Review
BibTex RIS Cite

Kemoterapide Kullanılan Güncel Fitokimyasallar

Year 2023, Volume: 3 Issue: 1, 64 - 76, 28.04.2023

Abstract

Bitkisel ürünler antik çağlardan beri birçok hastalığın tedavisinde ve hastalıklardan korunma sürecinde tercih edilmektedir. Günümüzde üretilen ilaçların büyük bir bölümü bitkisel kökenli veya bitkilerden ilham alınarak tasarlanmaktadır. Geleneksel kanser tedavisinde kullanılan yöntemlerin yeterli etkinliği göstermemesi ve yan etkilerinin fazla olması yeni tedavi yaklaşımlarını zorunlu kılmaktadır. Bitkisel kaynaklı ilaçların daha az yan etkiye sahip olması ve birden fazla yolak üzerinden etkinliğini göstermesi önemli bir avantaj olarak kabul edilmektedir. Fitokimyasallar bir süredir kanser vakalarında monoterapi yada diğer ajanlarla kombine terapi olarak kullanılmaktadır. Kanser hücrelerini diğer tedavi yöntemlerine duyarlı hale getirilmesi ve bu yöntemlerin ortaya çıkardığı zararların azaltılmasında önemli etkiye sahiptir. Bu derlemede amaç; günümüzde tercih edilen güncel fitokimyasalların yapısının incelenmesi ve etki mekanizmalarının anlaşılmasıdır.

References

  • Agarwal, C., Tyagi, A., & Agarwal, R. (2006). Gallic acid cause inactivating phosphorylation of cdc25A/cdc25C-cdc2 via ATM-Chk2 activation, leading to cell cycle arrest, and induces apoptosis in human prostate carcinoma DU145 cells. Molecular Cancer Therapeutics, 5(12), 3294–3302. https://doi.org/10.1158/1535-7163.MCT-06-0483
  • Aggarwal, V., Tuli, H. S., Thakral, F., Singhal, P., Aggarwal, D., Srivastava, S., … Sethi, G. (2020). Molecular mechanisms of action of hesperidin in cancer: Recent trends and advancements. Experimental Biology and Medicine, 245(5), 486. https://doi.org/10.1177/1535370220903671
  • Ahmadi, A., & Shadboorestan, A. (2016). Oxidative stress and cancer; the role of hesperidin, a citrus natural bioflavonoid, as a cancer chemoprotective agent. Nutrition and Cancer, 68(1), 29–39. https://doi.org/10.1080/01635581.2015.1078822
  • Ahmed, S., Khan, H., Fratantonio, D., Hasan, M. M., Sharifi, S., Fathi, N., … Rastrelli, L. (2019). Apoptosis induced by luteolin in breast cancer: Mechanistic and therapeutic perspectives. Phytomedicine : International Journal of Phytotherapy and Phytopharmacology, 59. https://doi.org/10.1016/J.PHYMED.2019.152883
  • Aluyen, J. K., Ton, Q. N., Tran, T., Yang, A. E., Gottlieb, H. B., & Bellanger, R. A. (2012). Resveratrol: Potential as Anticancer Agent. Http://Dx.Doi.Org/10.3109/19390211.2011.650842, 9(1), 45–56. https://doi.org/10.3109/19390211.2011.650842
  • Ambasta, R. K., Gupta, R., Kumar, D., Bhattacharya, S., Sarkar, A., & Kumar, P. (2018). Can luteolin be a therapeutic molecule for both colon cancer and diabetes? Briefings in Functional Genomics, 18(4), 230–239. https://doi.org/10.1093/BFGP/ELY036
  • Asgharian, P., Tazehkand, A. P., Soofiyani, S. R., Hosseini, K., Martorell, M., Tarhriz, V., … Cho, W. C. (2021). Quercetin Impact in Pancreatic Cancer: An Overview on Its Therapeutic Effects. Oxidative Medicine and Cellular Longevity, 2021. https://doi.org/10.1155/2021/4393266
  • Carter, L. G., D’Orazio, J. A., & Pearson, K. J. (2014). Resveratrol and cancer: focus on in vivo evidence. Endocrine-Related Cancer, 21(3), R209. https://doi.org/10.1530/ERC-13-0171
  • Chen, Y., Wu, X., Liu, C., & Zhou, Y. (2020). Betulinic acid triggers apoptosis and inhibits migration and invasion of gastric cancer cells by impairing EMT progress. Cell Biochemistry and Function, 38(6), 702–709. https://doi.org/10.1002/cbf.3537
  • Chiang, E. P. I., Tsai, S. Y., Kuo, Y. H., Pai, M. H., Chiu, H. L., Rodriguez, R. L., & Tang, F. Y. (2014). Caffeic acid derivatives inhibit the growth of colon cancer: Involvement of the PI3-K/Akt and AMPK signaling pathways. PLoS ONE, 9(6). https://doi.org/10.1371/journal.pone.0099631
  • Da Costa, D. C. F., Fialho, E., & Silva, J. L. (2017). Cancer chemoprevention by resveratrol: The P53 tumor suppressor protein as a promising molecular target. Molecules, 22(6). https://doi.org/10.3390/molecules22061014
  • D. (2019). Health benefits of resveratrol administration. Acta Biochimica Polonica, 66(1), 13–21. https://doi.org/10.18388/ABP.2018_2749
  • Ghafouri-Fard, S., Shabestari, F. A., Vaezi, S., Abak, A., Shoorei, H., Karimi, A., … Basiri, A. (2021). Emerging impact of quercetin in the treatment of prostate cancer. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 138. https://doi.org/10.1016/J.BIOPHA.2021.111548
  • Giordano, A., & Tommonaro, G. (2019). Curcumin and Cancer. Nutrients, 11(10). https://doi.org/10.3390/NU11102376
  • Hanahan, D. (2022, January 1). Hallmarks of Cancer: New Dimensions. Cancer Discovery, Vol. 12, pp. 31–46. https://doi.org/10.1158/2159-8290.CD-21-1059
  • Hanahan, D., & Weinberg, R. A. (2000). The hallmarks of cancer. Cell, 100(1), 57–70. https://doi.org/10.1016/S0092-8674(00)81683-9
  • Hassanalilou, T., Ghavamzadeh, S., & Khalili, L. (2019). Curcumin and Gastric Cancer: a Review on Mechanisms of Action. Journal of Gastrointestinal Cancer, 50(2), 185–192. https://doi.org/10.1007/S12029-018-00186-6
  • Helleday, T., Petermann, E., Lundin, C., Hodgson, B., & Sharma, R. A. (2008). DNA repair pathways as targets for cancer therapy. Nature Reviews Cancer, 8(3), 193–204. https://doi.org/10.1038/nrc2342
  • Ho, H. H., Chang, C. Sen, Ho, W. C., Liao, S. Y., Lin, W. L., & Wang, C. J. (2013). Gallic acid inhibits gastric cancer cells metastasis and invasive growth via increased expression of RhoB, downregulation of AKT/small GTPase signals and inhibition of NF-κB activity. Toxicology and Applied Pharmacology, 266(1), 76–85. https://doi.org/10.1016/J.TAAP.2012.10.019
  • Ho, W. S. (2015). Active phytochemicals from Chinese herbal medicines: Anti-cancer activities and mechanisms. Active Phytochemicals from Chinese Herbal Medicines: Anti-Cancer Activities and Mechanisms, 1–160. https://doi.org/10.1201/b18824
  • Hussain, Y., Cui, J. H., Khan, H., Aschner, M., Batiha, G. E. S., & Jeandet, P. (2021). Luteolin and cancer metastasis suppression: focus on the role of epithelial to mesenchymal transition. Medical Oncology (Northwood, London, England), 38(6). https://doi.org/10.1007/S12032-021-01508-8
  • Imran, M., Rauf, A., Abu-Izneid, T., Nadeem, M., Shariati, M. A., Khan, I. A., … Mubarak, M. S. (2019). Luteolin, a flavonoid, as an anticancer agent: A review. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 112. https://doi.org/10.1016/J.BIOPHA.2019.108612
  • Jiang, W., Li, X., Dong, S., & Zhou, W. (2021). Betulinic acid in the treatment of tumour diseases: Application and research progress. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 142. https://doi.org/10.1016/J.BIOPHA.2021.111990
  • Johnson, I. T. (2007). Phytochemicals and cancer. Proceedings of the Nutrition Society, 66(2), 207–215. https://doi.org/10.1017/S0029665107005459 Kim, J., Wie, M. B., Ahn, M., Tanaka, A., Matsuda, H., & Shin, T. (2019). Benefits of hesperidin in central nervous system disorders: A review. Anatomy and Cell Biology, 52(4), 369–377. https://doi.org/10.5115/acb.19.119
  • Kim, S. Y., Hwangbo, H., Kim, M. Y., Ji, S. Y., Kim, D. H., Lee, H., … Choi, Y. H. (2021). Betulinic acid restricts human bladder cancer cell proliferation in vitro by inducing caspase-dependent cell death and cell cycle arrest, and decreasing metastatic potential. Molecules, 26(5). https://doi.org/10.3390/molecules26051381
  • Agarwal, C., Tyagi, A., & Agarwal, R. (2006). Gallic acid cause inactivating phosphorylation of cdc25A/cdc25C-cdc2 via ATM-Chk2 activation, leading to cell cycle arrest, and induces apoptosis in human prostate carcinoma DU145 cells. Molecular Cancer Therapeutics, 5(12), 3294–3302. https://doi.org/10.1158/1535-7163.MCT-06-0483
  • Aggarwal, V., Tuli, H. S., Thakral, F., Singhal, P., Aggarwal, D., Srivastava, S., … Sethi, G. (2020). Molecular mechanisms of action of hesperidin in cancer: Recent trends and advancements. Experimental Biology and Medicine, 245(5), 486. https://doi.org/10.1177/1535370220903671
  • Ahmadi, A., & Shadboorestan, A. (2016). Oxidative stress and cancer; the role of hesperidin, a citrus natural bioflavonoid, as a cancer chemoprotective agent. Nutrition and Cancer, 68(1), 29–39. https://doi.org/10.1080/01635581.2015.1078822
  • Ahmed, S., Khan, H., Fratantonio, D., Hasan, M. M., Sharifi, S., Fathi, N., … Rastrelli, L. (2019). Apoptosis induced by luteolin in breast cancer: Mechanistic and therapeutic perspectives. Phytomedicine : International Journal of Phytotherapy and Phytopharmacology, 59. https://doi.org/10.1016/J.PHYMED.2019.152883
  • Aluyen, J. K., Ton, Q. N., Tran, T., Yang, A. E., Gottlieb, H. B., & Bellanger, R. A. (2012). Resveratrol: Potential as Anticancer Agent. Http://Dx.Doi.Org/10.3109/19390211.2011.650842, 9(1), 45–56. https://doi.org/10.3109/19390211.2011.650842
  • Ambasta, R. K., Gupta, R., Kumar, D., Bhattacharya, S., Sarkar, A., & Kumar, P. (2018). Can luteolin be a therapeutic molecule for both colon cancer and diabetes? Briefings in Functional Genomics, 18(4), 230–239. https://doi.org/10.1093/BFGP/ELY036
  • Asgharian, P., Tazehkand, A. P., Soofiyani, S. R., Hosseini, K., Martorell, M., Tarhriz, V., … Cho, W. C. (2021). Quercetin Impact in Pancreatic Cancer: An Overview on Its Therapeutic Effects. Oxidative Medicine and Cellular Longevity, 2021. https://doi.org/10.1155/2021/4393266
  • Carter, L. G., D’Orazio, J. A., & Pearson, K. J. (2014). Resveratrol and cancer: focus on in vivo evidence. Endocrine-Related Cancer, 21(3), R209. https://doi.org/10.1530/ERC-13-0171
  • Chen, Y., Wu, X., Liu, C., & Zhou, Y. (2020). Betulinic acid triggers apoptosis and inhibits migration and invasion of gastric cancer cells by impairing EMT progress. Cell Biochemistry and Function, 38(6), 702–709. https://doi.org/10.1002/cbf.3537
  • Chiang, E. P. I., Tsai, S. Y., Kuo, Y. H., Pai, M. H., Chiu, H. L., Rodriguez, R. L., & Tang, F. Y. (2014). Caffeic acid derivatives inhibit the growth of colon cancer: Involvement of the PI3-K/Akt and AMPK signaling pathways. PLoS ONE, 9(6). https://doi.org/10.1371/journal.pone.0099631
  • Da Costa, D. C. F., Fialho, E., & Silva, J. L. (2017). Cancer chemoprevention by resveratrol: The P53 tumor suppressor protein as a promising molecular target. Molecules, 22(6). https://doi.org/10.3390/molecules22061014
  • Davoodvandi, A., Shabani Varkani, M., Clark, C. C. T., & Jafarnejad, S. (2020). Quercetin as an anticancer agent: Focus on esophageal cancer. Journal of Food Biochemistry, 44(9). https://doi.org/10.1111/JFBC.13374
  • Ezzati, M., Yousefi, B., Velaei, K., & Safa, A. (2020). A review on anti-cancer properties of Quercetin in breast cancer. Life Sciences, 248. https://doi.org/10.1016/J.LFS.2020.117463
  • Fasoulakis, Z., Koutras, A., Syllaios, A., Schizas, D., Garmpis, N., Diakosavvas, M., … Kontomanolis, E. N. (2021). Breast Cancer Apoptosis and the Therapeutic Role of Luteolin. Chirurgia (Bucharest, Romania : 1990), 116(2), 170–177. https://doi.org/10.21614/CHIRURGIA.116.2.170
  • Feng, T., Wei, Y., Lee, R. J., & Zhao, L. (2017). Liposomal curcumin and its application in cancer. International Journal of Nanomedicine, 12, 6027–6044. https://doi.org/10.2147/IJN.S132434
  • Franza, L., Carusi, V., Nucera, E., & Pandolfi, F. (2021). Luteolin, inflammation and cancer: Special emphasis on gut microbiota. BioFactors (Oxford, England), 47(2), 181–189. https://doi.org/10.1002/BIOF.1710
  • Fulda, S. (2009). Betulinic acid: A natural product with anticancer activity. Molecular Nutrition and Food Research, 53(1), 140–146. https://doi.org/10.1002/mnfr.200700491 Galiniak, S., Aebisher, D., & Bartusik-Aebisher, D. (2019). Health benefits of resveratrol administration. Acta Biochimica Polonica, 66(1), 13–21. https://doi.org/10.18388/ABP.2018_2749
  • Ghafouri-Fard, S., Shabestari, F. A., Vaezi, S., Abak, A., Shoorei, H., Karimi, A., … Basiri, A. (2021). Emerging impact of quercetin in the treatment of prostate cancer. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 138. https://doi.org/10.1016/J.BIOPHA.2021.111548 Giordano, A., & Tommonaro, G. (2019). Curcumin and Cancer. Nutrients, 11(10). https://doi.org/10.3390/NU11102376
  • Hanahan, D. (2022, January 1). Hallmarks of Cancer: New Dimensions. Cancer Discovery, Vol. 12, pp. 31–46. https://doi.org/10.1158/2159-8290.CD-21-1059 Hanahan, D., & Weinberg, R. A. (2000). The hallmarks of cancer. Cell, 100(1), 57–70. https://doi.org/10.1016/S0092-8674(00)81683-9
  • Hassanalilou, T., Ghavamzadeh, S., & Khalili, L. (2019). Curcumin and Gastric Cancer: a Review on Mechanisms of Action. Journal of Gastrointestinal Cancer, 50(2), 185–192. https://doi.org/10.1007/S12029-018-00186-6
  • Helleday, T., Petermann, E., Lundin, C., Hodgson, B., & Sharma, R. A. (2008). DNA repair pathways as targets for cancer therapy. Nature Reviews Cancer, 8(3), 193–204. https://doi.org/10.1038/nrc2342
  • Ho, H. H., Chang, C. Sen, Ho, W. C., Liao, S. Y., Lin, W. L., & Wang, C. J. (2013). Gallic acid inhibits gastric cancer cells metastasis and invasive growth via increased expression of RhoB, downregulation of AKT/small GTPase signals and inhibition of NF-κB activity. Toxicology and Applied Pharmacology, 266(1), 76–85. https://doi.org/10.1016/J.TAAP.2012.10.019
  • Ho, W. S. (2015). Active phytochemicals from Chinese herbal medicines: Anti-cancer activities and mechanisms. Active Phytochemicals from Chinese Herbal Medicines: Anti-Cancer Activities and Mechanisms, 1–160. https://doi.org/10.1201/b18824
  • Hussain, Y., Cui, J. H., Khan, H., Aschner, M., Batiha, G. E. S., & Jeandet, P. (2021). Luteolin and cancer metastasis suppression: focus on the role of epithelial to mesenchymal transition. Medical Oncology (Northwood, London, England), 38(6). https://doi.org/10.1007/S12032-021-01508-8
  • Imran, M., Rauf, A., Abu-Izneid, T., Nadeem, M., Shariati, M. A., Khan, I. A., … Mubarak, M. S. (2019). Luteolin, a flavonoid, as an anticancer agent: A review. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 112. https://doi.org/10.1016/J.BIOPHA.2019.108612
  • Jiang, W., Li, X., Dong, S., & Zhou, W. (2021). Betulinic acid in the treatment of tumour diseases: Application and research progress. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 142. https://doi.org/10.1016/J.BIOPHA.2021.111990
  • Johnson, I. T. (2007). Phytochemicals and cancer. Proceedings of the Nutrition Society, 66(2), 207–215. https://doi.org/10.1017/S0029665107005459 Kim, J., Wie, M. B., Ahn, M., Tanaka, A., Matsuda, H., & Shin, T. (2019). Benefits of hesperidin in central nervous system disorders: A review. Anatomy and Cell Biology, 52(4), 369–377. https://doi.org/10.5115/acb.19.119
  • Kim, S. Y., Hwangbo, H., Kim, M. Y., Ji, S. Y., Kim, D. H., Lee, H., … Choi, Y. H. (2021). Betulinic acid restricts human bladder cancer cell proliferation in vitro by inducing caspase-dependent cell death and cell cycle arrest, and decreasing metastatic potential. Molecules, 26(5). https://doi.org/10.3390/molecules26051381
  • Ko, E.-B., Jang, Y.-G., Kim, C.-W., Go, R.-E., Lee, H. K., & Choi, K.-C. (2022). Gallic Acid Hindered Lung Cancer Progression by Inducing Cell Cycle Arrest and Apoptosis in A549 Lung Cancer Cells via PI3K/Akt Pathway. Biomolecules & Therapeutics, 30(2), 151–161. https://doi.org/10.4062/biomolther.2021.074
  • Ko, J. H., Sethi, G., Um, J. Y., Shanmugam, M. K., Arfuso, F., Kumar, A. P., … Ahn, K. S. (2017). The Role of Resveratrol in Cancer Therapy. International Journal of Molecular Sciences, 18(12). https://doi.org/10.3390/IJMS18122589
  • Kumar, P., Bhadauria, A. S., Singh, A. K., & Saha, S. (2018). Betulinic acid as apoptosis activator: Molecular mechanisms, mathematical modeling and chemical modifications. Life Sciences, 209, 24–33. https://doi.org/10.1016/J.LFS.2018.07.056
  • Lee, K. W., Bode, A. M., & Dong, Z. (2011). Molecular targets of phytochemicals for cancer prevention. Nature Reviews Cancer 2011 11:3, 11(3), 211–218. https://doi.org/10.1038/nrc3017
  • Long, J., Guan, P., Hu, X., Yang, L., He, L., Lin, Q., … Li, T. (2021). Natural Polyphenols as Targeted Modulators in Colon Cancer: Molecular Mechanisms and Applications. Frontiers in Immunology, 12. https://doi.org/10.3389/FIMMU.2021.635484/FULL
  • Maleki Dana, P., Sadoughi, F., Asemi, Z., & Yousefi, B. (2021). Anti-cancer properties of quercetin in osteosarcoma. Cancer Cell International, 21(1). https://doi.org/10.1186/S12935-021-02067-8
  • Mirzaei, S., Gholami, M. H., Zabolian, A., Saleki, H., Farahani, M. V., Hamzehlou, S., … Sethi, G. (2021). Caffeic acid and its derivatives as potential modulators of oncogenic molecular pathways: New hope in the fight against cancer. Pharmacological Research, 171. https://doi.org/10.1016/j.phrs.2021.105759
  • Monteiro Espíndola, K. M., Ferreira, R. G., Mosquera Narvaez, L. E., Rocha Silva Rosario, A. C., Machado Da Silva, A. H., Bispo Silva, A. G., … Chagas Monteiro, M. (2019). Chemical and Pharmacological Aspects of Caffeic Acid and Its Activity in Hepatocarcinoma. Frontiers in Oncology, 9(JUN). https://doi.org/10.3389/FONC.2019.00541 Nenclares, P., & Harrington, K. J. (2020). The biology of cancer. Medicine, 48(2), 67–72. https://doi.org/10.1016/J.MPMED.2019.11.001
  • Pandey, P., & Khan, F. (2021). A mechanistic review of the anticancer potential of hesperidin, a natural flavonoid from citrus fruits. Nutrition Research (New York, N.Y.), 92, 21–31. https://doi.org/10.1016/J.NUTRES.2021.05.011
  • Pecorino, L. (2012). Molecular Biology of Cancer: Mechanisms, Targets, and Therapeutics. 360. Retrieved from http://books.google.com/books?id=tI_vcU85QU4C&pgis=1 Pricci, M., Girardi, B., Giorgio, F., Losurdo, G., Ierardi, E., & Di Leo, A. (2020). Curcumin and Colorectal Cancer: From Basic to Clinical Evidences. International Journal of Molecular Sciences, 21(7). https://doi.org/10.3390/IJMS21072364
  • Ranjan, A., Ramachandran, S., Gupta, N., Kaushik, I., Wright, S., Srivastava, S., … Srivastava, S. K. (2019). Role of Phytochemicals in Cancer Prevention. International Journal of Molecular Sciences 2019, Vol. 20, Page 4981, 20(20), 4981. https://doi.org/10.3390/IJMS20204981
  • Reyes-Farias, M., & Carrasco-Pozo, C. (2019). The Anti-Cancer Effect of Quercetin: Molecular Implications in Cancer Metabolism. International Journal of Molecular Sciences, 20(13), 3177. https://doi.org/10.3390/IJMS20133177
  • Rizeq, B., Gupta, I., Ilesanmi, J., AlSafran, M., Rahman, M. D. M., & Ouhtit, A. (2020). The Power of Phytochemicals Combination in Cancer Chemoprevention. Journal of Cancer, 11(15), 4521. https://doi.org/10.7150/JCA.34374
  • Roy, M., & Datta, A. (Computer scientist). (2019). Cancer genetics and therapeutics : focus on phytochemicals. 239.
  • Saneja, A., Arora, D., Kumar, R., Dubey, R. D., Panda, A. K., & Gupta, P. N. (2018). Therapeutic applications of betulinic acid nanoformulations. Annals of the New York Academy of Sciences, 1421(1), 5–18. https://doi.org/10.1111/NYAS.13570
  • Schwiebs, A., & Radeke, H. H. (2017). Immunopharmacological Activity of Betulin in Inflammation-associated Carcinogenesis. Anti-Cancer Agents in Medicinal Chemistry, 18(5), 645–651. https://doi.org/10.2174/1871520617666171012124820
  • Shafabakhsh, R., & Asemi, Z. (2019). Quercetin: a natural compound for ovarian cancer treatment. Journal of Ovarian Research, 12(1). https://doi.org/10.1186/S13048-019-0530-4
  • Shen, H., Liu, L., Yang, Y., Xun, W., Wei, K., & Zeng, G. (2017). Betulinic Acid Inhibits Cell Proliferation in Human Oral Squamous Cell Carcinoma via Modulating ROS-Regulated p53 Signaling. Oncology Research, 25(7), 1141. https://doi.org/10.3727/096504017X14841698396784
  • Shukla, Y., & Singh, R. (2011). Resveratrol and cellular mechanisms of cancer prevention. Annals of the New York Academy of Sciences, 1215(1), 1–8. https://doi.org/10.1111/j.1749-6632.2010.05870.x
  • Sirota, R., Gibson, D., & Kohen, R. (2015). The role of the catecholic and the electrophilic moieties of caffeic acid in Nrf2/Keap1 pathway activation in ovarian carcinoma cell lines. Redox Biology, 4, 48–59. https://doi.org/10.1016/j.redox.2014.11.012
  • Socała, K., Szopa, A., Serefko, A., Poleszak, E., & Wlaź, P. (2020). Neuroprotective Effects of Coffee Bioactive Compounds: A Review. International Journal of Molecular Sciences, 22(1), 1–64. https://doi.org/10.3390/IJMS22010107
  • Subramanian, A. P., Jaganathan, S. K., Mandal, M., Supriyanto, E., & Muhamad, I. I. (2016). Gallic acid induced apoptotic events in HCT-15 colon cancer cells. World Journal of Gastroenterology, 22(15), 3952. https://doi.org/10.3748/WJG.V22.I15.3952
  • Tajuddin, W. N. B. W. M., Lajis, N. H., Abas, F., Othman, I., & Naidu, R. (2019). Mechanistic Understanding of Curcumin’s Therapeutic Effects in Lung Cancer. Nutrients, 11(12). https://doi.org/10.3390/NU11122989
  • Tang, H., Yao, X., Yao, C., Zhao, X., Zuo, H., & Li, Z. (2017). Anti-colon cancer effect of caffeic acid p-nitro-phenethyl ester in vitro and in vivo and detection of its metabolites. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-07953-8
  • Tang, S. M., Deng, X. T., Zhou, J., Li, Q. P., Ge, X. X., & Miao, L. (2020). Pharmacological basis and new insights of quercetin action in respect to its anti-cancer effects. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 121. https://doi.org/10.1016/J.BIOPHA.2019.109604
  • Teng, Y. N., Wang, C. C. N., Liao, W. C., Lan, Y. H., & Hung, C. C. (2020). Caffeic Acid Attenuates Multi-Drug Resistance in Cancer Cells by Inhibiting Efflux Function of Human P-glycoprotein. Molecules (Basel, Switzerland), 25(2). https://doi.org/10.3390/MOLECULES25020247
  • Termini, D., Den Hartogh, D. J., Jaglanian, A., & Tsiani, E. (2020). Curcumin against Prostate Cancer: Current Evidence. Biomolecules, 10(11), 1–40. https://doi.org/10.3390/BIOM10111536
  • Verma, S., Singh, A., & Mishra, A. (2013). Gallic acid: molecular rival of cancer. Environmental Toxicology and Pharmacology, 35(3), 473–485. https://doi.org/10.1016/J.ETAP.2013.02.011
  • Wang, L., Zhang, S., & Wang, X. (2021). The Metabolic Mechanisms of Breast Cancer Metastasis. Frontiers in Oncology, 10. https://doi.org/10.3389/FONC.2020.602416/FULL
  • Xiong, H., Wang, J., Ran, Q., Lou, G., Peng, C., Gan, Q., … Huang, Q. (2019). Hesperidin: A Therapeutic Agent For Obesity. Drug Design, Development and Therapy, 13, 3855. https://doi.org/10.2147/DDDT.S227499
  • Yap, K. M., Sekar, M., Wu, Y. S., Gan, S. H., Rani, N. N. I. M., Seow, L. J., … Lum, P. T. (2021). Hesperidin and its aglycone hesperetin in breast cancer therapy: A review of recent developments and future prospects. Saudi Journal of Biological Sciences, 28(12), 6730–6747. https://doi.org/10.1016/J.SJBS.2021.07.046
  • You, B. R., Moon, H. J., Han, Y. H., & Park, W. H. (2010). Gallic acid inhibits the growth of HeLa cervical cancer cells via apoptosis and/or necrosis. Food and Chemical Toxicology, 48(5), 1334–1340. https://doi.org/10.1016/J.FCT.2010.02.034
  • Zhang, D. M., Xu, H. G., Wang, L., Li, Y. J., Sun, P. H., Wu, X. M., … Ye, W. C. (2015). Betulinic Acid and its Derivatives as Potential Antitumor Agents. Medicinal Research Reviews, 35(6), 1127–1155. https://doi.org/10.1002/med.21353
  • ZHONG, Y., LIANG, N., LIU, Y., & CHENG, M. S. (2021). Recent progress on betulinic acid and its derivatives as antitumor agents: a mini review. Chinese Journal of Natural Medicines, 19(9), 641–647. https://doi.org/10.1016/S1875-5364(21)60097-3
  • Zoi, V., Galani, V., Lianos, G. D., Voulgaris, S., Kyritsis, A. P., & Alexiou, G. A. (2021). The Role of Curcumin in Cancer Treatment. Biomedicines, 9(9). https://doi.org/10.3390/BIOMEDICINES9091086
Year 2023, Volume: 3 Issue: 1, 64 - 76, 28.04.2023

Abstract

References

  • Agarwal, C., Tyagi, A., & Agarwal, R. (2006). Gallic acid cause inactivating phosphorylation of cdc25A/cdc25C-cdc2 via ATM-Chk2 activation, leading to cell cycle arrest, and induces apoptosis in human prostate carcinoma DU145 cells. Molecular Cancer Therapeutics, 5(12), 3294–3302. https://doi.org/10.1158/1535-7163.MCT-06-0483
  • Aggarwal, V., Tuli, H. S., Thakral, F., Singhal, P., Aggarwal, D., Srivastava, S., … Sethi, G. (2020). Molecular mechanisms of action of hesperidin in cancer: Recent trends and advancements. Experimental Biology and Medicine, 245(5), 486. https://doi.org/10.1177/1535370220903671
  • Ahmadi, A., & Shadboorestan, A. (2016). Oxidative stress and cancer; the role of hesperidin, a citrus natural bioflavonoid, as a cancer chemoprotective agent. Nutrition and Cancer, 68(1), 29–39. https://doi.org/10.1080/01635581.2015.1078822
  • Ahmed, S., Khan, H., Fratantonio, D., Hasan, M. M., Sharifi, S., Fathi, N., … Rastrelli, L. (2019). Apoptosis induced by luteolin in breast cancer: Mechanistic and therapeutic perspectives. Phytomedicine : International Journal of Phytotherapy and Phytopharmacology, 59. https://doi.org/10.1016/J.PHYMED.2019.152883
  • Aluyen, J. K., Ton, Q. N., Tran, T., Yang, A. E., Gottlieb, H. B., & Bellanger, R. A. (2012). Resveratrol: Potential as Anticancer Agent. Http://Dx.Doi.Org/10.3109/19390211.2011.650842, 9(1), 45–56. https://doi.org/10.3109/19390211.2011.650842
  • Ambasta, R. K., Gupta, R., Kumar, D., Bhattacharya, S., Sarkar, A., & Kumar, P. (2018). Can luteolin be a therapeutic molecule for both colon cancer and diabetes? Briefings in Functional Genomics, 18(4), 230–239. https://doi.org/10.1093/BFGP/ELY036
  • Asgharian, P., Tazehkand, A. P., Soofiyani, S. R., Hosseini, K., Martorell, M., Tarhriz, V., … Cho, W. C. (2021). Quercetin Impact in Pancreatic Cancer: An Overview on Its Therapeutic Effects. Oxidative Medicine and Cellular Longevity, 2021. https://doi.org/10.1155/2021/4393266
  • Carter, L. G., D’Orazio, J. A., & Pearson, K. J. (2014). Resveratrol and cancer: focus on in vivo evidence. Endocrine-Related Cancer, 21(3), R209. https://doi.org/10.1530/ERC-13-0171
  • Chen, Y., Wu, X., Liu, C., & Zhou, Y. (2020). Betulinic acid triggers apoptosis and inhibits migration and invasion of gastric cancer cells by impairing EMT progress. Cell Biochemistry and Function, 38(6), 702–709. https://doi.org/10.1002/cbf.3537
  • Chiang, E. P. I., Tsai, S. Y., Kuo, Y. H., Pai, M. H., Chiu, H. L., Rodriguez, R. L., & Tang, F. Y. (2014). Caffeic acid derivatives inhibit the growth of colon cancer: Involvement of the PI3-K/Akt and AMPK signaling pathways. PLoS ONE, 9(6). https://doi.org/10.1371/journal.pone.0099631
  • Da Costa, D. C. F., Fialho, E., & Silva, J. L. (2017). Cancer chemoprevention by resveratrol: The P53 tumor suppressor protein as a promising molecular target. Molecules, 22(6). https://doi.org/10.3390/molecules22061014
  • D. (2019). Health benefits of resveratrol administration. Acta Biochimica Polonica, 66(1), 13–21. https://doi.org/10.18388/ABP.2018_2749
  • Ghafouri-Fard, S., Shabestari, F. A., Vaezi, S., Abak, A., Shoorei, H., Karimi, A., … Basiri, A. (2021). Emerging impact of quercetin in the treatment of prostate cancer. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 138. https://doi.org/10.1016/J.BIOPHA.2021.111548
  • Giordano, A., & Tommonaro, G. (2019). Curcumin and Cancer. Nutrients, 11(10). https://doi.org/10.3390/NU11102376
  • Hanahan, D. (2022, January 1). Hallmarks of Cancer: New Dimensions. Cancer Discovery, Vol. 12, pp. 31–46. https://doi.org/10.1158/2159-8290.CD-21-1059
  • Hanahan, D., & Weinberg, R. A. (2000). The hallmarks of cancer. Cell, 100(1), 57–70. https://doi.org/10.1016/S0092-8674(00)81683-9
  • Hassanalilou, T., Ghavamzadeh, S., & Khalili, L. (2019). Curcumin and Gastric Cancer: a Review on Mechanisms of Action. Journal of Gastrointestinal Cancer, 50(2), 185–192. https://doi.org/10.1007/S12029-018-00186-6
  • Helleday, T., Petermann, E., Lundin, C., Hodgson, B., & Sharma, R. A. (2008). DNA repair pathways as targets for cancer therapy. Nature Reviews Cancer, 8(3), 193–204. https://doi.org/10.1038/nrc2342
  • Ho, H. H., Chang, C. Sen, Ho, W. C., Liao, S. Y., Lin, W. L., & Wang, C. J. (2013). Gallic acid inhibits gastric cancer cells metastasis and invasive growth via increased expression of RhoB, downregulation of AKT/small GTPase signals and inhibition of NF-κB activity. Toxicology and Applied Pharmacology, 266(1), 76–85. https://doi.org/10.1016/J.TAAP.2012.10.019
  • Ho, W. S. (2015). Active phytochemicals from Chinese herbal medicines: Anti-cancer activities and mechanisms. Active Phytochemicals from Chinese Herbal Medicines: Anti-Cancer Activities and Mechanisms, 1–160. https://doi.org/10.1201/b18824
  • Hussain, Y., Cui, J. H., Khan, H., Aschner, M., Batiha, G. E. S., & Jeandet, P. (2021). Luteolin and cancer metastasis suppression: focus on the role of epithelial to mesenchymal transition. Medical Oncology (Northwood, London, England), 38(6). https://doi.org/10.1007/S12032-021-01508-8
  • Imran, M., Rauf, A., Abu-Izneid, T., Nadeem, M., Shariati, M. A., Khan, I. A., … Mubarak, M. S. (2019). Luteolin, a flavonoid, as an anticancer agent: A review. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 112. https://doi.org/10.1016/J.BIOPHA.2019.108612
  • Jiang, W., Li, X., Dong, S., & Zhou, W. (2021). Betulinic acid in the treatment of tumour diseases: Application and research progress. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 142. https://doi.org/10.1016/J.BIOPHA.2021.111990
  • Johnson, I. T. (2007). Phytochemicals and cancer. Proceedings of the Nutrition Society, 66(2), 207–215. https://doi.org/10.1017/S0029665107005459 Kim, J., Wie, M. B., Ahn, M., Tanaka, A., Matsuda, H., & Shin, T. (2019). Benefits of hesperidin in central nervous system disorders: A review. Anatomy and Cell Biology, 52(4), 369–377. https://doi.org/10.5115/acb.19.119
  • Kim, S. Y., Hwangbo, H., Kim, M. Y., Ji, S. Y., Kim, D. H., Lee, H., … Choi, Y. H. (2021). Betulinic acid restricts human bladder cancer cell proliferation in vitro by inducing caspase-dependent cell death and cell cycle arrest, and decreasing metastatic potential. Molecules, 26(5). https://doi.org/10.3390/molecules26051381
  • Agarwal, C., Tyagi, A., & Agarwal, R. (2006). Gallic acid cause inactivating phosphorylation of cdc25A/cdc25C-cdc2 via ATM-Chk2 activation, leading to cell cycle arrest, and induces apoptosis in human prostate carcinoma DU145 cells. Molecular Cancer Therapeutics, 5(12), 3294–3302. https://doi.org/10.1158/1535-7163.MCT-06-0483
  • Aggarwal, V., Tuli, H. S., Thakral, F., Singhal, P., Aggarwal, D., Srivastava, S., … Sethi, G. (2020). Molecular mechanisms of action of hesperidin in cancer: Recent trends and advancements. Experimental Biology and Medicine, 245(5), 486. https://doi.org/10.1177/1535370220903671
  • Ahmadi, A., & Shadboorestan, A. (2016). Oxidative stress and cancer; the role of hesperidin, a citrus natural bioflavonoid, as a cancer chemoprotective agent. Nutrition and Cancer, 68(1), 29–39. https://doi.org/10.1080/01635581.2015.1078822
  • Ahmed, S., Khan, H., Fratantonio, D., Hasan, M. M., Sharifi, S., Fathi, N., … Rastrelli, L. (2019). Apoptosis induced by luteolin in breast cancer: Mechanistic and therapeutic perspectives. Phytomedicine : International Journal of Phytotherapy and Phytopharmacology, 59. https://doi.org/10.1016/J.PHYMED.2019.152883
  • Aluyen, J. K., Ton, Q. N., Tran, T., Yang, A. E., Gottlieb, H. B., & Bellanger, R. A. (2012). Resveratrol: Potential as Anticancer Agent. Http://Dx.Doi.Org/10.3109/19390211.2011.650842, 9(1), 45–56. https://doi.org/10.3109/19390211.2011.650842
  • Ambasta, R. K., Gupta, R., Kumar, D., Bhattacharya, S., Sarkar, A., & Kumar, P. (2018). Can luteolin be a therapeutic molecule for both colon cancer and diabetes? Briefings in Functional Genomics, 18(4), 230–239. https://doi.org/10.1093/BFGP/ELY036
  • Asgharian, P., Tazehkand, A. P., Soofiyani, S. R., Hosseini, K., Martorell, M., Tarhriz, V., … Cho, W. C. (2021). Quercetin Impact in Pancreatic Cancer: An Overview on Its Therapeutic Effects. Oxidative Medicine and Cellular Longevity, 2021. https://doi.org/10.1155/2021/4393266
  • Carter, L. G., D’Orazio, J. A., & Pearson, K. J. (2014). Resveratrol and cancer: focus on in vivo evidence. Endocrine-Related Cancer, 21(3), R209. https://doi.org/10.1530/ERC-13-0171
  • Chen, Y., Wu, X., Liu, C., & Zhou, Y. (2020). Betulinic acid triggers apoptosis and inhibits migration and invasion of gastric cancer cells by impairing EMT progress. Cell Biochemistry and Function, 38(6), 702–709. https://doi.org/10.1002/cbf.3537
  • Chiang, E. P. I., Tsai, S. Y., Kuo, Y. H., Pai, M. H., Chiu, H. L., Rodriguez, R. L., & Tang, F. Y. (2014). Caffeic acid derivatives inhibit the growth of colon cancer: Involvement of the PI3-K/Akt and AMPK signaling pathways. PLoS ONE, 9(6). https://doi.org/10.1371/journal.pone.0099631
  • Da Costa, D. C. F., Fialho, E., & Silva, J. L. (2017). Cancer chemoprevention by resveratrol: The P53 tumor suppressor protein as a promising molecular target. Molecules, 22(6). https://doi.org/10.3390/molecules22061014
  • Davoodvandi, A., Shabani Varkani, M., Clark, C. C. T., & Jafarnejad, S. (2020). Quercetin as an anticancer agent: Focus on esophageal cancer. Journal of Food Biochemistry, 44(9). https://doi.org/10.1111/JFBC.13374
  • Ezzati, M., Yousefi, B., Velaei, K., & Safa, A. (2020). A review on anti-cancer properties of Quercetin in breast cancer. Life Sciences, 248. https://doi.org/10.1016/J.LFS.2020.117463
  • Fasoulakis, Z., Koutras, A., Syllaios, A., Schizas, D., Garmpis, N., Diakosavvas, M., … Kontomanolis, E. N. (2021). Breast Cancer Apoptosis and the Therapeutic Role of Luteolin. Chirurgia (Bucharest, Romania : 1990), 116(2), 170–177. https://doi.org/10.21614/CHIRURGIA.116.2.170
  • Feng, T., Wei, Y., Lee, R. J., & Zhao, L. (2017). Liposomal curcumin and its application in cancer. International Journal of Nanomedicine, 12, 6027–6044. https://doi.org/10.2147/IJN.S132434
  • Franza, L., Carusi, V., Nucera, E., & Pandolfi, F. (2021). Luteolin, inflammation and cancer: Special emphasis on gut microbiota. BioFactors (Oxford, England), 47(2), 181–189. https://doi.org/10.1002/BIOF.1710
  • Fulda, S. (2009). Betulinic acid: A natural product with anticancer activity. Molecular Nutrition and Food Research, 53(1), 140–146. https://doi.org/10.1002/mnfr.200700491 Galiniak, S., Aebisher, D., & Bartusik-Aebisher, D. (2019). Health benefits of resveratrol administration. Acta Biochimica Polonica, 66(1), 13–21. https://doi.org/10.18388/ABP.2018_2749
  • Ghafouri-Fard, S., Shabestari, F. A., Vaezi, S., Abak, A., Shoorei, H., Karimi, A., … Basiri, A. (2021). Emerging impact of quercetin in the treatment of prostate cancer. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 138. https://doi.org/10.1016/J.BIOPHA.2021.111548 Giordano, A., & Tommonaro, G. (2019). Curcumin and Cancer. Nutrients, 11(10). https://doi.org/10.3390/NU11102376
  • Hanahan, D. (2022, January 1). Hallmarks of Cancer: New Dimensions. Cancer Discovery, Vol. 12, pp. 31–46. https://doi.org/10.1158/2159-8290.CD-21-1059 Hanahan, D., & Weinberg, R. A. (2000). The hallmarks of cancer. Cell, 100(1), 57–70. https://doi.org/10.1016/S0092-8674(00)81683-9
  • Hassanalilou, T., Ghavamzadeh, S., & Khalili, L. (2019). Curcumin and Gastric Cancer: a Review on Mechanisms of Action. Journal of Gastrointestinal Cancer, 50(2), 185–192. https://doi.org/10.1007/S12029-018-00186-6
  • Helleday, T., Petermann, E., Lundin, C., Hodgson, B., & Sharma, R. A. (2008). DNA repair pathways as targets for cancer therapy. Nature Reviews Cancer, 8(3), 193–204. https://doi.org/10.1038/nrc2342
  • Ho, H. H., Chang, C. Sen, Ho, W. C., Liao, S. Y., Lin, W. L., & Wang, C. J. (2013). Gallic acid inhibits gastric cancer cells metastasis and invasive growth via increased expression of RhoB, downregulation of AKT/small GTPase signals and inhibition of NF-κB activity. Toxicology and Applied Pharmacology, 266(1), 76–85. https://doi.org/10.1016/J.TAAP.2012.10.019
  • Ho, W. S. (2015). Active phytochemicals from Chinese herbal medicines: Anti-cancer activities and mechanisms. Active Phytochemicals from Chinese Herbal Medicines: Anti-Cancer Activities and Mechanisms, 1–160. https://doi.org/10.1201/b18824
  • Hussain, Y., Cui, J. H., Khan, H., Aschner, M., Batiha, G. E. S., & Jeandet, P. (2021). Luteolin and cancer metastasis suppression: focus on the role of epithelial to mesenchymal transition. Medical Oncology (Northwood, London, England), 38(6). https://doi.org/10.1007/S12032-021-01508-8
  • Imran, M., Rauf, A., Abu-Izneid, T., Nadeem, M., Shariati, M. A., Khan, I. A., … Mubarak, M. S. (2019). Luteolin, a flavonoid, as an anticancer agent: A review. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 112. https://doi.org/10.1016/J.BIOPHA.2019.108612
  • Jiang, W., Li, X., Dong, S., & Zhou, W. (2021). Betulinic acid in the treatment of tumour diseases: Application and research progress. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 142. https://doi.org/10.1016/J.BIOPHA.2021.111990
  • Johnson, I. T. (2007). Phytochemicals and cancer. Proceedings of the Nutrition Society, 66(2), 207–215. https://doi.org/10.1017/S0029665107005459 Kim, J., Wie, M. B., Ahn, M., Tanaka, A., Matsuda, H., & Shin, T. (2019). Benefits of hesperidin in central nervous system disorders: A review. Anatomy and Cell Biology, 52(4), 369–377. https://doi.org/10.5115/acb.19.119
  • Kim, S. Y., Hwangbo, H., Kim, M. Y., Ji, S. Y., Kim, D. H., Lee, H., … Choi, Y. H. (2021). Betulinic acid restricts human bladder cancer cell proliferation in vitro by inducing caspase-dependent cell death and cell cycle arrest, and decreasing metastatic potential. Molecules, 26(5). https://doi.org/10.3390/molecules26051381
  • Ko, E.-B., Jang, Y.-G., Kim, C.-W., Go, R.-E., Lee, H. K., & Choi, K.-C. (2022). Gallic Acid Hindered Lung Cancer Progression by Inducing Cell Cycle Arrest and Apoptosis in A549 Lung Cancer Cells via PI3K/Akt Pathway. Biomolecules & Therapeutics, 30(2), 151–161. https://doi.org/10.4062/biomolther.2021.074
  • Ko, J. H., Sethi, G., Um, J. Y., Shanmugam, M. K., Arfuso, F., Kumar, A. P., … Ahn, K. S. (2017). The Role of Resveratrol in Cancer Therapy. International Journal of Molecular Sciences, 18(12). https://doi.org/10.3390/IJMS18122589
  • Kumar, P., Bhadauria, A. S., Singh, A. K., & Saha, S. (2018). Betulinic acid as apoptosis activator: Molecular mechanisms, mathematical modeling and chemical modifications. Life Sciences, 209, 24–33. https://doi.org/10.1016/J.LFS.2018.07.056
  • Lee, K. W., Bode, A. M., & Dong, Z. (2011). Molecular targets of phytochemicals for cancer prevention. Nature Reviews Cancer 2011 11:3, 11(3), 211–218. https://doi.org/10.1038/nrc3017
  • Long, J., Guan, P., Hu, X., Yang, L., He, L., Lin, Q., … Li, T. (2021). Natural Polyphenols as Targeted Modulators in Colon Cancer: Molecular Mechanisms and Applications. Frontiers in Immunology, 12. https://doi.org/10.3389/FIMMU.2021.635484/FULL
  • Maleki Dana, P., Sadoughi, F., Asemi, Z., & Yousefi, B. (2021). Anti-cancer properties of quercetin in osteosarcoma. Cancer Cell International, 21(1). https://doi.org/10.1186/S12935-021-02067-8
  • Mirzaei, S., Gholami, M. H., Zabolian, A., Saleki, H., Farahani, M. V., Hamzehlou, S., … Sethi, G. (2021). Caffeic acid and its derivatives as potential modulators of oncogenic molecular pathways: New hope in the fight against cancer. Pharmacological Research, 171. https://doi.org/10.1016/j.phrs.2021.105759
  • Monteiro Espíndola, K. M., Ferreira, R. G., Mosquera Narvaez, L. E., Rocha Silva Rosario, A. C., Machado Da Silva, A. H., Bispo Silva, A. G., … Chagas Monteiro, M. (2019). Chemical and Pharmacological Aspects of Caffeic Acid and Its Activity in Hepatocarcinoma. Frontiers in Oncology, 9(JUN). https://doi.org/10.3389/FONC.2019.00541 Nenclares, P., & Harrington, K. J. (2020). The biology of cancer. Medicine, 48(2), 67–72. https://doi.org/10.1016/J.MPMED.2019.11.001
  • Pandey, P., & Khan, F. (2021). A mechanistic review of the anticancer potential of hesperidin, a natural flavonoid from citrus fruits. Nutrition Research (New York, N.Y.), 92, 21–31. https://doi.org/10.1016/J.NUTRES.2021.05.011
  • Pecorino, L. (2012). Molecular Biology of Cancer: Mechanisms, Targets, and Therapeutics. 360. Retrieved from http://books.google.com/books?id=tI_vcU85QU4C&pgis=1 Pricci, M., Girardi, B., Giorgio, F., Losurdo, G., Ierardi, E., & Di Leo, A. (2020). Curcumin and Colorectal Cancer: From Basic to Clinical Evidences. International Journal of Molecular Sciences, 21(7). https://doi.org/10.3390/IJMS21072364
  • Ranjan, A., Ramachandran, S., Gupta, N., Kaushik, I., Wright, S., Srivastava, S., … Srivastava, S. K. (2019). Role of Phytochemicals in Cancer Prevention. International Journal of Molecular Sciences 2019, Vol. 20, Page 4981, 20(20), 4981. https://doi.org/10.3390/IJMS20204981
  • Reyes-Farias, M., & Carrasco-Pozo, C. (2019). The Anti-Cancer Effect of Quercetin: Molecular Implications in Cancer Metabolism. International Journal of Molecular Sciences, 20(13), 3177. https://doi.org/10.3390/IJMS20133177
  • Rizeq, B., Gupta, I., Ilesanmi, J., AlSafran, M., Rahman, M. D. M., & Ouhtit, A. (2020). The Power of Phytochemicals Combination in Cancer Chemoprevention. Journal of Cancer, 11(15), 4521. https://doi.org/10.7150/JCA.34374
  • Roy, M., & Datta, A. (Computer scientist). (2019). Cancer genetics and therapeutics : focus on phytochemicals. 239.
  • Saneja, A., Arora, D., Kumar, R., Dubey, R. D., Panda, A. K., & Gupta, P. N. (2018). Therapeutic applications of betulinic acid nanoformulations. Annals of the New York Academy of Sciences, 1421(1), 5–18. https://doi.org/10.1111/NYAS.13570
  • Schwiebs, A., & Radeke, H. H. (2017). Immunopharmacological Activity of Betulin in Inflammation-associated Carcinogenesis. Anti-Cancer Agents in Medicinal Chemistry, 18(5), 645–651. https://doi.org/10.2174/1871520617666171012124820
  • Shafabakhsh, R., & Asemi, Z. (2019). Quercetin: a natural compound for ovarian cancer treatment. Journal of Ovarian Research, 12(1). https://doi.org/10.1186/S13048-019-0530-4
  • Shen, H., Liu, L., Yang, Y., Xun, W., Wei, K., & Zeng, G. (2017). Betulinic Acid Inhibits Cell Proliferation in Human Oral Squamous Cell Carcinoma via Modulating ROS-Regulated p53 Signaling. Oncology Research, 25(7), 1141. https://doi.org/10.3727/096504017X14841698396784
  • Shukla, Y., & Singh, R. (2011). Resveratrol and cellular mechanisms of cancer prevention. Annals of the New York Academy of Sciences, 1215(1), 1–8. https://doi.org/10.1111/j.1749-6632.2010.05870.x
  • Sirota, R., Gibson, D., & Kohen, R. (2015). The role of the catecholic and the electrophilic moieties of caffeic acid in Nrf2/Keap1 pathway activation in ovarian carcinoma cell lines. Redox Biology, 4, 48–59. https://doi.org/10.1016/j.redox.2014.11.012
  • Socała, K., Szopa, A., Serefko, A., Poleszak, E., & Wlaź, P. (2020). Neuroprotective Effects of Coffee Bioactive Compounds: A Review. International Journal of Molecular Sciences, 22(1), 1–64. https://doi.org/10.3390/IJMS22010107
  • Subramanian, A. P., Jaganathan, S. K., Mandal, M., Supriyanto, E., & Muhamad, I. I. (2016). Gallic acid induced apoptotic events in HCT-15 colon cancer cells. World Journal of Gastroenterology, 22(15), 3952. https://doi.org/10.3748/WJG.V22.I15.3952
  • Tajuddin, W. N. B. W. M., Lajis, N. H., Abas, F., Othman, I., & Naidu, R. (2019). Mechanistic Understanding of Curcumin’s Therapeutic Effects in Lung Cancer. Nutrients, 11(12). https://doi.org/10.3390/NU11122989
  • Tang, H., Yao, X., Yao, C., Zhao, X., Zuo, H., & Li, Z. (2017). Anti-colon cancer effect of caffeic acid p-nitro-phenethyl ester in vitro and in vivo and detection of its metabolites. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-07953-8
  • Tang, S. M., Deng, X. T., Zhou, J., Li, Q. P., Ge, X. X., & Miao, L. (2020). Pharmacological basis and new insights of quercetin action in respect to its anti-cancer effects. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 121. https://doi.org/10.1016/J.BIOPHA.2019.109604
  • Teng, Y. N., Wang, C. C. N., Liao, W. C., Lan, Y. H., & Hung, C. C. (2020). Caffeic Acid Attenuates Multi-Drug Resistance in Cancer Cells by Inhibiting Efflux Function of Human P-glycoprotein. Molecules (Basel, Switzerland), 25(2). https://doi.org/10.3390/MOLECULES25020247
  • Termini, D., Den Hartogh, D. J., Jaglanian, A., & Tsiani, E. (2020). Curcumin against Prostate Cancer: Current Evidence. Biomolecules, 10(11), 1–40. https://doi.org/10.3390/BIOM10111536
  • Verma, S., Singh, A., & Mishra, A. (2013). Gallic acid: molecular rival of cancer. Environmental Toxicology and Pharmacology, 35(3), 473–485. https://doi.org/10.1016/J.ETAP.2013.02.011
  • Wang, L., Zhang, S., & Wang, X. (2021). The Metabolic Mechanisms of Breast Cancer Metastasis. Frontiers in Oncology, 10. https://doi.org/10.3389/FONC.2020.602416/FULL
  • Xiong, H., Wang, J., Ran, Q., Lou, G., Peng, C., Gan, Q., … Huang, Q. (2019). Hesperidin: A Therapeutic Agent For Obesity. Drug Design, Development and Therapy, 13, 3855. https://doi.org/10.2147/DDDT.S227499
  • Yap, K. M., Sekar, M., Wu, Y. S., Gan, S. H., Rani, N. N. I. M., Seow, L. J., … Lum, P. T. (2021). Hesperidin and its aglycone hesperetin in breast cancer therapy: A review of recent developments and future prospects. Saudi Journal of Biological Sciences, 28(12), 6730–6747. https://doi.org/10.1016/J.SJBS.2021.07.046
  • You, B. R., Moon, H. J., Han, Y. H., & Park, W. H. (2010). Gallic acid inhibits the growth of HeLa cervical cancer cells via apoptosis and/or necrosis. Food and Chemical Toxicology, 48(5), 1334–1340. https://doi.org/10.1016/J.FCT.2010.02.034
  • Zhang, D. M., Xu, H. G., Wang, L., Li, Y. J., Sun, P. H., Wu, X. M., … Ye, W. C. (2015). Betulinic Acid and its Derivatives as Potential Antitumor Agents. Medicinal Research Reviews, 35(6), 1127–1155. https://doi.org/10.1002/med.21353
  • ZHONG, Y., LIANG, N., LIU, Y., & CHENG, M. S. (2021). Recent progress on betulinic acid and its derivatives as antitumor agents: a mini review. Chinese Journal of Natural Medicines, 19(9), 641–647. https://doi.org/10.1016/S1875-5364(21)60097-3
  • Zoi, V., Galani, V., Lianos, G. D., Voulgaris, S., Kyritsis, A. P., & Alexiou, G. A. (2021). The Role of Curcumin in Cancer Treatment. Biomedicines, 9(9). https://doi.org/10.3390/BIOMEDICINES9091086
There are 88 citations in total.

Details

Primary Language Turkish
Subjects Health Care Administration
Journal Section Reviews
Authors

Aydın Sever 0000-0002-6727-1556

Yusuf Toy 0000-0003-1901-9994

Mehmet Kadir Erdoğan 0000-0002-1579-5737

Ramazan Gundogdu 0000-0001-5230-2121

Early Pub Date April 27, 2023
Publication Date April 28, 2023
Submission Date September 16, 2022
Published in Issue Year 2023 Volume: 3 Issue: 1

Cite

APA Sever, A., Toy, Y., Erdoğan, M. K., Gundogdu, R. (2023). Kemoterapide Kullanılan Güncel Fitokimyasallar. Muş Alparslan Üniversitesi Sağlık Bilimleri Dergisi, 3(1), 64-76.