Research Article
BibTex RIS Cite

Hafif Kil Malzemelerin Termal Performansı: Kenevir ve Saman Liflerinin Hacim Bazlı Karşılaştırması

Year 2025, Volume: 10 Issue: 2, 1049 - 1061, 27.12.2025

Abstract

Hafif kil malzemeler, tarımsal atık liflerini (özellikle saman ve kenevir atığı) ana bileşen olarak ve kili bağlayıcı olarak kullanabilme kapasiteleri nedeniyle sürdürülebilir inşaat sektöründe giderek daha fazla ilgi görmektedir. Ancak farklı liflere dayalı hafif kil malzemelerinin ısıl özelliklerine ilişkin çalışmalar artmasına rağmen, aynı miktarda kil ile bağlanan kenevir atığı ve saman esaslı hafif kil panellerini karşılaştıran bir çalışma bulunmamaktadır. Bu çalışmanın sonuçları, panel üretiminde kullanılan lif miktarının yoğunluk üzerinde önemli bir etkisi olduğunu ve benzer bileşimlerde kenevir atığı kullanımının saman kullanımına kıyasla daha düşük ısı iletkenliği sağladığını göstermektedir (sırasıyla 0.05 W/mK ve 0.11 W/mK). Ayrıca, kenevir atığı esaslı paneller için ölçülen düşük ısı iletkenliği değerleri (0.02 kg/m³’e kadar), kil esaslı malzemelerin sürdürülebilir bir yalıtım malzemesi olarak etkin bir şekilde kullanılabileceğini göstermektedir.

Project Number

BAP 141

References

  • Alassaad, F., Touati, K., Levacher, D., & Sebaibi, N. (2021, May 20–21). Influence of fiber crushing on light earth hygrothermal properties—paper presented at Geo-Environmental Engineering GEE2021, ESITC-UniCaen, Caen, France.
  • Azil, A., Le Guern, M., Rattier, R., Touati, K., Sebaibi, N., El Mendili, Y., ... & Louahlia, H. (2020). Réalisation d'un bâtiment pilote en terre-fibers. Academic Journal of Civil Engineering.
  • Ba, L., El Abbassi, I., Ngo, T. T., Pliya, P., Kane, C. S. E., Darcherif, A. M., & Ndongo, M. (2021). Experimental investigation of thermal and mechanical properties of clay reinforced with Typha australis: Influence of length and percentage of fibers. Waste and Biomass Valorization, 12(5), 2723–2737. https://doi.org/10.1007/s12649- 020-01193-0
  • Bayraktar, M., Binatlı, B., & Üzümoğlu, T. (2023). Türkiye Building Sector Decarbonization Roadmap Extended Summary. Ministry of Environment, Urbanization, and Climate Change. https://wrisehirler.org/sites/default/files/Turkiye%20Building%20Sector%20Decarbonization%20Roadmap...pdf
  • Ben-Alon, L., & Rempel, A. W. (2023). Thermal comfort and passive survivability in earthen buildings. Building and Environment, 238, 110339. https://doi.org/10.1016/j.buildenv.2023.110339
  • Braiek, A., Briki, C., Karkri, M., Settar, A., & Jemni, A. (2023). Thermo-physical and mechanical performances of a new lightweight construction material made with clay and Posidonia oceanica fibers. Case Studies in Construction Materials, 19, e02599. https://doi.org/10.1016/j.cscm.2023.e02599
  • Brouard, Y., Belayachi, N., Hoxha, D., Méo, S., & Abdallah, W. (2016). Hygrothermal Behavior of Clay–Sunflower (Helianthus annuus) and Rape Straw (Brassica napus) Plaster Bio-composites for Building Insulation. In Towards a Sustainable Urban Environment (EBUILT-2016) (pp. 242–248). Iasi, Romania. https://doi.org/10.4028/www.scientific.net/AEF.21.242
  • Brouard, Y., Belayachi, N., Hoxha, D., Ranganathan, N., & Méo, S. (2018). Mechanical and hygrothermal behavior of clay – Sunflower (Helianthus annuus) and rape straw (Brassica napus) plaster bio-composites for building insulation. Construction and Building Materials, 161, 196–207. https://doi.org/10.1016/j.conbuildmat.2017.11.140
  • Busbridge, R., & Rhydwen, R. (2010). An investigation of the thermal properties of hemp and clay monolithic walls. In Proceedings of Advances in Computing and Technology (AC&T), The School of Computing and Technology 5th Annual Conference (pp. 163–170). University of East London. http://hdl.handle.net/10552/987
  • Colinart, T., Vinceslas, T., Lenormand, H., Hellouin De Menibus, A., Hamard, E., & Lecompte, T. (2020). Hygrothermal properties of light-earth building materials. Journal of Building Engineering, 29, 101134. https://doi.org/10.1016/j.jobe.2019.101134
  • Collet, F., & Pretot, S. (2014). Thermal conductivity of hemp concretes: Variation with formulation, density, and water content. Construction and Building Materials, 65, 612–619.
  • De Luca, P., Carbone, I., & Nagy, J. B. (2017). Green building materials: A review of state of the art studies of innovative materials. Journal of Green Building, 12(4), 141-161.
  • El Mendili, Y., Bouasria, M., Benzaama, M.-H., Khadraoui, F., Le Guern, M., Chateigner, D., Gascoin, S., & Bardeau, J.- F. (2021). Mud-based construction material: Promising properties of French gravel wash mud mixed with byproducts, seashells, and fly ash as a binder. Materials, 14(20), 6216. https://doi.org/10.3390/ma14206216
  • Forest Products Laboratory. (2004, March 12). Engineering report on light clay specimens: Thermal conductivities for design coalitions' straw/clay formulations extend Volhard’s K-value vs. density curve to the low conductivity end. Madison, WI: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory.
  • Frantz, D., Schug, F., Wiedenhofer, D., Baumgart, A., Virág, D., Cooper, S., & Haberl, H. (2023). Unveiling patterns in human-dominated landscapes through mapping the mass of US-built structures. Nature Communications, 14(1), 8014.
  • Gaia Architects. (2003). Light Earth Construction: Draft report for milestone 5. Gaia Architects.
  • Goodhew, S., Griffiths, R., & Woolley, T. (2004). An investigation of the moisture content in the walls of a straw- bale building. Building and Environment, 39(12), 1443–1451. https://doi.org/10.1016/j.buildenv.2004.04.003
  • Goodhew, S., Boutouil, M., Streiff, F., Le Guern, M., Carfrae, J., & Fox, M. (2021). Improving the thermal performance of earthen walls to satisfy current building regulations. Energy and Buildings, 240, 110873. https://doi.org/10.1016/j.enbuild.2021.110873
  • Holzhueter, K., & Itonaga, K. (2017). The potential for light straw clay construction in Japan: An examination of the building method and thermal performance. Journal of Asian Architecture and Building Engineering, 16(1), 209– 213. https://doi.org/10.3130/jaabe.16.209
  • İSTAÇ. (2022). Faaliyet Raporu 2022. İstanbul Büyükşehir Belediyesi. https://www.istac.istanbul/assets/belgeler_ve_raporlar/2022-istac-rapor.pdf
  • Jové-Sandoval, P., Gallego, A., & Suárez, J. (2024). Thermal performance of lightweight earth panels using agricultural waste. Journal of Building Physics, 47(2), 321–340. https://doi.org/10.1557/s43580-023-00630-1
  • Labat, M., Magniont, C., Oudhof, N., & Aubert, J.-E. (2016). From the experimental characterization of the hygrothermal properties of straw-clay mixtures to the numerical assessment of their buffering potential. Building and Environment, 97, 69–81. https://doi.org/10.1016/j.buildenv.2015.12.004
  • Mazhoud, B., Collet, F., Prétot, S., & Lanos, C. (2021). Effect of hemp content and clay stabilization on hygric and thermal properties of hemp-clay composites. Construction and Building Materials, 300, 123878. https://doi.org/10.1016/j.conbuildmat.2021.123878
  • Minke, G. (2006). Building with earth: Design and technology of a sustainable architecture (2nd ed.). Birkhäuser.
  • Minke, G. (2012). Building with Earth: Design and Technology of a Sustainable Architecture (3rd rev. ed.). Birkhäuser. https://doi.org/10.1515/9783034608725
  • Mounir, S., Maaloufa, Y., & Khabbazi, A. (2014). Thermal properties of the composite material, clay/granular cork. Construction and Building Materials, 70, 183–190. https://doi.org/10.1016/j.conbuildmat.2014.07.108
  • Niang, I., Maalouf, C., Moussa, T., Bliard, C., Samin, E., Thomachot-Schneider, C., Lachi, M., Pron, H., Mai, T. H., & Gaye, S. (2018). Hygrothermal performance of various Typha–clay composite. Journal of Building Physics, 42(3), 316–335. https://doi.org/10.1177/1744259118759677
  • Oiry, C., Kapetanaki, K., & Maravelaki, P. N. (2022). An insulation panel made from local plant-based lightweight concrete. In EURECA-PRO Conference on Responsible Consumption and Production (pp. 527–535). Cham, Switzerland: Springer International Publishing. https://doi.org/10.1007/978-3-031-25840-4_61
  • Oudhof, N., Labat, M., Magniont, C., & Nicot, P. (2015, June 22–24). Measurement of the hygrothermal properties of straw-clay mixtures. First International Conference on Bio-based Building Materials (ICBBM), Clermont- Ferrand, France.
  • Ratsimbazafy, H. H., Laborel-Préneron, A., Magniont, C., & Evon, P. (2021). A Review of the Multi-Physical Characteristics of Plant Aggregates and Their Effects on the Properties of Plant-Based Concrete. Recent Progress in Materials, 03(02), 1–1. https://doi.org/10.21926/rpm.2102026
  • Ratsimbazafy, H. H., Laborel-Préneron, A., Magniont, C., & Evon, P. (2022). Comprehensive characterization of agricultural by-products for bio-aggregate-based concrete. Construction Technologies and Architecture, 1, 77–84. https://doi.org/10.4028/www.scientific.net/CTA.1.77
  • Soto-Paz, J., Arroyo, O., Torres-Guevara, L. E., Parra-Orobio, B. A., & Casallas-Ojeda, M. (2023). The circular economy in the construction and demolition waste management: A comparative analysis in emerging and developed countries. Journal of Building Engineering, 78, 107724.
  • Sözer, S. (2023). Agricultural Waste Potential of Türkiye. Black Sea Journal of Agriculture, 6(6), 604-609.
  • Thornton, J. (2004). Initial material characterization of straw light clay. Canada Mortgage and Housing Corporation (CMHC).
  • Turkish Statistical Institute. (2023). Crop production statistics, 2023. https://data.tuik.gov.tr
  • Röhlen, U., & Ziegert, C. (2011). Earth Building Practice: Planning · Design · Building. Bauwerk/Beuth Verlag.
  • Schroeder, H. (2016). Sustainable building with earth (Vol. 582). Cham, Switzerland: Springer.
  • Verron-Guillemot, L., Hamard, E., Cazacliu, B., Razakamanantsoa, A., Duc, M., & others. (2022). Estimating and mapping the availability of earth resource for light earth building using a soil geodatabase in Brittany (France). Resources, Conservation and Recycling, 184, 106409. https://doi.org/10.1016/j.resconrec.2022.106409
  • Volhard, F. (2016). Light Earth Building: A Handbook for Building with Wood and Earth (8th ed.). Birkhäuser. https://doi.org/10.1515/9783035606454
  • WRI Türkiye. (2023). Türkiye building sector decarbonization roadmap [PDF]. WRI Cities. https://wrisehirler.org/sites/default/files/Turkiye%20Building%20Sector%20Decarbonization%20Roadmap...pdf
  • Xiao, J., Deng, Q., Hou, M., Shen, J., & Gencel, O. (2023). Where demolition wastes are going: reflection and analysis of Turkey's February 6, 2023, earthquake disaster. Low-carbon Materials and Green Construction, 1(1), 17.
  • Zeghari, K., Gounni, A., Louahlia, H., Marion, M., Boutouil, M., Goodhew, S., & Streif, F. (2021). Novel dual-walling cob building: Dynamic thermal performance. Energies, 14(22), 7663. https://doi.org/10.3390/en14227663
  • Ziegert, C., & Ott, S. (2017). Building with Earth: Materials and Techniques for Sustainable Construction. Birkhäuser.

Thermal Performance of Light Clay Materials: A Volume-based Comparison of Hemp and Straw Fibers

Year 2025, Volume: 10 Issue: 2, 1049 - 1061, 27.12.2025

Abstract

Light-clay materials have gained popularity in the sustainable construction sector for their capacity to use agricultural waste fibres (mainly straw and hempshives) as their main components and clay as a binder. However, despite an increasing number of studies on the thermal properties of light-clay materials based on different fibers, no studies have been made comparing hempshive-based and straw-based light-clay panels bound with the same amount of clay. The results of this study show that the amount of fibres used in the production of the panels has a significant impact on their density, with the usage of hemp shives providing a lower thermal conductivity than straw (respectively 0.05 W/mK and 0.11 W/mK) for a similar composition. Moreover, the low thermal conductivity measured (up to 0.02 kg/m³) for hempshive-based panels indicates that clay-based materials can be utilized efficiently as sustainable insulation.

Ethical Statement

This paper is originated the MSc thesis of Bengü İtmeç from Yaşar University. In addition, this work formed part of the scientific research project “Usage of Agricultural Waste for Clay-Bonded Insulation”, which was accepted by the Project Evaluation Commission of Yaşar University under project number BAP141. The authors acknowledge the Geothermal Research and Application Center the Biotechnology and Bioengineering Application and Research Center (CFB) at IZTECH Integrated Research Centers (IZTECH IRC) for testing and analyses. The paper complies with national and international research and publication ethics. Ethics committee approval was not required for this manuscript.

Supporting Institution

Yaşar University, Bioengineering Application and Research Center (CFB) at IZTECH Integrated Research Centers (IZTECH IRC)

Project Number

BAP 141

References

  • Alassaad, F., Touati, K., Levacher, D., & Sebaibi, N. (2021, May 20–21). Influence of fiber crushing on light earth hygrothermal properties—paper presented at Geo-Environmental Engineering GEE2021, ESITC-UniCaen, Caen, France.
  • Azil, A., Le Guern, M., Rattier, R., Touati, K., Sebaibi, N., El Mendili, Y., ... & Louahlia, H. (2020). Réalisation d'un bâtiment pilote en terre-fibers. Academic Journal of Civil Engineering.
  • Ba, L., El Abbassi, I., Ngo, T. T., Pliya, P., Kane, C. S. E., Darcherif, A. M., & Ndongo, M. (2021). Experimental investigation of thermal and mechanical properties of clay reinforced with Typha australis: Influence of length and percentage of fibers. Waste and Biomass Valorization, 12(5), 2723–2737. https://doi.org/10.1007/s12649- 020-01193-0
  • Bayraktar, M., Binatlı, B., & Üzümoğlu, T. (2023). Türkiye Building Sector Decarbonization Roadmap Extended Summary. Ministry of Environment, Urbanization, and Climate Change. https://wrisehirler.org/sites/default/files/Turkiye%20Building%20Sector%20Decarbonization%20Roadmap...pdf
  • Ben-Alon, L., & Rempel, A. W. (2023). Thermal comfort and passive survivability in earthen buildings. Building and Environment, 238, 110339. https://doi.org/10.1016/j.buildenv.2023.110339
  • Braiek, A., Briki, C., Karkri, M., Settar, A., & Jemni, A. (2023). Thermo-physical and mechanical performances of a new lightweight construction material made with clay and Posidonia oceanica fibers. Case Studies in Construction Materials, 19, e02599. https://doi.org/10.1016/j.cscm.2023.e02599
  • Brouard, Y., Belayachi, N., Hoxha, D., Méo, S., & Abdallah, W. (2016). Hygrothermal Behavior of Clay–Sunflower (Helianthus annuus) and Rape Straw (Brassica napus) Plaster Bio-composites for Building Insulation. In Towards a Sustainable Urban Environment (EBUILT-2016) (pp. 242–248). Iasi, Romania. https://doi.org/10.4028/www.scientific.net/AEF.21.242
  • Brouard, Y., Belayachi, N., Hoxha, D., Ranganathan, N., & Méo, S. (2018). Mechanical and hygrothermal behavior of clay – Sunflower (Helianthus annuus) and rape straw (Brassica napus) plaster bio-composites for building insulation. Construction and Building Materials, 161, 196–207. https://doi.org/10.1016/j.conbuildmat.2017.11.140
  • Busbridge, R., & Rhydwen, R. (2010). An investigation of the thermal properties of hemp and clay monolithic walls. In Proceedings of Advances in Computing and Technology (AC&T), The School of Computing and Technology 5th Annual Conference (pp. 163–170). University of East London. http://hdl.handle.net/10552/987
  • Colinart, T., Vinceslas, T., Lenormand, H., Hellouin De Menibus, A., Hamard, E., & Lecompte, T. (2020). Hygrothermal properties of light-earth building materials. Journal of Building Engineering, 29, 101134. https://doi.org/10.1016/j.jobe.2019.101134
  • Collet, F., & Pretot, S. (2014). Thermal conductivity of hemp concretes: Variation with formulation, density, and water content. Construction and Building Materials, 65, 612–619.
  • De Luca, P., Carbone, I., & Nagy, J. B. (2017). Green building materials: A review of state of the art studies of innovative materials. Journal of Green Building, 12(4), 141-161.
  • El Mendili, Y., Bouasria, M., Benzaama, M.-H., Khadraoui, F., Le Guern, M., Chateigner, D., Gascoin, S., & Bardeau, J.- F. (2021). Mud-based construction material: Promising properties of French gravel wash mud mixed with byproducts, seashells, and fly ash as a binder. Materials, 14(20), 6216. https://doi.org/10.3390/ma14206216
  • Forest Products Laboratory. (2004, March 12). Engineering report on light clay specimens: Thermal conductivities for design coalitions' straw/clay formulations extend Volhard’s K-value vs. density curve to the low conductivity end. Madison, WI: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory.
  • Frantz, D., Schug, F., Wiedenhofer, D., Baumgart, A., Virág, D., Cooper, S., & Haberl, H. (2023). Unveiling patterns in human-dominated landscapes through mapping the mass of US-built structures. Nature Communications, 14(1), 8014.
  • Gaia Architects. (2003). Light Earth Construction: Draft report for milestone 5. Gaia Architects.
  • Goodhew, S., Griffiths, R., & Woolley, T. (2004). An investigation of the moisture content in the walls of a straw- bale building. Building and Environment, 39(12), 1443–1451. https://doi.org/10.1016/j.buildenv.2004.04.003
  • Goodhew, S., Boutouil, M., Streiff, F., Le Guern, M., Carfrae, J., & Fox, M. (2021). Improving the thermal performance of earthen walls to satisfy current building regulations. Energy and Buildings, 240, 110873. https://doi.org/10.1016/j.enbuild.2021.110873
  • Holzhueter, K., & Itonaga, K. (2017). The potential for light straw clay construction in Japan: An examination of the building method and thermal performance. Journal of Asian Architecture and Building Engineering, 16(1), 209– 213. https://doi.org/10.3130/jaabe.16.209
  • İSTAÇ. (2022). Faaliyet Raporu 2022. İstanbul Büyükşehir Belediyesi. https://www.istac.istanbul/assets/belgeler_ve_raporlar/2022-istac-rapor.pdf
  • Jové-Sandoval, P., Gallego, A., & Suárez, J. (2024). Thermal performance of lightweight earth panels using agricultural waste. Journal of Building Physics, 47(2), 321–340. https://doi.org/10.1557/s43580-023-00630-1
  • Labat, M., Magniont, C., Oudhof, N., & Aubert, J.-E. (2016). From the experimental characterization of the hygrothermal properties of straw-clay mixtures to the numerical assessment of their buffering potential. Building and Environment, 97, 69–81. https://doi.org/10.1016/j.buildenv.2015.12.004
  • Mazhoud, B., Collet, F., Prétot, S., & Lanos, C. (2021). Effect of hemp content and clay stabilization on hygric and thermal properties of hemp-clay composites. Construction and Building Materials, 300, 123878. https://doi.org/10.1016/j.conbuildmat.2021.123878
  • Minke, G. (2006). Building with earth: Design and technology of a sustainable architecture (2nd ed.). Birkhäuser.
  • Minke, G. (2012). Building with Earth: Design and Technology of a Sustainable Architecture (3rd rev. ed.). Birkhäuser. https://doi.org/10.1515/9783034608725
  • Mounir, S., Maaloufa, Y., & Khabbazi, A. (2014). Thermal properties of the composite material, clay/granular cork. Construction and Building Materials, 70, 183–190. https://doi.org/10.1016/j.conbuildmat.2014.07.108
  • Niang, I., Maalouf, C., Moussa, T., Bliard, C., Samin, E., Thomachot-Schneider, C., Lachi, M., Pron, H., Mai, T. H., & Gaye, S. (2018). Hygrothermal performance of various Typha–clay composite. Journal of Building Physics, 42(3), 316–335. https://doi.org/10.1177/1744259118759677
  • Oiry, C., Kapetanaki, K., & Maravelaki, P. N. (2022). An insulation panel made from local plant-based lightweight concrete. In EURECA-PRO Conference on Responsible Consumption and Production (pp. 527–535). Cham, Switzerland: Springer International Publishing. https://doi.org/10.1007/978-3-031-25840-4_61
  • Oudhof, N., Labat, M., Magniont, C., & Nicot, P. (2015, June 22–24). Measurement of the hygrothermal properties of straw-clay mixtures. First International Conference on Bio-based Building Materials (ICBBM), Clermont- Ferrand, France.
  • Ratsimbazafy, H. H., Laborel-Préneron, A., Magniont, C., & Evon, P. (2021). A Review of the Multi-Physical Characteristics of Plant Aggregates and Their Effects on the Properties of Plant-Based Concrete. Recent Progress in Materials, 03(02), 1–1. https://doi.org/10.21926/rpm.2102026
  • Ratsimbazafy, H. H., Laborel-Préneron, A., Magniont, C., & Evon, P. (2022). Comprehensive characterization of agricultural by-products for bio-aggregate-based concrete. Construction Technologies and Architecture, 1, 77–84. https://doi.org/10.4028/www.scientific.net/CTA.1.77
  • Soto-Paz, J., Arroyo, O., Torres-Guevara, L. E., Parra-Orobio, B. A., & Casallas-Ojeda, M. (2023). The circular economy in the construction and demolition waste management: A comparative analysis in emerging and developed countries. Journal of Building Engineering, 78, 107724.
  • Sözer, S. (2023). Agricultural Waste Potential of Türkiye. Black Sea Journal of Agriculture, 6(6), 604-609.
  • Thornton, J. (2004). Initial material characterization of straw light clay. Canada Mortgage and Housing Corporation (CMHC).
  • Turkish Statistical Institute. (2023). Crop production statistics, 2023. https://data.tuik.gov.tr
  • Röhlen, U., & Ziegert, C. (2011). Earth Building Practice: Planning · Design · Building. Bauwerk/Beuth Verlag.
  • Schroeder, H. (2016). Sustainable building with earth (Vol. 582). Cham, Switzerland: Springer.
  • Verron-Guillemot, L., Hamard, E., Cazacliu, B., Razakamanantsoa, A., Duc, M., & others. (2022). Estimating and mapping the availability of earth resource for light earth building using a soil geodatabase in Brittany (France). Resources, Conservation and Recycling, 184, 106409. https://doi.org/10.1016/j.resconrec.2022.106409
  • Volhard, F. (2016). Light Earth Building: A Handbook for Building with Wood and Earth (8th ed.). Birkhäuser. https://doi.org/10.1515/9783035606454
  • WRI Türkiye. (2023). Türkiye building sector decarbonization roadmap [PDF]. WRI Cities. https://wrisehirler.org/sites/default/files/Turkiye%20Building%20Sector%20Decarbonization%20Roadmap...pdf
  • Xiao, J., Deng, Q., Hou, M., Shen, J., & Gencel, O. (2023). Where demolition wastes are going: reflection and analysis of Turkey's February 6, 2023, earthquake disaster. Low-carbon Materials and Green Construction, 1(1), 17.
  • Zeghari, K., Gounni, A., Louahlia, H., Marion, M., Boutouil, M., Goodhew, S., & Streif, F. (2021). Novel dual-walling cob building: Dynamic thermal performance. Energies, 14(22), 7663. https://doi.org/10.3390/en14227663
  • Ziegert, C., & Ott, S. (2017). Building with Earth: Materials and Techniques for Sustainable Construction. Birkhäuser.
There are 43 citations in total.

Details

Primary Language English
Subjects Materials and Technology in Architecture
Journal Section Research Article
Authors

Bengü İtmeç 0009-0000-4153-9430

Matthieu Joseph Pedergnana 0000-0001-7343-4166

Yenal Akgün 0000-0001-5595-9153

Project Number BAP 141
Submission Date July 29, 2025
Acceptance Date November 28, 2025
Publication Date December 27, 2025
Published in Issue Year 2025 Volume: 10 Issue: 2

Cite

APA İtmeç, B., Pedergnana, M. J., & Akgün, Y. (2025). Thermal Performance of Light Clay Materials: A Volume-based Comparison of Hemp and Straw Fibers. Journal of Architectural Sciences and Applications, 10(2), 1049-1061. https://doi.org/10.30785/mbud.1753763