus on the role of epithelial to mesenchymal transition. Medical Oncology (Northwood, London, England), 38(6). https://doi.org/10.1007/S12032-021-01508-8
Imran, M., Rauf, A., Abu-Izneid, T., Nadeem, M., Shariati, M. A., Khan, I. A., … Mubarak, M. S. (2019). Luteolin, a flavonoid, as an anticancer agent: A review. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 112. https://doi.org/10.1016/J.BIOPHA.2019.108612
Jiang, W., Li, X., Dong, S., & Zhou, W. (2021). Betulinic acid in the treatment of tumour diseases: Application and research progress. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 142. https://doi.org/10.1016/J.BIOPHA.2021.111990
Johnson, I. T. (2007). Phytochemicals and cancer. Proceedings of the Nutrition Society, 66(2), 207–215. https://doi.org/10.1017/S0029665107005459
Kim, J., Wie, M. B., Ahn, M., Tanaka, A., Matsuda, H., & Shin, T. (2019). Benefits of hesperidin in central nervous system disorders: A review. Anatomy and Cell Biology, 52(4), 369–377. https://doi.org/10.5115/acb.19.119
Kim, S. Y., Hwangbo, H., Kim, M. Y., Ji, S. Y., Kim, D. H., Lee, H., … Choi, Y. H. (2021). Betulinic acid restricts human bladder cancer cell proliferation in vitro by inducing caspase-dependent cell death and cell cycle arrest, and decreasing metastatic potential. Molecules, 26(5). https://doi.org/10.3390/molecules26051381
Ko, E.-B., Jang, Y.-G., Kim, C.-W., Go, R.-E., Lee, H. K., & Choi, K.-C. (2022). Gallic Acid Hindered Lung Cancer Progression by Inducing Cell Cycle Arrest and Apoptosis in A549 Lung Cancer Cells via PI3K/Akt Pathway. Biomolecules & Therapeutics, 30(2), 151–161. https://doi.org/10.4062/biomolther.2021.074
Ko, J. H., Sethi, G., Um, J. Y., Shanmugam, M. K., Arfuso, F., Kumar, A. P., … Ahn, K. S. (2017). The Role of Resveratrol in Cancer Therapy. International Journal of Molecular Sciences, 18(12). https://doi.org/10.3390/IJMS18122589
Kumar, P., Bhadauria, A. S., Singh, A. K., & Saha, S. (2018). Betulinic acid as apoptosis activator: Molecular mechanisms, mathematical modeling and chemical modifications. Life Sciences, 209, 24–33. https://doi.org/10.1016/J.LFS.2018.07.056
Lee, K. W., Bode, A. M., & Dong, Z. (2011). Molecular targets of phytochemicals for cancer prevention. Nature Reviews Cancer 2011 11:3, 11(3), 211–218. https://doi.org/10.1038/nrc3017
Long, J., Guan, P., Hu, X., Yang, L., He, L., Lin, Q., … Li, T. (2021). Natural Polyphenols as Targeted Modulators in Colon Cancer: Molecular Mechanisms and Applications. Frontiers in Immunology, 12. https://doi.org/10.3389/FIMMU.2021.635484/FULL
Maleki Dana, P., Sadoughi, F., Asemi, Z., & Yousefi, B. (2021). Anti-cancer properties of quercetin in osteosarcoma. Cancer Cell International, 21(1). https://doi.org/10.1186/S12935-021-02067-8
Mirzaei, S., Gholami, M. H., Zabolian, A., Saleki, H., Farahani, M. V., Hamzehlou, S., … Sethi, G. (2021). Caffeic acid and its derivatives as potential modulators of oncogenic molecular pathways: New hope in the fight against cancer. Pharmacological Research, 171. https://doi.org/10.1016/j.phrs.2021.105759
Monteiro Espíndola, K. M., Ferreira, R. G., Mosquera Narvaez, L. E., Rocha Silva Rosario, A. C., Machado Da Silva, A. H., Bispo Silva, A. G., … Chagas Monteiro, M. (2019). Chemical and Pharmacological Aspects of Caffeic Acid and Its Activity in Hepatocarcinoma. Frontiers in Oncology, 9(JUN). https://doi.org/10.3389/FONC.2019.00541
Nenclares, P., & Harrington, K. J. (2020). The biology of cancer. Medicine, 48(2), 67–72. https://doi.org/10.1016/J.MPMED.2019.11.001
Pandey, P., & Khan, F. (2021). A mechanistic review of the anticancer potential of hesperidin, a natural flavonoid from citrus fruits. Nutrition Research (New York, N.Y.), 92, 21–31. https://doi.org/10.1016/J.NUTRES.2021.05.011
Pecorino, L. (2012). Molecular Biology of Cancer: Mechanisms, Targets, and Therapeutics. 360. Retrieved from http://books.google.com/books?id=tI_vcU85QU4C&pgis=1
Pricci, M., Girardi, B., Giorgio, F., Losurdo, G., Ierardi, E., & Di Leo, A. (2020). Curcumin and Colorectal Cancer: From Basic to Clinical Evidences. International Journal of Molecular Sciences, 21(7). https://doi.org/10.3390/IJMS21072364
Ranjan, A., Ramachandran, S., Gupta, N., Kaushik, I., Wright, S., Srivastava, S., … Srivastava, S. K. (2019). Role of Phytochemicals in Cancer Prevention. International Journal of Molecular Sciences 2019, Vol. 20, Page 4981, 20(20), 4981. https://doi.org/10.3390/IJMS20204981
Reyes-Farias, M., & Carrasco-Pozo, C. (2019). The Anti-Cancer Effect of Quercetin: Molecular Implications in Cancer Metabolism. International Journal of Molecular Sciences, 20(13), 3177. https://doi.org/10.3390/IJMS20133177
Rizeq, B., Gupta, I., Ilesanmi, J., AlSafran, M., Rahman, M. D. M., & Ouhtit, A. (2020). The Power of Phytochemicals Combination in Cancer Chemoprevention. Journal of Cancer, 11(15), 4521. https://doi.org/10.7150/JCA.34374
Roy, M., & Datta, A. (Computer scientist). (2019). Cancer genetics and therapeutics : focus on phytochemicals. 239.
Saneja, A., Arora, D., Kumar, R., Dubey, R. D., Panda, A. K., & Gupta, P. N. (2018). Therapeutic applications of betulinic acid nanoformulations. Annals of the New York Academy of Sciences, 1421(1), 5–18. https://doi.org/10.1111/NYAS.13570
Schwiebs, A., & Radeke, H. H. (2017). Immunopharmacological Activity of Betulin in Inflammation-associated Carcinogenesis. Anti-Cancer Agents in Medicinal Chemistry, 18(5), 645–651. https://doi.org/10.2174/1871520617666171012124820
Shafabakhsh, R., & Asemi, Z. (2019). Quercetin: a natural compound for ovarian cancer treatment. Journal of Ovarian Research, 12(1). https://doi.org/10.1186/S13048-019-0530-4
Shen, H., Liu, L., Yang, Y., Xun, W., Wei, K., & Zeng, G. (2017). Betulinic Acid Inhibits Cell Proliferation in Human Oral Squamous Cell Carcinoma via Modulating ROS-Regulated p53 Signaling. Oncology Research, 25(7), 1141. https://doi.org/10.3727/096504017X14841698396784
Shukla, Y., & Singh, R. (2011). Resveratrol and cellular mechanisms of cancer prevention. Annals of the New York Academy of Sciences, 1215(1), 1–8. https://doi.org/10.1111/j.1749-6632.2010.05870.x
Sirota, R., Gibson, D., & Kohen, R. (2015). The role of the catecholic and the electrophilic moieties of caffeic acid in Nrf2/Keap1 pathway activation in ovarian carcinoma cell lines. Redox Biology, 4, 48–59. https://doi.org/10.1016/j.redox.2014.11.012
Socała, K., Szopa, A., Serefko, A., Poleszak, E., & Wlaź, P. (2020). Neuroprotective Effects of Coffee Bioactive Compounds: A Review. International Journal of Molecular Sciences, 22(1), 1–64. https://doi.org/10.3390/IJMS22010107
Subramanian, A. P., Jaganathan, S. K., Mandal, M., Supriyanto, E., & Muhamad, I. I. (2016). Gallic acid induced apoptotic events in HCT-15 colon cancer cells. World Journal of Gastroenterology, 22(15), 3952. https://doi.org/10.3748/WJG.V22.I15.3952
Tajuddin, W. N. B. W. M., Lajis, N. H., Abas, F., Othman, I., & Naidu, R. (2019). Mechanistic Understanding of Curcumin’s Therapeutic Effects in Lung Cancer. Nutrients, 11(12). https://doi.org/10.3390/NU11122989
Tang, H., Yao, X., Yao, C., Zhao, X., Zuo, H., & Li, Z. (2017). Anti-colon cancer effect of caffeic acid p-nitro-phenethyl ester in vitro and in vivo and detection of its metabolites. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-07953-8
Tang, S. M., Deng, X. T., Zhou, J., Li, Q. P., Ge, X. X., & Miao, L. (2020). Pharmacological basis and new insights of quercetin action in respect to its anti-cancer effects. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 121. https://doi.org/10.1016/J.BIOPHA.2019.109604
Teng, Y. N., Wang, C. C. N., Liao, W. C., Lan, Y. H., & Hung, C. C. (2020). Caffeic Acid Attenuates Multi-Drug Resistance in Cancer Cells by Inhibiting Efflux Function of Human P-glycoprotein. Molecules (Basel, Switzerland), 25(2). https://doi.org/10.3390/MOLECULES25020247
Termini, D., Den Hartogh, D. J., Jaglanian, A., & Tsiani, E. (2020). Curcumin against Prostate Cancer: Current Evidence. Biomolecules, 10(11), 1–40. https://doi.org/10.3390/BIOM10111536
Verma, S., Singh, A., & Mishra, A. (2013). Gallic acid: molecular rival of cancer. Environmental Toxicology and Pharmacology, 35(3), 473–485. https://doi.org/10.1016/J.ETAP.2013.02.011
Wang, L., Zhang, S., & Wang, X. (2021). The Metabolic Mechanisms of Breast Cancer Metastasis. Frontiers in Oncology, 10. https://doi.org/10.3389/FONC.2020.602416/FULL
Xiong, H., Wang, J., Ran, Q., Lou, G., Peng, C., Gan, Q., … Huang, Q. (2019). Hesperidin: A Therapeutic Agent For Obesity. Drug Design, Development and Therapy, 13, 3855. https://doi.org/10.2147/DDDT.S227499
Yap, K. M., Sekar, M., Wu, Y. S., Gan, S. H., Rani, N. N. I. M., Seow, L. J., … Lum, P. T. (2021). Hesperidin and its aglycone hesperetin in breast cancer therapy: A review of recent developments and future prospects. Saudi Journal of Biological Sciences, 28(12), 6730–6747. https://doi.org/10.1016/J.SJBS.2021.07.046
You, B. R., Moon, H. J., Han, Y. H., & Park, W. H. (2010). Gallic acid inhibits the growth of HeLa cervical cancer cells via apoptosis and/or necrosis. Food and Chemical Toxicology, 48(5), 1334–1340. https://doi.org/10.1016/J.FCT.2010.02.034
Zhang, D. M., Xu, H. G., Wang, L., Li, Y. J., Sun, P. H., Wu, X. M., … Ye, W. C. (2015). Betulinic Acid and its Derivatives as Potential Antitumor Agents. Medicinal Research Reviews, 35(6), 1127–1155. https://doi.org/10.1002/med.21353
ZHONG, Y., LIANG, N., LIU, Y., & CHENG, M. S. (2021). Recent progress on betulinic acid and its derivatives as antitumor agents: a mini review. Chinese Journal of Natural Medicines, 19(9), 641–647. https://doi.org/10.1016/S1875-5364(21)60097-3
Zoi, V., Galani, V., Lianos, G. D., Voulgaris, S., Kyritsis, A. P., & Alexiou, G. A. (2021). The Role of Curcumin in Cancer Treatment. Biomedicines, 9(9). https://doi.org/10.3390/BIOMEDICINES9091086
Year 2023,
Volume: 3 Issue: 1, 64 - 76, 28.04.2023
Agarwal, C., Tyagi, A., & Agarwal, R. (2006). Gallic acid cause inactivating phosphorylation of cdc25A/cdc25C-cdc2 via ATM-Chk2 activation, leading to cell cycle arrest, and induces apoptosis in human prostate carcinoma DU145 cells. Molecular Cancer Therapeutics, 5(12), 3294–3302. https://doi.org/10.1158/1535-7163.MCT-06-0483
Aggarwal, V., Tuli, H. S., Thakral, F., Singhal, P., Aggarwal, D., Srivastava, S., … Sethi, G. (2020). Molecular mechanisms of action of hesperidin in cancer: Recent trends and advancements. Experimental Biology and Medicine, 245(5), 486. https://doi.org/10.1177/1535370220903671
Ahmadi, A., & Shadboorestan, A. (2016). Oxidative stress and cancer; the role of hesperidin, a citrus natural bioflavonoid, as a cancer chemoprotective agent. Nutrition and Cancer, 68(1), 29–39. https://doi.org/10.1080/01635581.2015.1078822
Ahmed, S., Khan, H., Fratantonio, D., Hasan, M. M., Sharifi, S., Fathi, N., … Rastrelli, L. (2019). Apoptosis induced by luteolin in breast cancer: Mechanistic and therapeutic perspectives. Phytomedicine : International Journal of Phytotherapy and Phytopharmacology, 59. https://doi.org/10.1016/J.PHYMED.2019.152883
Aluyen, J. K., Ton, Q. N., Tran, T., Yang, A. E., Gottlieb, H. B., & Bellanger, R. A. (2012). Resveratrol: Potential as Anticancer Agent. Http://Dx.Doi.Org/10.3109/19390211.2011.650842, 9(1), 45–56. https://doi.org/10.3109/19390211.2011.650842
Ambasta, R. K., Gupta, R., Kumar, D., Bhattacharya, S., Sarkar, A., & Kumar, P. (2018). Can luteolin be a therapeutic molecule for both colon cancer and diabetes? Briefings in Functional Genomics, 18(4), 230–239. https://doi.org/10.1093/BFGP/ELY036
Asgharian, P., Tazehkand, A. P., Soofiyani, S. R., Hosseini, K., Martorell, M., Tarhriz, V., … Cho, W. C. (2021). Quercetin Impact in Pancreatic Cancer: An Overview on Its Therapeutic Effects. Oxidative Medicine and Cellular Longevity, 2021. https://doi.org/10.1155/2021/4393266
Carter, L. G., D’Orazio, J. A., & Pearson, K. J. (2014). Resveratrol and cancer: focus on in vivo evidence. Endocrine-Related Cancer, 21(3), R209. https://doi.org/10.1530/ERC-13-0171
Chen, Y., Wu, X., Liu, C., & Zhou, Y. (2020). Betulinic acid triggers apoptosis and inhibits migration and invasion of gastric cancer cells by impairing EMT progress. Cell Biochemistry and Function, 38(6), 702–709. https://doi.org/10.1002/cbf.3537
Chiang, E. P. I., Tsai, S. Y., Kuo, Y. H., Pai, M. H., Chiu, H. L., Rodriguez, R. L., & Tang, F. Y. (2014). Caffeic acid derivatives inhibit the growth of colon cancer: Involvement of the PI3-K/Akt and AMPK signaling pathways. PLoS ONE, 9(6). https://doi.org/10.1371/journal.pone.0099631
Da Costa, D. C. F., Fialho, E., & Silva, J. L. (2017). Cancer chemoprevention by resveratrol: The P53 tumor suppressor protein as a promising molecular target. Molecules, 22(6). https://doi.org/10.3390/molecules22061014
D. (2019). Health benefits of resveratrol administration. Acta Biochimica Polonica, 66(1), 13–21. https://doi.org/10.18388/ABP.2018_2749
Ghafouri-Fard, S., Shabestari, F. A., Vaezi, S., Abak, A., Shoorei, H., Karimi, A., … Basiri, A. (2021). Emerging impact of quercetin in the treatment of prostate cancer. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 138. https://doi.org/10.1016/J.BIOPHA.2021.111548
Giordano, A., & Tommonaro, G. (2019). Curcumin and Cancer. Nutrients, 11(10). https://doi.org/10.3390/NU11102376
Hanahan, D. (2022, January 1). Hallmarks of Cancer: New Dimensions. Cancer Discovery, Vol. 12, pp. 31–46. https://doi.org/10.1158/2159-8290.CD-21-1059
Hanahan, D., & Weinberg, R. A. (2000). The hallmarks of cancer. Cell, 100(1), 57–70. https://doi.org/10.1016/S0092-8674(00)81683-9
Hassanalilou, T., Ghavamzadeh, S., & Khalili, L. (2019). Curcumin and Gastric Cancer: a Review on Mechanisms of Action. Journal of Gastrointestinal Cancer, 50(2), 185–192. https://doi.org/10.1007/S12029-018-00186-6
Helleday, T., Petermann, E., Lundin, C., Hodgson, B., & Sharma, R. A. (2008). DNA repair pathways as targets for cancer therapy. Nature Reviews Cancer, 8(3), 193–204. https://doi.org/10.1038/nrc2342
Ho, H. H., Chang, C. Sen, Ho, W. C., Liao, S. Y., Lin, W. L., & Wang, C. J. (2013). Gallic acid inhibits gastric cancer cells metastasis and invasive growth via increased expression of RhoB, downregulation of AKT/small GTPase signals and inhibition of NF-κB activity. Toxicology and Applied Pharmacology, 266(1), 76–85. https://doi.org/10.1016/J.TAAP.2012.10.019
Ho, W. S. (2015). Active phytochemicals from Chinese herbal medicines: Anti-cancer activities and mechanisms. Active Phytochemicals from Chinese Herbal Medicines: Anti-Cancer Activities and Mechanisms, 1–160. https://doi.org/10.1201/b18824
Hussain, Y., Cui, J. H., Khan, H., Aschner, M., Batiha, G. E. S., & Jeandet, P. (2021). Luteolin and cancer metastasis suppression: focus on the role of epithelial to mesenchymal transition. Medical Oncology (Northwood, London, England), 38(6). https://doi.org/10.1007/S12032-021-01508-8
Imran, M., Rauf, A., Abu-Izneid, T., Nadeem, M., Shariati, M. A., Khan, I. A., … Mubarak, M. S. (2019). Luteolin, a flavonoid, as an anticancer agent: A review. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 112. https://doi.org/10.1016/J.BIOPHA.2019.108612
Jiang, W., Li, X., Dong, S., & Zhou, W. (2021). Betulinic acid in the treatment of tumour diseases: Application and research progress. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 142. https://doi.org/10.1016/J.BIOPHA.2021.111990
Johnson, I. T. (2007). Phytochemicals and cancer. Proceedings of the Nutrition Society, 66(2), 207–215. https://doi.org/10.1017/S0029665107005459
Kim, J., Wie, M. B., Ahn, M., Tanaka, A., Matsuda, H., & Shin, T. (2019). Benefits of hesperidin in central nervous system disorders: A review. Anatomy and Cell Biology, 52(4), 369–377. https://doi.org/10.5115/acb.19.119
Kim, S. Y., Hwangbo, H., Kim, M. Y., Ji, S. Y., Kim, D. H., Lee, H., … Choi, Y. H. (2021). Betulinic acid restricts human bladder cancer cell proliferation in vitro by inducing caspase-dependent cell death and cell cycle arrest, and decreasing metastatic potential. Molecules, 26(5). https://doi.org/10.3390/molecules26051381
Agarwal, C., Tyagi, A., & Agarwal, R. (2006). Gallic acid cause inactivating phosphorylation of cdc25A/cdc25C-cdc2 via ATM-Chk2 activation, leading to cell cycle arrest, and induces apoptosis in human prostate carcinoma DU145 cells. Molecular Cancer Therapeutics, 5(12), 3294–3302. https://doi.org/10.1158/1535-7163.MCT-06-0483
Aggarwal, V., Tuli, H. S., Thakral, F., Singhal, P., Aggarwal, D., Srivastava, S., … Sethi, G. (2020). Molecular mechanisms of action of hesperidin in cancer: Recent trends and advancements. Experimental Biology and Medicine, 245(5), 486. https://doi.org/10.1177/1535370220903671
Ahmadi, A., & Shadboorestan, A. (2016). Oxidative stress and cancer; the role of hesperidin, a citrus natural bioflavonoid, as a cancer chemoprotective agent. Nutrition and Cancer, 68(1), 29–39. https://doi.org/10.1080/01635581.2015.1078822
Ahmed, S., Khan, H., Fratantonio, D., Hasan, M. M., Sharifi, S., Fathi, N., … Rastrelli, L. (2019). Apoptosis induced by luteolin in breast cancer: Mechanistic and therapeutic perspectives. Phytomedicine : International Journal of Phytotherapy and Phytopharmacology, 59. https://doi.org/10.1016/J.PHYMED.2019.152883
Aluyen, J. K., Ton, Q. N., Tran, T., Yang, A. E., Gottlieb, H. B., & Bellanger, R. A. (2012). Resveratrol: Potential as Anticancer Agent. Http://Dx.Doi.Org/10.3109/19390211.2011.650842, 9(1), 45–56. https://doi.org/10.3109/19390211.2011.650842
Ambasta, R. K., Gupta, R., Kumar, D., Bhattacharya, S., Sarkar, A., & Kumar, P. (2018). Can luteolin be a therapeutic molecule for both colon cancer and diabetes? Briefings in Functional Genomics, 18(4), 230–239. https://doi.org/10.1093/BFGP/ELY036
Asgharian, P., Tazehkand, A. P., Soofiyani, S. R., Hosseini, K., Martorell, M., Tarhriz, V., … Cho, W. C. (2021). Quercetin Impact in Pancreatic Cancer: An Overview on Its Therapeutic Effects. Oxidative Medicine and Cellular Longevity, 2021. https://doi.org/10.1155/2021/4393266
Carter, L. G., D’Orazio, J. A., & Pearson, K. J. (2014). Resveratrol and cancer: focus on in vivo evidence. Endocrine-Related Cancer, 21(3), R209. https://doi.org/10.1530/ERC-13-0171
Chen, Y., Wu, X., Liu, C., & Zhou, Y. (2020). Betulinic acid triggers apoptosis and inhibits migration and invasion of gastric cancer cells by impairing EMT progress. Cell Biochemistry and Function, 38(6), 702–709. https://doi.org/10.1002/cbf.3537
Chiang, E. P. I., Tsai, S. Y., Kuo, Y. H., Pai, M. H., Chiu, H. L., Rodriguez, R. L., & Tang, F. Y. (2014). Caffeic acid derivatives inhibit the growth of colon cancer: Involvement of the PI3-K/Akt and AMPK signaling pathways. PLoS ONE, 9(6). https://doi.org/10.1371/journal.pone.0099631
Da Costa, D. C. F., Fialho, E., & Silva, J. L. (2017). Cancer chemoprevention by resveratrol: The P53 tumor suppressor protein as a promising molecular target. Molecules, 22(6). https://doi.org/10.3390/molecules22061014
Davoodvandi, A., Shabani Varkani, M., Clark, C. C. T., & Jafarnejad, S. (2020). Quercetin as an anticancer agent: Focus on esophageal cancer. Journal of Food Biochemistry, 44(9). https://doi.org/10.1111/JFBC.13374
Ezzati, M., Yousefi, B., Velaei, K., & Safa, A. (2020). A review on anti-cancer properties of Quercetin in breast cancer. Life Sciences, 248. https://doi.org/10.1016/J.LFS.2020.117463
Fasoulakis, Z., Koutras, A., Syllaios, A., Schizas, D., Garmpis, N., Diakosavvas, M., … Kontomanolis, E. N. (2021). Breast Cancer Apoptosis and the Therapeutic Role of Luteolin. Chirurgia (Bucharest, Romania : 1990), 116(2), 170–177. https://doi.org/10.21614/CHIRURGIA.116.2.170
Feng, T., Wei, Y., Lee, R. J., & Zhao, L. (2017). Liposomal curcumin and its application in cancer. International Journal of Nanomedicine, 12, 6027–6044. https://doi.org/10.2147/IJN.S132434
Franza, L., Carusi, V., Nucera, E., & Pandolfi, F. (2021). Luteolin, inflammation and cancer: Special emphasis on gut microbiota. BioFactors (Oxford, England), 47(2), 181–189. https://doi.org/10.1002/BIOF.1710
Fulda, S. (2009). Betulinic acid: A natural product with anticancer activity. Molecular Nutrition and Food Research, 53(1), 140–146. https://doi.org/10.1002/mnfr.200700491
Galiniak, S., Aebisher, D., & Bartusik-Aebisher, D. (2019). Health benefits of resveratrol administration. Acta Biochimica Polonica, 66(1), 13–21. https://doi.org/10.18388/ABP.2018_2749
Ghafouri-Fard, S., Shabestari, F. A., Vaezi, S., Abak, A., Shoorei, H., Karimi, A., … Basiri, A. (2021). Emerging impact of quercetin in the treatment of prostate cancer. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 138. https://doi.org/10.1016/J.BIOPHA.2021.111548
Giordano, A., & Tommonaro, G. (2019). Curcumin and Cancer. Nutrients, 11(10). https://doi.org/10.3390/NU11102376
Hanahan, D. (2022, January 1). Hallmarks of Cancer: New Dimensions. Cancer Discovery, Vol. 12, pp. 31–46. https://doi.org/10.1158/2159-8290.CD-21-1059
Hanahan, D., & Weinberg, R. A. (2000). The hallmarks of cancer. Cell, 100(1), 57–70. https://doi.org/10.1016/S0092-8674(00)81683-9
Hassanalilou, T., Ghavamzadeh, S., & Khalili, L. (2019). Curcumin and Gastric Cancer: a Review on Mechanisms of Action. Journal of Gastrointestinal Cancer, 50(2), 185–192. https://doi.org/10.1007/S12029-018-00186-6
Helleday, T., Petermann, E., Lundin, C., Hodgson, B., & Sharma, R. A. (2008). DNA repair pathways as targets for cancer therapy. Nature Reviews Cancer, 8(3), 193–204. https://doi.org/10.1038/nrc2342
Ho, H. H., Chang, C. Sen, Ho, W. C., Liao, S. Y., Lin, W. L., & Wang, C. J. (2013). Gallic acid inhibits gastric cancer cells metastasis and invasive growth via increased expression of RhoB, downregulation of AKT/small GTPase signals and inhibition of NF-κB activity. Toxicology and Applied Pharmacology, 266(1), 76–85. https://doi.org/10.1016/J.TAAP.2012.10.019
Ho, W. S. (2015). Active phytochemicals from Chinese herbal medicines: Anti-cancer activities and mechanisms. Active Phytochemicals from Chinese Herbal Medicines: Anti-Cancer Activities and Mechanisms, 1–160. https://doi.org/10.1201/b18824
Hussain, Y., Cui, J. H., Khan, H., Aschner, M., Batiha, G. E. S., & Jeandet, P. (2021). Luteolin and cancer metastasis suppression: focus on the role of epithelial to mesenchymal transition. Medical Oncology (Northwood, London, England), 38(6). https://doi.org/10.1007/S12032-021-01508-8
Imran, M., Rauf, A., Abu-Izneid, T., Nadeem, M., Shariati, M. A., Khan, I. A., … Mubarak, M. S. (2019). Luteolin, a flavonoid, as an anticancer agent: A review. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 112. https://doi.org/10.1016/J.BIOPHA.2019.108612
Jiang, W., Li, X., Dong, S., & Zhou, W. (2021). Betulinic acid in the treatment of tumour diseases: Application and research progress. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 142. https://doi.org/10.1016/J.BIOPHA.2021.111990
Johnson, I. T. (2007). Phytochemicals and cancer. Proceedings of the Nutrition Society, 66(2), 207–215. https://doi.org/10.1017/S0029665107005459
Kim, J., Wie, M. B., Ahn, M., Tanaka, A., Matsuda, H., & Shin, T. (2019). Benefits of hesperidin in central nervous system disorders: A review. Anatomy and Cell Biology, 52(4), 369–377. https://doi.org/10.5115/acb.19.119
Kim, S. Y., Hwangbo, H., Kim, M. Y., Ji, S. Y., Kim, D. H., Lee, H., … Choi, Y. H. (2021). Betulinic acid restricts human bladder cancer cell proliferation in vitro by inducing caspase-dependent cell death and cell cycle arrest, and decreasing metastatic potential. Molecules, 26(5). https://doi.org/10.3390/molecules26051381
Ko, E.-B., Jang, Y.-G., Kim, C.-W., Go, R.-E., Lee, H. K., & Choi, K.-C. (2022). Gallic Acid Hindered Lung Cancer Progression by Inducing Cell Cycle Arrest and Apoptosis in A549 Lung Cancer Cells via PI3K/Akt Pathway. Biomolecules & Therapeutics, 30(2), 151–161. https://doi.org/10.4062/biomolther.2021.074
Ko, J. H., Sethi, G., Um, J. Y., Shanmugam, M. K., Arfuso, F., Kumar, A. P., … Ahn, K. S. (2017). The Role of Resveratrol in Cancer Therapy. International Journal of Molecular Sciences, 18(12). https://doi.org/10.3390/IJMS18122589
Kumar, P., Bhadauria, A. S., Singh, A. K., & Saha, S. (2018). Betulinic acid as apoptosis activator: Molecular mechanisms, mathematical modeling and chemical modifications. Life Sciences, 209, 24–33. https://doi.org/10.1016/J.LFS.2018.07.056
Lee, K. W., Bode, A. M., & Dong, Z. (2011). Molecular targets of phytochemicals for cancer prevention. Nature Reviews Cancer 2011 11:3, 11(3), 211–218. https://doi.org/10.1038/nrc3017
Long, J., Guan, P., Hu, X., Yang, L., He, L., Lin, Q., … Li, T. (2021). Natural Polyphenols as Targeted Modulators in Colon Cancer: Molecular Mechanisms and Applications. Frontiers in Immunology, 12. https://doi.org/10.3389/FIMMU.2021.635484/FULL
Maleki Dana, P., Sadoughi, F., Asemi, Z., & Yousefi, B. (2021). Anti-cancer properties of quercetin in osteosarcoma. Cancer Cell International, 21(1). https://doi.org/10.1186/S12935-021-02067-8
Mirzaei, S., Gholami, M. H., Zabolian, A., Saleki, H., Farahani, M. V., Hamzehlou, S., … Sethi, G. (2021). Caffeic acid and its derivatives as potential modulators of oncogenic molecular pathways: New hope in the fight against cancer. Pharmacological Research, 171. https://doi.org/10.1016/j.phrs.2021.105759
Monteiro Espíndola, K. M., Ferreira, R. G., Mosquera Narvaez, L. E., Rocha Silva Rosario, A. C., Machado Da Silva, A. H., Bispo Silva, A. G., … Chagas Monteiro, M. (2019). Chemical and Pharmacological Aspects of Caffeic Acid and Its Activity in Hepatocarcinoma. Frontiers in Oncology, 9(JUN). https://doi.org/10.3389/FONC.2019.00541
Nenclares, P., & Harrington, K. J. (2020). The biology of cancer. Medicine, 48(2), 67–72. https://doi.org/10.1016/J.MPMED.2019.11.001
Pandey, P., & Khan, F. (2021). A mechanistic review of the anticancer potential of hesperidin, a natural flavonoid from citrus fruits. Nutrition Research (New York, N.Y.), 92, 21–31. https://doi.org/10.1016/J.NUTRES.2021.05.011
Pecorino, L. (2012). Molecular Biology of Cancer: Mechanisms, Targets, and Therapeutics. 360. Retrieved from http://books.google.com/books?id=tI_vcU85QU4C&pgis=1
Pricci, M., Girardi, B., Giorgio, F., Losurdo, G., Ierardi, E., & Di Leo, A. (2020). Curcumin and Colorectal Cancer: From Basic to Clinical Evidences. International Journal of Molecular Sciences, 21(7). https://doi.org/10.3390/IJMS21072364
Ranjan, A., Ramachandran, S., Gupta, N., Kaushik, I., Wright, S., Srivastava, S., … Srivastava, S. K. (2019). Role of Phytochemicals in Cancer Prevention. International Journal of Molecular Sciences 2019, Vol. 20, Page 4981, 20(20), 4981. https://doi.org/10.3390/IJMS20204981
Reyes-Farias, M., & Carrasco-Pozo, C. (2019). The Anti-Cancer Effect of Quercetin: Molecular Implications in Cancer Metabolism. International Journal of Molecular Sciences, 20(13), 3177. https://doi.org/10.3390/IJMS20133177
Rizeq, B., Gupta, I., Ilesanmi, J., AlSafran, M., Rahman, M. D. M., & Ouhtit, A. (2020). The Power of Phytochemicals Combination in Cancer Chemoprevention. Journal of Cancer, 11(15), 4521. https://doi.org/10.7150/JCA.34374
Roy, M., & Datta, A. (Computer scientist). (2019). Cancer genetics and therapeutics : focus on phytochemicals. 239.
Saneja, A., Arora, D., Kumar, R., Dubey, R. D., Panda, A. K., & Gupta, P. N. (2018). Therapeutic applications of betulinic acid nanoformulations. Annals of the New York Academy of Sciences, 1421(1), 5–18. https://doi.org/10.1111/NYAS.13570
Schwiebs, A., & Radeke, H. H. (2017). Immunopharmacological Activity of Betulin in Inflammation-associated Carcinogenesis. Anti-Cancer Agents in Medicinal Chemistry, 18(5), 645–651. https://doi.org/10.2174/1871520617666171012124820
Shafabakhsh, R., & Asemi, Z. (2019). Quercetin: a natural compound for ovarian cancer treatment. Journal of Ovarian Research, 12(1). https://doi.org/10.1186/S13048-019-0530-4
Shen, H., Liu, L., Yang, Y., Xun, W., Wei, K., & Zeng, G. (2017). Betulinic Acid Inhibits Cell Proliferation in Human Oral Squamous Cell Carcinoma via Modulating ROS-Regulated p53 Signaling. Oncology Research, 25(7), 1141. https://doi.org/10.3727/096504017X14841698396784
Shukla, Y., & Singh, R. (2011). Resveratrol and cellular mechanisms of cancer prevention. Annals of the New York Academy of Sciences, 1215(1), 1–8. https://doi.org/10.1111/j.1749-6632.2010.05870.x
Sirota, R., Gibson, D., & Kohen, R. (2015). The role of the catecholic and the electrophilic moieties of caffeic acid in Nrf2/Keap1 pathway activation in ovarian carcinoma cell lines. Redox Biology, 4, 48–59. https://doi.org/10.1016/j.redox.2014.11.012
Socała, K., Szopa, A., Serefko, A., Poleszak, E., & Wlaź, P. (2020). Neuroprotective Effects of Coffee Bioactive Compounds: A Review. International Journal of Molecular Sciences, 22(1), 1–64. https://doi.org/10.3390/IJMS22010107
Subramanian, A. P., Jaganathan, S. K., Mandal, M., Supriyanto, E., & Muhamad, I. I. (2016). Gallic acid induced apoptotic events in HCT-15 colon cancer cells. World Journal of Gastroenterology, 22(15), 3952. https://doi.org/10.3748/WJG.V22.I15.3952
Tajuddin, W. N. B. W. M., Lajis, N. H., Abas, F., Othman, I., & Naidu, R. (2019). Mechanistic Understanding of Curcumin’s Therapeutic Effects in Lung Cancer. Nutrients, 11(12). https://doi.org/10.3390/NU11122989
Tang, H., Yao, X., Yao, C., Zhao, X., Zuo, H., & Li, Z. (2017). Anti-colon cancer effect of caffeic acid p-nitro-phenethyl ester in vitro and in vivo and detection of its metabolites. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-07953-8
Tang, S. M., Deng, X. T., Zhou, J., Li, Q. P., Ge, X. X., & Miao, L. (2020). Pharmacological basis and new insights of quercetin action in respect to its anti-cancer effects. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 121. https://doi.org/10.1016/J.BIOPHA.2019.109604
Teng, Y. N., Wang, C. C. N., Liao, W. C., Lan, Y. H., & Hung, C. C. (2020). Caffeic Acid Attenuates Multi-Drug Resistance in Cancer Cells by Inhibiting Efflux Function of Human P-glycoprotein. Molecules (Basel, Switzerland), 25(2). https://doi.org/10.3390/MOLECULES25020247
Termini, D., Den Hartogh, D. J., Jaglanian, A., & Tsiani, E. (2020). Curcumin against Prostate Cancer: Current Evidence. Biomolecules, 10(11), 1–40. https://doi.org/10.3390/BIOM10111536
Verma, S., Singh, A., & Mishra, A. (2013). Gallic acid: molecular rival of cancer. Environmental Toxicology and Pharmacology, 35(3), 473–485. https://doi.org/10.1016/J.ETAP.2013.02.011
Wang, L., Zhang, S., & Wang, X. (2021). The Metabolic Mechanisms of Breast Cancer Metastasis. Frontiers in Oncology, 10. https://doi.org/10.3389/FONC.2020.602416/FULL
Xiong, H., Wang, J., Ran, Q., Lou, G., Peng, C., Gan, Q., … Huang, Q. (2019). Hesperidin: A Therapeutic Agent For Obesity. Drug Design, Development and Therapy, 13, 3855. https://doi.org/10.2147/DDDT.S227499
Yap, K. M., Sekar, M., Wu, Y. S., Gan, S. H., Rani, N. N. I. M., Seow, L. J., … Lum, P. T. (2021). Hesperidin and its aglycone hesperetin in breast cancer therapy: A review of recent developments and future prospects. Saudi Journal of Biological Sciences, 28(12), 6730–6747. https://doi.org/10.1016/J.SJBS.2021.07.046
You, B. R., Moon, H. J., Han, Y. H., & Park, W. H. (2010). Gallic acid inhibits the growth of HeLa cervical cancer cells via apoptosis and/or necrosis. Food and Chemical Toxicology, 48(5), 1334–1340. https://doi.org/10.1016/J.FCT.2010.02.034
Zhang, D. M., Xu, H. G., Wang, L., Li, Y. J., Sun, P. H., Wu, X. M., … Ye, W. C. (2015). Betulinic Acid and its Derivatives as Potential Antitumor Agents. Medicinal Research Reviews, 35(6), 1127–1155. https://doi.org/10.1002/med.21353
ZHONG, Y., LIANG, N., LIU, Y., & CHENG, M. S. (2021). Recent progress on betulinic acid and its derivatives as antitumor agents: a mini review. Chinese Journal of Natural Medicines, 19(9), 641–647. https://doi.org/10.1016/S1875-5364(21)60097-3
Zoi, V., Galani, V., Lianos, G. D., Voulgaris, S., Kyritsis, A. P., & Alexiou, G. A. (2021). The Role of Curcumin in Cancer Treatment. Biomedicines, 9(9). https://doi.org/10.3390/BIOMEDICINES9091086
Sever, A., Toy, Y., Erdoğan, M. K., Gundogdu, R. (2023). Kemoterapide Kullanılan Güncel Fitokimyasallar. Muş Alparslan Üniversitesi Sağlık Bilimleri Dergisi, 3(1), 64-76.