Research Article
BibTex RIS Cite

Developing Dynamic and Flexible Façade Design with Fractal Geometry

Year 2023, , 1 - 14, 31.07.2023
https://doi.org/10.30785/mbud.1230875

Abstract

The fact that built environments, which are necessary for people to survive by hosting organizations such as shelters, work, and service cannot meet the functional needs over time, creating a problem for investors, owners, and users. The way to deal with these problems is to have a flexible building design to suit the new conditions to change the capacity, function, and performance. The façade, which is highly affected by indoor and physical environmental conditions; should have a modular, similar, adaptable, and detachable system. In this study, façades with these systems are designed with fractal geometry features that mathematically define the complexity, self-similarity, and access to the macro scale from the micro scales. In conclusion, a façade system that can adapt to changes by making use of a fractal pattern and provide daylight and solar control in the interior with the electrical voltage applied to the glass surface has been proposed.

Thanks

The authors would like to thank Gazi University Academic Writing Application and Research Center for proofreading the article. The paper complies with national and international research and publication ethics. Ethics committee approval was not required for this manuscript.

References

  • Abdullah, F. H. & Ismail, K. J. A. (2022). Adaptability in architectural objects through fractal approaches. In AIP Conference Proceedings 2660 (1), 020083. Duhok, Iraq, AIP Publishing LLC. Access Address (17.01.2023): https://aip.scitation.org/doi/epdf/10.1063/5.0110729/
  • Bande, L., Hamad, H., Alqahtani, D., Alnahdi, N., Ghunaim, A., Fikry, F. & Alkhatib, O. (2022). Design of innovative parametric/dynamic facade integrated in the library extension building on uaeu campus. Buildings, 12(8), 1101. Access Address (17.01.2023): https://www.mdpi.com/2075-5309/12/8/1101/
  • Belma, A. & Ayyıldız, S. (2016). Fractals and fractal design in architecture. 13 th International Conference Standardization, Protypes and Quality: Means of Balkan Countries “Collaboration 17(3), 282-291. Brasov, Romania. Access Address (17.01.2023): https://www.academia.edu/35739018/Fractals_and_Fractal_Design_in_Architecture
  • Bovill, C. (2000). Fractal geometry as design aid. Journal for Geometry and Graphics, 4 (1), 71-78. Online ISSN: 1433-8157 Access Address (01.01.2023): https://www.emis.de/journals/JGG/4.1/5.html/
  • Casini, M. (2015). Smart windows for energy efficiency of buildings. International Journal of Civil and Structural Engineering– IJCSE, 2 (1), 230-238. Online ISSN: 2372-3971 Access Address (01.01.2023): https://www.researchgate.net/publication/280597205/
  • Ediz, Ö. (2003). Mimari Tasarımda Fraktal Kurguya Dayalı Üretken Yaklaşım, Doktora Tezi, İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü, İstanbul.
  • Gendall, J. (2017). What it was like to live inside habitat 67. Web resource. Access Address (09.12.2022): https://www.architecturaldigest.com/story/what-it-was-like-to-live-inside-habitat-67
  • Harry, S. (2016). Dynamic adaptive building envelopes – an innovative and state-of-the-art technology. Creative Space. 3(2), 167–184. Access Address (17.01.2023): https://www.academia.edu/en/57124813/Dynamic_Adaptive_Building_Envelopes_an_Innovative_and_Sta te_of_The_Art_Technology/
  • Jelle, B. P. (2013). Electrochromic smart windows for dynamic daylight and solar energy control in buildings. Roger J. Mortimer, R.J, David R. Rosseinsky, D.R & Monk, P.M.S (ed.) Electrochromic Materials and Devices. Wiley-VCH (September 2013) Chapter 15. (419-502). ISBN:9783527336104. New York: Wiley-VCH Verlag GmbH & Co. KGaA.
  • Jencks, C. (1997). The Architecture of the Jumping Universe. New York: Academy Editions Revirsed Edition.
  • Lui, X., Croome, D. & Viljanen, M. (2012). Fractal geometry and architecture design: Case study review. Chaotic Modeling and Simulation (CMSIM), 2, 311-322. Online ISSN: 2241-0503 Access Address (01.01.2023): https://www.researchgate.net/publication/256059313/
  • Mandelbrot, B. B. (1982). The Fractal Geometry of Nature. New York: W.H. Freeman and Company.
  • Mandelbrot, B. B. (1989). Fractal geometry: What Is It, and What Does It Do? Fractals in the Natural Sciences. Fleischmann, M., Tildesley, D. J. & Ball, R.C. (Ed.). Fractals in the Natural Sciences. From the Proceedings of the Royal Society of London. Chapter One. (3-16). ISBN 0-691-08561-7. New Jersey: Princeton University Press.
  • Mayatskaya, I., Kashina, I., Gerlein, N. & Yazyev, B. (2021). Fractal geometry and design of modern structures. E3S Web of Conferences, 281, 02018. Les Ulis. Access Address (01.01.2023): https://www.e3sconferences.org/articles/e3sconf/pdf/2021/57/e3sconf_catpid2021_02018.pdf/
  • Milad, E., Akhmet, M. & Fen, M. O. (2018). Dynamics motivated by Sierpinski Fractals Web resource. Access Address (09.12.2022): https://arxiv.org/abs/1811.07122/
  • Mudhaffar, M. (2019). Cultural artifice: The Louvre Abu Dhabi, United Arab Emirates, by Ateliers Jean Nouvel. Web resource. Access Address (09.12.2022): https://www.architectural-review.com/buildings/cultural- artifice-the-louvre-abu-dhabi-united-arab-emirates-by-ateliers-jean-nouvel/
  • Mutica, P. (2016). Nature and fractals in architecture. Acta Technica Napocensis: Civil Engineering & Architecture, 59 (3), 27-38. Access Address (01.01.2023): https://www.academia.edu/35303252/Nature_and_Fractals_in_Architecture/
  • Nakib, F. (2010). Fractal geometry: a tool for adaptability and ‘evolutionability’. WIT Transactions on Ecology and the Environment. 128 (1), 39-47. Online ISSN 1743-3541 Access Address (17.01.2023): https://www.witpress.com/elibrary/wit-transactions-on-ecology-and-the-environment/128/20769/
  • Osama, A., Sherif, L. & Ezzeldin, S. (2014). Fractal geometry in architecture: from formative idea to superficial skin design. Conference: Contemporary Discussions and Design Methodologies in Architecture ARCHDESIGN ’14. İstanbul. Access Address (01.01.2023): https://www.researchgate.net/publication/326033004.
  • Papasterevski, D. & Cenovski, F. (2020). Architectural term: self–similarity. SEE Journal of Architecture and Design, 10054, 1-4. Online ISSN: 1857-9353. Access Address (01.01.2023): http://hdl.handle.net/20.500.12188/8615/
  • Perez, A. (2010). Simmons Hall at MIT/ Steven Holl. Web resource. Access Address (09.12.2022):https://www.archdaily.com/65172/simmons-hall-at-mit-steven-holl/
  • Ritter, A. (2007). Smart Materials in Architecture, Interior Architecture and Design. Basel: Birkhauser Basel.
  • Savić, J., Mijović, D. D. & Bogdanović, V. (2013). Architectural glass: Types, performance and legislation. Architecture and Civil Engineering 11(1), 35-45. Access Address (01.01.2023): https://www.researchgate.net/publication/274829376/
  • Tavil, A. (2004). Cephe Sistemlerinde Yeni Teknolojiler Elektrokromik Pencereler. 2. Ulusal Yapı Malzemesi Kongresi ve Sergisi. 111-116, İstanbul. Access Address (01.01.2023): http://www.yapkat.com/images/Malzeme/Dosya/75053042173384609752893447.pdf/
  • Upadhayay, A. & Maru, S. (2021). A review of the fractal geometry in structural elements. International Journal of Advanced Engineering Research and Science (IJAERS), 8(7), 28-35. Online ISSN: 2349-6495 Access Address (01.01.2023): https://ijaers.com/detail/a-review-of-the-fractal-geometry-in-structural-elements/
  • Vaughan, J. & Ostwald, M. (2011). The relationship between the fractal dimension of plans and elevations in the architecture of Frank Lloyd Wright: Comparing the prairie style, textile block and usonian periods. Architecture Science, 4, 21-44. Online ISSN:2219-1577. Access Address (01.01.2023): http://enapp.airoc.org.tw/enapp_journal_list.php/
  • Vrdoljak, A. & Miletić, K. (2019) Principles of fractal geometry and applications in architecture and civil engineering. Electronic Collection of Papers of the Faculty of Civil Engineering, 10(17), 40-52. Access Address (01.01.2023): https://www.researchgate.net/publication/334398121/
  • Weisstein, E. W. (2022a) "Koch Snowflake." from mathWorld - a wolfram. Web resource. Access Address (09.12.2022):https://mathworld.wolfram.com/KochSnowflake.html/
  • Weisstein, E. W. (2022b). "Menger Sponge." from mathWorld - a wolfram. Web resource. Access Address (09.12.2022):https://mathworld.wolfram.com/MengerSponge.html/
  • Yaman, B. & Arpacıoğlu, Ü. T. (2021) Dinamik kontrollü uyarlanabilir cephe ve gölgeleme sistemleri. Journal of Architectural Sciences and Applications (JASA). 6 (1), 153-164. Online ISSN: 2548-0170 Access Address (16.01.2023): https://dergipark.org.tr/tr/pub/mbud/issue/62362/798233/
  • Yıldırım, E. (2018). Kentsel Dokunun Değerlendirilmesi İçin Mekan Dizimi ve Fraktal Analize Dayalı Bir Yöntem: Gaziantep Örneği, Doktora Tezi, İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü, İstanbul.

Fraktal Geometri ile Dinamik ve Esnek Cephe Tasarımı Geliştirilmesi

Year 2023, , 1 - 14, 31.07.2023
https://doi.org/10.30785/mbud.1230875

Abstract

Barınma, çalışma, servis gibi organizasyonları içinde barındıran ve insanların yaşamlarını sürdürebilmeleri için gerekli olan yapılı çevrelerin zaman içinde fonksiyonel ihtiyaçları karşılayamaması yatırımcılar, mal sahipleri ve kullanıcılar için sorun oluşturmaktadır. Bu sorunlarla başa çıkmanın yolu, kapasiteyi, işlevi ve performansı değiştirmek için yeni koşullara uygun esnek binalar tasarlanmasıdır. Binaların işlevi ile fiziki çevre koşullarından üst düzeyde etkilenen bina elemanı olan cephenin esnek tasarıma sahip olması için modüler, uyarlanabilir, benzer, sökülüp takılabilir özellikte olması gerekmektedir. Bu çalışmada, bu özelliklere sahip cepheler, karmaşıklığı, kendine benzerliği ve mikro ölçeklerden makro ölçeğe erişimi matematiksel olarak tanımlayan fraktal geometri özelliklerinden faydalanarak tasarlanmıştır. Sonuç olarak, cam yüzeye uygulanan elektrik voltajı ile iç mekanda gün ışığı ve güneş kontrolü sağlayan, fraktal desenden faydalanarak değişikliklere uyum sağlayabilen dinamik ve esnek bir cephe sistemi önerilmiştir.

References

  • Abdullah, F. H. & Ismail, K. J. A. (2022). Adaptability in architectural objects through fractal approaches. In AIP Conference Proceedings 2660 (1), 020083. Duhok, Iraq, AIP Publishing LLC. Access Address (17.01.2023): https://aip.scitation.org/doi/epdf/10.1063/5.0110729/
  • Bande, L., Hamad, H., Alqahtani, D., Alnahdi, N., Ghunaim, A., Fikry, F. & Alkhatib, O. (2022). Design of innovative parametric/dynamic facade integrated in the library extension building on uaeu campus. Buildings, 12(8), 1101. Access Address (17.01.2023): https://www.mdpi.com/2075-5309/12/8/1101/
  • Belma, A. & Ayyıldız, S. (2016). Fractals and fractal design in architecture. 13 th International Conference Standardization, Protypes and Quality: Means of Balkan Countries “Collaboration 17(3), 282-291. Brasov, Romania. Access Address (17.01.2023): https://www.academia.edu/35739018/Fractals_and_Fractal_Design_in_Architecture
  • Bovill, C. (2000). Fractal geometry as design aid. Journal for Geometry and Graphics, 4 (1), 71-78. Online ISSN: 1433-8157 Access Address (01.01.2023): https://www.emis.de/journals/JGG/4.1/5.html/
  • Casini, M. (2015). Smart windows for energy efficiency of buildings. International Journal of Civil and Structural Engineering– IJCSE, 2 (1), 230-238. Online ISSN: 2372-3971 Access Address (01.01.2023): https://www.researchgate.net/publication/280597205/
  • Ediz, Ö. (2003). Mimari Tasarımda Fraktal Kurguya Dayalı Üretken Yaklaşım, Doktora Tezi, İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü, İstanbul.
  • Gendall, J. (2017). What it was like to live inside habitat 67. Web resource. Access Address (09.12.2022): https://www.architecturaldigest.com/story/what-it-was-like-to-live-inside-habitat-67
  • Harry, S. (2016). Dynamic adaptive building envelopes – an innovative and state-of-the-art technology. Creative Space. 3(2), 167–184. Access Address (17.01.2023): https://www.academia.edu/en/57124813/Dynamic_Adaptive_Building_Envelopes_an_Innovative_and_Sta te_of_The_Art_Technology/
  • Jelle, B. P. (2013). Electrochromic smart windows for dynamic daylight and solar energy control in buildings. Roger J. Mortimer, R.J, David R. Rosseinsky, D.R & Monk, P.M.S (ed.) Electrochromic Materials and Devices. Wiley-VCH (September 2013) Chapter 15. (419-502). ISBN:9783527336104. New York: Wiley-VCH Verlag GmbH & Co. KGaA.
  • Jencks, C. (1997). The Architecture of the Jumping Universe. New York: Academy Editions Revirsed Edition.
  • Lui, X., Croome, D. & Viljanen, M. (2012). Fractal geometry and architecture design: Case study review. Chaotic Modeling and Simulation (CMSIM), 2, 311-322. Online ISSN: 2241-0503 Access Address (01.01.2023): https://www.researchgate.net/publication/256059313/
  • Mandelbrot, B. B. (1982). The Fractal Geometry of Nature. New York: W.H. Freeman and Company.
  • Mandelbrot, B. B. (1989). Fractal geometry: What Is It, and What Does It Do? Fractals in the Natural Sciences. Fleischmann, M., Tildesley, D. J. & Ball, R.C. (Ed.). Fractals in the Natural Sciences. From the Proceedings of the Royal Society of London. Chapter One. (3-16). ISBN 0-691-08561-7. New Jersey: Princeton University Press.
  • Mayatskaya, I., Kashina, I., Gerlein, N. & Yazyev, B. (2021). Fractal geometry and design of modern structures. E3S Web of Conferences, 281, 02018. Les Ulis. Access Address (01.01.2023): https://www.e3sconferences.org/articles/e3sconf/pdf/2021/57/e3sconf_catpid2021_02018.pdf/
  • Milad, E., Akhmet, M. & Fen, M. O. (2018). Dynamics motivated by Sierpinski Fractals Web resource. Access Address (09.12.2022): https://arxiv.org/abs/1811.07122/
  • Mudhaffar, M. (2019). Cultural artifice: The Louvre Abu Dhabi, United Arab Emirates, by Ateliers Jean Nouvel. Web resource. Access Address (09.12.2022): https://www.architectural-review.com/buildings/cultural- artifice-the-louvre-abu-dhabi-united-arab-emirates-by-ateliers-jean-nouvel/
  • Mutica, P. (2016). Nature and fractals in architecture. Acta Technica Napocensis: Civil Engineering & Architecture, 59 (3), 27-38. Access Address (01.01.2023): https://www.academia.edu/35303252/Nature_and_Fractals_in_Architecture/
  • Nakib, F. (2010). Fractal geometry: a tool for adaptability and ‘evolutionability’. WIT Transactions on Ecology and the Environment. 128 (1), 39-47. Online ISSN 1743-3541 Access Address (17.01.2023): https://www.witpress.com/elibrary/wit-transactions-on-ecology-and-the-environment/128/20769/
  • Osama, A., Sherif, L. & Ezzeldin, S. (2014). Fractal geometry in architecture: from formative idea to superficial skin design. Conference: Contemporary Discussions and Design Methodologies in Architecture ARCHDESIGN ’14. İstanbul. Access Address (01.01.2023): https://www.researchgate.net/publication/326033004.
  • Papasterevski, D. & Cenovski, F. (2020). Architectural term: self–similarity. SEE Journal of Architecture and Design, 10054, 1-4. Online ISSN: 1857-9353. Access Address (01.01.2023): http://hdl.handle.net/20.500.12188/8615/
  • Perez, A. (2010). Simmons Hall at MIT/ Steven Holl. Web resource. Access Address (09.12.2022):https://www.archdaily.com/65172/simmons-hall-at-mit-steven-holl/
  • Ritter, A. (2007). Smart Materials in Architecture, Interior Architecture and Design. Basel: Birkhauser Basel.
  • Savić, J., Mijović, D. D. & Bogdanović, V. (2013). Architectural glass: Types, performance and legislation. Architecture and Civil Engineering 11(1), 35-45. Access Address (01.01.2023): https://www.researchgate.net/publication/274829376/
  • Tavil, A. (2004). Cephe Sistemlerinde Yeni Teknolojiler Elektrokromik Pencereler. 2. Ulusal Yapı Malzemesi Kongresi ve Sergisi. 111-116, İstanbul. Access Address (01.01.2023): http://www.yapkat.com/images/Malzeme/Dosya/75053042173384609752893447.pdf/
  • Upadhayay, A. & Maru, S. (2021). A review of the fractal geometry in structural elements. International Journal of Advanced Engineering Research and Science (IJAERS), 8(7), 28-35. Online ISSN: 2349-6495 Access Address (01.01.2023): https://ijaers.com/detail/a-review-of-the-fractal-geometry-in-structural-elements/
  • Vaughan, J. & Ostwald, M. (2011). The relationship between the fractal dimension of plans and elevations in the architecture of Frank Lloyd Wright: Comparing the prairie style, textile block and usonian periods. Architecture Science, 4, 21-44. Online ISSN:2219-1577. Access Address (01.01.2023): http://enapp.airoc.org.tw/enapp_journal_list.php/
  • Vrdoljak, A. & Miletić, K. (2019) Principles of fractal geometry and applications in architecture and civil engineering. Electronic Collection of Papers of the Faculty of Civil Engineering, 10(17), 40-52. Access Address (01.01.2023): https://www.researchgate.net/publication/334398121/
  • Weisstein, E. W. (2022a) "Koch Snowflake." from mathWorld - a wolfram. Web resource. Access Address (09.12.2022):https://mathworld.wolfram.com/KochSnowflake.html/
  • Weisstein, E. W. (2022b). "Menger Sponge." from mathWorld - a wolfram. Web resource. Access Address (09.12.2022):https://mathworld.wolfram.com/MengerSponge.html/
  • Yaman, B. & Arpacıoğlu, Ü. T. (2021) Dinamik kontrollü uyarlanabilir cephe ve gölgeleme sistemleri. Journal of Architectural Sciences and Applications (JASA). 6 (1), 153-164. Online ISSN: 2548-0170 Access Address (16.01.2023): https://dergipark.org.tr/tr/pub/mbud/issue/62362/798233/
  • Yıldırım, E. (2018). Kentsel Dokunun Değerlendirilmesi İçin Mekan Dizimi ve Fraktal Analize Dayalı Bir Yöntem: Gaziantep Örneği, Doktora Tezi, İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü, İstanbul.
There are 31 citations in total.

Details

Primary Language English
Subjects Architecture
Journal Section Research Articles
Authors

Mehmet Akif Yıldız 0000-0001-7248-6191

Merve Ertosun Yıldız 0000-0002-5362-1666

Figen Beyhan 0000-0002-4287-1037

Publication Date July 31, 2023
Submission Date January 7, 2023
Published in Issue Year 2023

Cite

APA Yıldız, M. A., Ertosun Yıldız, M., & Beyhan, F. (2023). Developing Dynamic and Flexible Façade Design with Fractal Geometry. Journal of Architectural Sciences and Applications, 8(1), 1-14. https://doi.org/10.30785/mbud.1230875